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SYNOPSIS

Material-nonlinear three-dimensional finite element analyses were conducted for laterally
confined reinforced concrete columns under axial compression. An elasto-plastic and
continuum fracture model served to investigate the mechanism of confinement by steel casing
and steel ties or hoops on strength gain and the whole inelasticity of the members. This paper
describes two failure modes. One is where the whole lateral steel yields when the reinforced
concrete section reaches its ultimate capacity. The other corresponds to the case where some
part of the lateral steel remains elastic in the ultimate condition of reinforced concrete columns.
A circular casing was found to exhibit the former mode of failure in any case, and the strength
gain of the confined concrete is proportional to the volume of steel. On the other hand, square
casing with a larger amount of steel was proved to come up with the latter mode of failure, and
lateral stress arising in confined concrete was found not to be proportional to the amount of
lateral steel. Uniformity of confinement stress and the induced damage were elucidated in
consideration of confinement efficiency by discretely distributed lateral steel ties and hoops.
The sectional averaged lateral stress in concrete, the minimum of which along the axis of
columns governs the capacity of the entire confined columns, was found to be affected by the
volumetric averaged lateral stress of the concrete as well as the spacing of the ties associated
with the uniformity of stress states. The spacing of lateral ties also influences the volumetric
averaged confinement of the concrete, which mathematically corresponds to the axial mean
value of sectional averaged confinement stress in each section.
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1. INTRODUCTION

Numerous studies of the compressive strength and deformation of core concrete confined by
lateral reinforcement have already been conducted with a view to improving the seismic
performance of reinforced concrete members [1-7,12-17,20]. In general, design codes state
minimum requirements for lateral reinforcement to ensure a member has sufficient ductility and
to prevent longitudinal reinforcement from buckling. However, it is not quantified how the
lateral steel could enhance the strength and ductility indicated by stress-strain relationships of
confined structural concrete of arbitrary shapes, dimensions, amount of steel and spacing. It
can also be said that the mechanism and confinement efficiency of lateral steel have not been
rationally deduced from a vast pool of experiments. As is widely known, even if the same
amount of steel would be placed as lateral confinement, the strength of reinforced concrete
section in compression differs according to the shape of the section and the spatial
arrangement, as well as the spacing of the lateral reinforcement.

There is no lack of design equations named "constitutive equations for confined concrete”. In
these equations, the relationships between the confinement efficiency and the geometry of the
lateral steel is dealt with as an empirical shape factor [1,2,4,12,20] or geometrically calculated
effective sectional area [7,16]. The relationship has never been explained from the microscopic
viewpoint of material inelasticity. Thus, many empirical stress-strain relationships for confined
concrete do not deserve to be named "versatile constitutive law", but should be regarded as
design-oriented empirical equations with few mechanical background. Confinement efficiency
has to be theoretically explained as being rooted in the stress field and corresponding local
inelasticity induced by the lateral steel indeed.

The objective of this research is to investigate computationally how the strength and ductility of
confined concrete are affected by the cross-sectional shape of the concrete, the arrangement of
the lateral steel, the amount of steel used, and the spacing of the steel. To do this, considerable
technical attention is paid to the stress-induced damage indicated by the fracture parameter [9]
as well as to the plasticity, which cannot be directly measured by tests. At first, the authors
deal with a steel casing that represents the steel tubes or plates surrounding the concrete.
Densely arranged reinforcing bars (the spacing to referential dimension of section less than 0.1)
along the axis of columns may be covered in the category of steel casing such as large scale
reinforced concrete bridge piers. Stress-induced damage over the section was the point of
discussion, and the stress distribution along the axis of the member was assumed to be uniform
in this case. Subsequently, core concrete confined by steel ties arranged discretely will be
discussed. In this case, the distribution of stress and damage along the axes of members is non-
uniform and the effect of spacing of lateral ties and spirals will be a key parameter. Computer
simulation was carried out using an elasto-plastic and continuum fracture constitutive model
with three-dimensional finite element analysis [9]. The results of three-dimensional finite
element analysis are compared with existing proposed design equations. Discussion of
analytical results is expected to elucidate the mechanism of confinement subjected to axial
compression. Analytical simulation and discussions are somewhat fundamental so that they
could serve in future development of a rational design equation of confined reinforced concrete
under axial compression.

2. FINITE ELEMENT APPROACH
The strength gain and ductility of confined concrete should not be treated as material

properties, but as macroscopic member characteristics. Then, confinement which differs
according to the arrangement of the lateral ties, the amount of lateral reinforcement, and the



spacing has to be explained by microscopic aspect such as non-uniform stress field developing
over the volume and associated local inelasticity in each dimension and shape of members.

This paper attempts to approach this mechanical aspect with the aid of finite element analysis.
An enhanced constitutive model that can simulate the inelasticity of concrete mechanics is
indispensable in an analytical investigation. Here, an elasto-plastic and continuum fracture
model [9] was adopted since the internal damage and plasticity occurring in concrete under
three-dimensional stress can be quantified. To understand the effect of the geometrical
arrangement of lateral steel on confinement efficiency, a steel casing filled with concrete is
selected as the extreme case where the spacing of lateral bars is zero. Spacing of discretely
arranged reinforcing bars will be discussed as one of the important factors after clarifying the
confinement efficiency related to the shape of section and steel arrangement.

2.1 Full Three-Dimensional Elasto-Plastic and Continuum Fracture Model

Nonlinear behavior of concrete is indicated by plasticity, which denotes residual deformation,
and internal damage, which represents the loss of elastic shear stiffness induced by the
occurrence of micro defects and the internal stress intensity. Micro defects were found not to
affect the volumetric elastic energy capacity of concrete but elastic energy capacity in shear
mode. Maekawa et al. [9] introduced fracture parameter K to indicate continuum damage
occurring in the shear elasticity of concrete, and proposed the second invariant of elastic strains
J2. as a primary indicator of internal stress intensity, which evolves the continuum damage
associated with the assembly of micro-defects. The damage is formulated of being suppressed
by the three-dimensional confinement denoted by I,, as well. Thus, we have the following
indicators of concrete nonlinearity [9]:

Indicator of fracturing damage,

K= /,
2G, J,, (1)
Indicator of plasticity,
aJ,,
eij '
Indicator of internal shear stress,
1
Jze = Eeeij ee,-j (Ic)
Indicator of internal confinement,
I - eekk
=75 (1d)
Indicator of total shear stress,
1
J, = DRAE (le)

Fracture parameter K represents continuum damage of concrete in terms of elastic shear strain
energy. The smaller the value of K, the smaller the capacity of the concrete to absorb and
release the elastic shear strain energy due to the induced micro defects. G, is defined as the
initial elastic shear modulus. Plastic indicator J,, represents induced permanent deformation in



shear mode and isotropic plastic indicator I, (= €,1/3) represents inelastic dilatancy. Notations
£.; and &,; mean elastic and plastic strain tensors, respectively. Shear elastic intensity J5.
represents the internal stress applied to the effective non-damaged volume of concrete.
Notations e,; and s; mean elastic deviatoric strain and stress tensors, respectively. The values
of K and J;, are related to the strength gain of confined columns and J;, to the ductility.
Constitutive laws were proposed incorporating the above nonlinear indicators. Details are
discussed in reference [9]. The constitutive equations concerned were installed in program
COMS3 in the COncrete Model series (COM2 [8], WCOMR [10], WCOMD [18]).

2.2 Finite Element Model

Two types of element were used in the finite element model. A three-dimensional solid
isoparametric element and three-dimensional truss element were adopted for representing
concrete and lateral reinforcement, respectively. The use of truss element to model steel casing
can be justified, since in this study the steel casing is not expected to resist any axial load, but
only in-plane lateral membrane stress to study the amount of confinement produced by the steel
casing. Moreover, it is also used to model densely arranged reinforcing bars without any
stiffness in the longitudinal action. The contribution of out-of-plane flexural stiffness, which is
quite significant for heavily lateral reinforced concrete, is neglected on purpose to model the so
called "corner confined" concrete. In this case, confinement is mainly introduced through the
corner action. Thus, only the effect of axial stiffness of lateral steel, which dominates the
behavior of lightly laterally reinforced concrete is considered. The coupled effect of axial
stiffness and out-of-plane flexural stiffness will be discussed in the next stage of this research.

Symmetry was taken into account in the discretization of finite element model as shown in Fig.
1. One-fourth of section was represented by finite elements in lateral direction. To consider
uniform lateral stress, a single iso-parametric element consisting of 20 nodes was used to
represent concrete for circular section. Since confinement is not uniform within the section,
several elements are needed for square section. Thus, four elements were used to obtain more
information about fracture parameter of local points, internal stresses and strains around the
square section. In the longitudinal direction, no division of element was assigned for concrete
and steel in the case of a steel-encased confined column, and two elements were allocated to
represent non-uniform distribution of stress along the member axis for a discretely confined
column. Figure 1 shows sectional and longitudinal discretization of the model. Second order
of Gaussian integration was used in analyzing the model. Elasto-plastic hardening model for
steel casing is shown in Fig. 2 with standard material properties used in the analysis. Strain
hardening is modeled to avoid numerical instability and divergence of iterative solution.
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Fig. 2 Elasto-Plastic Hardening Model for
Steel Casing (Standard)

Loading was applied to the top surface of the concrete in the direction of the Z-axis (See Fig. 1)
as an axial enforced displacement with fixed boundary condition at bottom surface.
Displacement increment was taken considerably small, being one-ten-thousandth of the height
of model, i.e., 100 micro strain as average axial strain increment. It should be noted that
reinforcement which was represented by truss element does not resist any direct axial load.
Only the confined concrete bears the axial load, and confinement being produced by the steel
reinforcement as it resists the lateral expansion of the concrete.

Flexural rigidity through the truss element used in the analysis was not taken into account. It
implies that the interacting force from the steel is transferred to the confined concrete only
through the corners of the square section. This mode of confinement, called “corner action”,
may hold in the case where thin steel casing or smaller diameter bars are used. However, in
arranging thick steel casing and larger diameter bars around comparatively smaller sections of
concrete, there is an additional mode of confinement besides corner action. Actually, the line
load directly applied to the confined concrete is also created by a steel casing or steel bars
having flexural rigidity. The effect of flexural rigidity on the confinement efficiency will be
discussed later.

Longitudinal reinforcement can serve to confine the concrete as well as to bear the axial load
together with the core concrete. In this study, longitudinal reinforcement was intentionally
eliminated in the analysis to ascertain solely the role of lateral reinforcement. Concrete
covering also was not considered because it easily falls down in the ultimate condition, and
normally it is not expected to improve the strength and ductility.

The constitutive model of concrete used in this analysis {9] is applicable to non-localized
fracturing, where defects in the concrete can be assumed to be dispersed uniformly. Although a
descending branch of the mean stress-strain relationship of members is obtained in this research
(see Fig. 3), the authors accepted results only up to the ultimate capacity as being reliable and
independent on the finite element discretization. For analyzing softening behaviors in
compression, localized deformation has to be consistently predicted with view points of fracture
mechanics and/or interaction field of micro defects [11].

3. CONFINEMENT INDEX
The strength of concrete columns depends on axial concrete stress at each location of member

section. It can be said that member axial strength with lateral confinement is spatial averaged
stress of confined concrete over the whole domain of a critical section. As for circular section,



local stress over a section can be assumed to be uniform due to its axial symmetry. However,
for square section, non-uniform stresses appear over a section. This is why finite element
analysis is needed in evaluating cross section based strength and ductility of confined columns.
At each Gauss integral point, constitutive equations are applied.

Confinement efficiency by lateral steel depends on the amount of steel, strength of constituent
materials, shape of section, and spacing. Since some of these factors are mutually coupled,
parametric study has to be done very carefully. In general, one factor must be kept constant
while the influence of the other is studied. The effect of shape dependent factors is studied
first, since it is important to ascertain this influence in order to investigate the effect of the
spacing of lateral ties.

The following stress-based parameters, called sectional averaging of the lateral mean stress of
concrete G, and volumetric averaging of lateral mean stress G, which can not be obtained in

the experimental approach are introduced as,

_ 1
C. =Gc(z)=TIACG‘(X’Y’Z)dA , (2a)
O, tO,
o, == (2b)
1
Gv =WJ‘VCGC(X,Y,Z) dV (3)

where 0,; is defined as concrete stress tensor of two dimension [ij], A is the cross-sectional
area of concrete confined by lateral steel perpendicular to the Z-axis (see Fig.1), and V. is the
domain of concrete. V, is being equal to A, H, where H is the height of member.

The sectional averaging of the lateral mean stress of concrete G, is supposed to be the lateral
local confinement degree by the lateral steel and the volumetric averaging of lateral mean stress
G, expresses the entire confinement supplied by the whole lateral steel and is regarded as mean
confinement index.

For a continuous steel casing, G, is not dependent on coordinate-Z along the axis of members.
Hence, G, is equal to G, at any coordinate-Z.

According to mathematical compatibility, we have,

D O
O, =71-_[HO'C(Z)dZ e

The equilibrium condition of lateral concrete stress with lateral uniaxial steel stress o (see
Appendix) yields,

_ 1
GV=——2—‘_/:'[': O, av s (5)

where, V; is the whole volume of the laterally arranged steel.



A negative sign in equations represents compression; a positive sign, tension. When lateral
steel would come up to the yield strength of steel f, over the whole volume of steel, according
to the Appendix, Eq. (5) is equal to,

1
O =3Pty ©
where p; is the volumetric ratio of steel.

The value of 42 p,f, has been often used as a parameter to exhibit the amount of confinement in
design equations proposed by Sargin [12], Sheikh and Uzumeri {16], Mander et al. [7], and
others.

The value of %2 p,f, has a clear physical meaning to represent the level of confinement if steel
would reach the full plastic yield condition in the ultimate of the columns. However, provided
the elastic zone remains in steel, % p,f, might lose its mechanical background. The authors
would like to insist that the sectional shape factor on the confinement efficiency should be
discussed under the same magnitude of lateral confinement indicated by Eq. (3), not by % p, f,.
Finite element analysis allows us to compute the mean confinement index &, directly and
rationally. This is the advantage of the microscopic approach to the macroscopic aspects of
structural concrete.

To deduce the effect of the longitudinal arrangement of lateral ties associated with the non-
uniform confinement, the potential /2p, f, of lateral confinement is kept constant in order to
discuss the effect of spacing of lateral ties. The cross section of each tie was varied depending
on the distance between ties so that the potential lateral stress denoted by Eq. (6) would be
constant. This procedure is possible since, as mentioned before, the contribution of flexural
stiffness of ties was not taken into account. Therefore, there is no coupling effect of axial and
flexural stiffness from lateral ties to the potential lateral confinement. If the spacing alone were
to be changed and the size of the steel section were constant, the volumetric ratio of steel,
which is related to the confinement magnitude, subsequently varies, too. This parametric
arrangement does not make any sense for the purpose of evaluating confinement efficiency.
After this section, compression will be defined positive unless special note is given.

4. STEEL ENCASED CONFINED CONCRETE COLUMNS

4.1 Confinement Efficiency - Geometrical Arrangement of Steel -

The effect of cross-sectional shape is discussed first. In this section, circular and square
casings are concerned. The strength of confined concrete, which is equated with axial capacity
per unit area, is quantified by the absolute strength gain, not the normalized value of uniaxial
compressive strength. This approach has been experimentally and analytically verified and
adopted for design equations proposed by others [1,2,3]. The reason is lateral stress level,
which enhances axial strength, is also associated with uniaxial strength, and the sensitivity of
uniaxial strength to both the strength gain and corresponding lateral stress is nearly the same.
The computed strength gain of confined columns of circular and square sections is shown in
Fig.3.

The yield strength of steel £, is 240 MPa with modulus of elasticity before yielding E, is
200,000 MPa and after yielding E; is 4,000 MPa (see Fig. 2). Concrete uniaxial strength £." is
25 MPa and the modulus of elasticity is 20,000 MPa. Volume ratio of steel "p," was
controlled by changing the thickness of the casing.
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Fig. 3 Computed Strength Gain and Laterally Induced Stress of Steel Casing Confined
Columns

Let us compare sectional shape dependency on strength gain. Figure 3 shows that for the same
lateral mean confinement G, which was evaluated by numerical integral in analysis, the
strength gain of circular section based on £’ coincides with that of square one for small spatial
averaged lateral confinement. Here the level of stresses and confinement at each location
around the square section is still almost the same; but as G, increases, the strength gain of
circular section is gradually greater than that of the square one until the peak when the confined
concrete loses the capability to induce plasticity in steel in square sections. Roughly speaking,
the strength gain appears to be proportional to the mean confinement &, defined by Eq. (3) for
both circular and square sections if the steel yields. However, the sensitivity is different
according to the geometrical placing of lateral steel. Lateral steel does not yield when larger
volumetric ratio is allocated in square sections (see Fig. 3). In this case, spatial averaged
lateral confinement stress of confined concrete is almost constant, and so is the strength gain.

Lateral stress distribution in concrete is crucial and results in shape dependency. Distribution
of axial and lateral local confinement stresses (0., and G, ) over square shaped cross sections
are shown in Figs. 4 and 5. As circular section creates perfect uniformity of stress, values of
axial and lateral stresses of circular sectional concrete having the same amount of lateral steel
are shown for comparison in the same figures. In this case, the whole lateral steel yields and
the same axial mean strain of members is realized. On the other hand, the stress field
developed in a square section appears complex. Spatial averaging of local axial stress in Fig. 4
is equal to the strength of the confined structural concrete in the ultimate condition. The
sectional average of local lateral stresses for both square and circular sections (see Fig. 5)
balances with the common value of %2 p,f, according to Egs. (2), (3), and (6).

Around the four corners (Figs. 4 and 5), higher lateral stresses are induced, which may cause
higher axial local stresses to be carried by the concrete. Concrete at intermediate zone between
corners contributes less to axial load-carrying capacity, owing to lower local confinement in the
lateral direction. Around the central zone far from corners, isotropic confinement is attained.

Compared with the uniform stress in circular section, some parts of the square section have
higher confinement and greater axial stresses and others, smaller. It can be said the average of
those local stresses exhibits lower performance on confinement compared with circular section
as a whole. For a deeper understanding, the spatial distribution of fracture parameter as a
damage indicator of concrete is useful in elucidating the confinement mechanism. The contour
line of fracture parameter and its magnitudes in both circular and square sections are shown in
Fig. 6. At the four corners of the square section, value of X is the greatest; and at points mid-
way between the corners on each side, the value is the smallest. This means that much damage
is concentrated on the concrete close to the steel casing but far from the comners of square
section. Mechanically, confinement state at the center halts the further progress of fracturing.
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4.2 Confinement Efficiency - Amount of Steel -

To study the confinement efficiency of concrete, the amount of steel was varied as a parameter.
As far as mechanical aspects are concerned, the material parameters specified in the previous
section remained unchanged. The relationship between the amount of steel "p," and the induced
mean confinement G, over a section is shown in Fig. 7. Also, relationship of strength gain
versus amount of steel is obtained as shown in Fig. 8, incorporating Figs. 7 and 3.

Through these figures, it can be found that non-uniformity in stress distribution and
confinement action in square section induces two conditions of steel when confined concrete
reached ultimate strength. One is that the whole steel has undergone plastic deformation, and
the other is that steel is still in the elastic zone. It should be also mentioned that the latter
condition never happens with a circular section in the ultimate. For a small amount of steel, the
first condition will also occur with a square section, where the steel will yield when the
confined concrete reaches the peak.

However, when the amount of steel is increased, a condition occurs in which the steel is still in
the elastic zone although the peak stress of the concrete has been reached, as shown in Fig. 7.
The magnitude of the lateral stress becomes smaller than %2 p, f, in Eq. (6) as shown in Fig. 9
and a slight increase in the induced lateral stress level is observed even though a larger amount
of steel would be added.

5 28 80 ]

5 o4  Steal yielding o

£ s Steel not yielding 1 ™ Steelyielding

§ ;‘?20 ] E 60 - + Steel not yielding

[ 1 =2

2 €16 4 Circular z ] Circular

= R @

3 /S12] 2409

[= Y =

$8 5] s 2

g8 8] quare | % 201

= 4 Square

H ] _

(2] T T T 0 % T y T
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Volumetric ratio of lateral reinforcement, Ps (%) Volumetric ratio of lateral reinforcement, Ps (%)

Fig. 7 Effect of Amount of Steel to Mean Fig. 8 Effect of Amount of Steel to Strength

Confinement Gain
E’ 28 /' 80 1
:é 24 ] = Steel yielding
s 1 ™= Steel yielding P = + Steel not yielding
55201 *Stoolnotyiolang " g 601 Circular
2216 Circular ,,.mggiﬁgm £
o ] © 40
3,'@] 21 g Loss of £
g g 8 confinement s
$2°] t & 20
T 41 Square Square
£ ] j
& o T 0 . —
0 4 8 12 16 20 24 0 4 8 12 16 20 24
172 Psty (MPa) 1/2 Asty (MPa)

Fig. 9 Relationship between Averaged Fi
Lateral Confinement Stress and /2p,f,

—

g. 10 Sensitivity of #2p,f, to Strength Gain



This is because a larger amount of steel gives rise to higher concrete stress around the corners,
but at the same time, much internal damage occurs at the points mid-way between the corners
on each side, as shown in Figs. 4 to 6. These weak points with inefficient local confinement
may trigger the overall failure of the confined structural concrete even though other parts are
strongly confined. Thus, confined square-shaped concrete loses the ability to trigger plastic
deformation of the steel before failure of concrete itself. Conversely, the uniformity of stress
distribution in circular sections produces relatively no weak points in any section. Uniform
expansion of confined concrete is always counteracted by confinement action from steel
encasing until it would lose its stiffness after yielding. As a result, there exists nonlinear
sensitivity of the value of %2 p,f, to the strength gain as shown in Fig. 10 as far as square cross
section is concerned.

It is clear that the conventional parameter p,f;, which has been used in design equations, loses
its mechanical meaning when a larger amount of steel would be used in the case of square
shape. Accordingly, the sensitivity of steel volume to confinement efficiency appears to be
complex for square arrangement of steel. Sheikh and Uzumeri [16] empirically adopted the
square root of the volume ratio of steel in their design equation proposal. The square root
sensitivity of steel ratio is supposed to correspond to the nonlinearity appearing in Fig. 7.

On the other hand, the strength gain of circular columns seems to be directly proportional to the
amount of steel, since a perfect proportion between G, and amount of steel is certified. So far,

some design equations for square sections are based on linear sensitivity of volume ratio of
steel to the confinement efficiency of circular section [12,20].

4.3 Confinement Efficiency - Material Properties -

In order to study the sensitivity of material properties of concrete and steel casing to
confinement, it is necessary to change one material property at a time. Three cases were
studied for this purpose. A concrete compressive strength of 25 MPa was used in case 1 and 3,
while case 2 used a compressive strength of 100 MPa. Case 1 and 2 used similar yield
strength of steel of 240 MPa, but case 3 used yield strength of 960 MPa. By comparing cases
1 and 2, the effect of compressive strength of concrete to strength gain and level of confinement
can be studied. Cases 1 and 3 can be used to study how the yield strength of steel casing
influences strength gain and confinement stress.

Strength gain was calculated based on the peak capacity of confined concrete. As the plastic
plateau of steel is not idealized for the requirement of stability of computation (see Fig. 2), the
capacity may keep on increasing owing to assumed strain-hardening of steel casing especially
for some circular sections. In this case, strength gain was defined as the capacity at the point
where the strain reaches the actual hardening strain (ten times the yield strain) of the steel
casing.

4.3.1 Strength of Concrete

The relationship of strength gain versus amount of steel for both circular and square sections is
shown in Fig. 11 (cases 1 and 2). In case of circular sections, where concrete always has the
capability to induce the yielding in the steel, the relationship of strength gain versus
confinement stress, which has direct proportion to %2 p; f,, is found to be almost unaffected by
the strength of the concrete. In the case of square sections, the capability of concrete to cause
steel yielding depends on the strength of both materials. In general, a relatively low concrete
strength will not be able to induce plasticity in steel and therefore, the confinement efficiency is



1401 ® Steel yielding E ® * Steal yieldi
1 eel yleldin,
. 120: 4 Steel not yielding é 50 « Steel zot yie?ding
§ 1007 8540
= an] Circular 3 [ Circular 3
£ 801 22
5 1 Circular 1 B
% 601 ircular 2 38 Circular 1
1 S g 201
% 40: quare 2 % g Circular 2 quare 2
20 Square 3 s 107 Square 3
o W ST T~ —— § owE—Sdeel
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Volumetric ratio of lateral reinforcement, Ps (%) Volumetric ratio of lateral reinforcement, g5 (%)
Fig. 11 Effect of Material Properties to Fig. 12 Effect of Material Properties to
Strength Gain Confined Mean Stress
Case 1: fc'= 25 MPa, fy = 240 MPa Case 1 : fc'= 25 MPa, fy = 240 MPa
Case 2: fc' = 100 MPa, fy = 240 MPa Case 2 : fc' =100 MPa, fy = 240 MPa
Case 3: fc'= 25 MPa, fy = 960 MPa Case 3 : fc'= 25 MPa, fy = 960 MPa

lower. To increase confinement efficiency, higher strength of concrete should be used, since it
will extend the effective range of steel volume where the steel yields (Fig. 11, cases 1 and 2).

Relationship between confined mean stress and amount of steel can be seen in Fig. 12 for
different sets of material properties. As for circular sections, the relationship concerned
remains proportional. For square sections, we can see in Fig. 12 (cases 1 and 2) that the range
of plastic mode of steel failure expands with the increase of compressive strength of concrete.
Higher strength of concrete serves to induce yielding in greater amount of steel surrounding
concrete for square section.

It can be summarized that confinement efficiency related to the amount of steel is not affected
by the strength of concrete when a circular section is assumed, but is greatly influenced by the
concrete strength on the strength gain in the case of square confinement. This interaction has
not been rationally linked with design equations to specify the stress-strain relationship of
confined concrete for design purposes.

4.3.2 Yield strength of steel

For circular sections, the increment of the yield strength of steel, as predicted, increases
strength gain proportionally, as shown in cases 1 and 3 of Fig. 11. It is easily understood that
by increasing the yield strength, the level of confinement provided by the steel casing also
increases according to Eq. (6), since a circular section always has the capability to induce steel
into the plasticity range.

However, with square sections, there is almost no. increment in strength gain due to the
increment of yield strength for a larger amount of steel. In other words, maximum level of
confinement provided by steel casing is similar regardless of the value of yield strength when
we use a large amount of steel, as shown in Fig. 12 (cases 1 and 3). Because of non-uniformity
distribution of stresses and local damage in square sections, the capacity of confined concrete
to induce yielding in steel is not affected by the yield strength of the steel since the ultimate
mode is decided by the mode of concrete failure. Only fewer steel and/or higher compressive
strength of concrete is needed to reach the most efficient usage of steel when a higher yield
strength is employed.



5. DISCRETELY CONFINED CONCRETE COLUMNS

5.1 Lateral Hoop for Circular Section

For a circular section with continuous encasing, concrete of any strength always has the
capability to induce steel casing to yield when the core concrete reaches its peak strength,
because of the perfect uniformity of stress distribution and confinement actions, not depending
on the amount of steel, as discussed in the previous chapter. It means from Eq. (6) that
laterally induced concrete stress in XY plane in Fig. 1 always reaches full capacity, denoted by
%p,f, which represents volumetric lateral average stress in the case of entire steel yielding.

However, when we have discrete lateral hoops, lateral confinement in concrete is not uniform
along the column axis. Hereafter, let s/d denote the ratio of bar spacing to sectional size. For
circular sections, diameter is assigned referential size 'd’ of the section, and for square sections,
the span length of the square is assigned for 'd. Figure 13 shows sectional averaged lateral
stress computed along the axis of columns with different bar spacing when reinforced concrete
columns reach the ultimate capacity. Since the section at the position of lateral tie locally
undergoes the greatest lateral confinement, it exhibits the maximum G of sectional

c,max

averaged confinement stress G,(z). Conversely, the section in between lateral ties undergoes
the minimum confinement, indicated by G, ;,;,. The average sectional confinement with respect

to the axial direction of columns coincides with ‘G, in accordance with Eq. (4).

Even though different spacing would be assigned, the value of /2p,f, was kept constant. This
means that the induced lateral confinement becomes equal if entire steel yields. Smaller
spacing gives rise to smaller deviation from the mean value of G,, which is mathematically
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equal to G, (see Fig. 13). Here, the value of G, is computed close to %sp,f;. It means that the
entire steel hoop reaches plasticity. The capacity of the confined circular concrete is governed
by the weakest section having the minimum value of G, between adjacent ties.

With the increase of spacing, the minimum value of G, between ties deviates from mean value
defined as G,, where G, (= %p; f, ) is kept constant since the same volume of steel was
arranged and the whole steel also yields. However, a larger distance between adjacent hoop
ties is found to lose the capability to induce yielding to entire steel. As shown in Fig. 13, the
value of G, gets reduced even though the value of %%p, f, intentionally remained unchanged.
Minimum lateral confinement at critical section between adjacent ties decreases with the
increase of spacing. This is owing to the less lateral stresses arising in steel as well as the far
location from the tie. Strength gain, which is defined as the increment of the ultimate capacity
of confined concrete in comparison with uniaxial condition, is supposed to be governed by the
minimum sectional averaging of lateral stress G, . at a critical section between ties. A relation

of strength gain and G,

looks linear as shown in Fig. 14. By combining Figs. 13 and 14, we

,min

have relationship between strength gain and the spacing of hoops as shown in Fig. 15.

The effect of spacing on strength gain and ductility is associated with the amount of steel, as
shown in Fig. 15. Steel volumetric ratio ranges from 0.5% to 15%. A value of 15% is
regarded as the extreme case, which is however advisable for comprehending overall behavior
and tendency on strength gain. Peak strain in the ultimate (g;) normalized by the one for
unconfined concrete (€ c') is taken to represent ductility. The confinement efficiency of lateral
steel, which is obtained by comparing volumetric average confinement G, actually induced
with the potential lateral stress /2, f,, can be seen in Fig. 16. If G, is less than 45p,f,,
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lateral steel still remains elastic even though confined concrete reaches its capacity. This
means that the level of confinement that can be supplied by the steel is not fully achieved.

‘When we use reinforcement with less than 1.5% of p; by volume ratio and less than 1.0 of s/d
by spacing to diameter ratio, confinement efficiency becomes close to unity. Thus, concrete
with a compressive strength of 25 MPa can induce plasticity in steel within the conditions
stated above. Conversely, if bulk of the steel were to be discretely arranged (e.g. 15% of p; ), a
smaller hoop spacing (e.g. s/d < 0.3) is required to induce complete plasticity in the steel.
However, regardless of the amount of steel, lateral steel undergoes plasticity when the spacing
converges to zero, that is, when a continuous casing is formed. To avoid instability in the
calculation, an elasto-plastic model with strain hardening immediately after yielding was
applied for lateral steel (Fig. 2). As a result, after the steel yields, the lateral steel stress can
still keep increasing. Therefore, confinement efficiency based on %2p,f, can be slightly greater
than 1.0, as appears in Fig. 16. Confinement efficiency greater than 1.0 should be interpreted
as full utilization of the lateral steel.

5.2 Hoop and Tie of Square Section

Two types of lateral reinforcement were considered: square sections with and without
intermediate cross ties, where the stress distribution and confinement actions are not uniform in
space. The cross-section of these shapes can be seen in Fig. 1. The effect of the shape,
especially for a circular and square section steel-encased core concrete, has already been
discussed in the previous chapter. Analysis revealed that square lateral encasing does not
undergo plastic yielding provided the larger amount of steel or relatively lower strength of
concrete. In other words, the concrete fails prior to the square casing yielding. This is not the
case for circular encasing.

It was reported that, in general, cross ties with square hoops gives rise to higher strength gain
and ductility than lateral steel without cross ties. Figure 17 illustrates spatial distribution of
local damage indicated by non-dimensional variable X in Eq. (1) within critical section in both
types of bar arrangement (see Fig. 1). In the ultimate capacity, sectional averaged lateral
stresses G, are 1.33 MPa and 0.96 MPa in square hoop with and without intermediate cross
ties, respectively. In both cases steel is still in elastic zone. It is obvious that intermediate
cross ties enhance the confinement efficiency. It can be seen from Fig. 17 that the presence of
cross ties creates different damage distribution with a slightly higher value of K from the case
of square section without cross ties.

The relationship of strength gain and ductility to the spacing of lateral ties are shown in Fig.
18. The efficiency of lateral confinement is seen in Fig. 19. This value which indicates G,
induced by steel stress in terms of 72p,f, is useful for clarifying the nonlinearity condition of
steel in the ultimate capacity of columns. In general, the sensitivity of spacing to strength gain
depends on the amount of lateral steel as in the case of circular section. As for square columns,
there exists an upper limit of strength gain of confined concrete even if the volume of lateral
ties would be amplified so much (see Fig. 18). As shown in Fig. 19, zero spacing as an
extreme case does not always exhibit full plasticity but elastic zone remains in steel if greater
amount of lateral steel is placed. It can be clarified that the reduced confinement efficiency by
a greater amount of lateral steel offsets the benefit granted by the larger volume of lateral steel.
This is also rooted in the geometrical aspect of sectional shapes already discussed analytically
by the authors in the previous chapter and experimentally by others [5,19].
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The above sensitivity of volume ratio of steel could be fairly pointed out from Fig. 20. In the
case that steel is still in the elastic zone at the peak of the stress-strain diagram (confinement
efficiency less than 1.0), almost no increment of strength was observed. In the elastic zone, the
increment of volumetric ratio only affects the mean steel stress being reduced in lateral
reinforcement without increasing the strength of the confined concrete totally. This is because
the level of confinement induced by the whole lateral reinforcement is not improved. Internal
damage to the concrete nullifies the capability of the confined concrete to expand and forces the
lateral reinforcement to produce greater confinement action. In other words, the use of
excessive lateral reinforcement does not evolve the performance of confined concrete
efficiently. Through parametric studies by the finite element method, it was found that the
spacing of ties affects the whole confinement stress level represented by G, as well as the

distribution of local lateral confinement stress denoted by G,.
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5.3 Comparison with Existing Design Equations

As mentioned earlier, considerable work has been done regarding the strength and deformation
of confined concrete. Among previous researches on rectangular sections, the influence of
volumetric ratio of lateral reinforcement has received the most attention. Burdette et al. [3]
observed that only this parameter and the yield stress of the steel reinforcement influence the
performance of a confined concrete core. Iyengar et al. [4] included the compressive cylinder
strength of concrete in their proposal for predicting the strength gain of confined concrete with
rectangular shapes. The influence of spacing ratio appeared in the proposal by Sargin [12],
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which was agreed by Vallenas et al. [20]. Finally, Sheikh and Uzumeri [16] included the effect
of lateral reinforcement configuration to predict the performance of confined concrete.

Results by finite element analysis are presented with the existing design equations which
empirically derived from previous researches (see Figs. 21-23). Two parameters, the lateral
reinforcement ratio and the ratio of spacing to sectional size denoted by s/d, are varied
systematically. It must be stated that each empirical equation might be invalid in some range
conducted in parametric study no matter what applicability is specified. Observed is
discrepancy among the empirical equations whatever experimental database is assumed. For
circular sections, as far as smaller spacing of circular hoop ties is concemed, the predictions by
authors' analyses seem close to the proposal by Mander and Iyengar. As for the range of larger
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spacing, however, the strength gain computed by constitutive model appears to be close to the
prediction by Shah et al. [13].

Figure 22 shows strength gain of square sections without intermediate cross ties. Analytical
results are comparatively close to the prediction by Sheikh and Uzumeri [16] except for very
small spacing less than 0.1 by s/d. It should be remembered that these design equations were



not derived from circular casing. A large amount of steel was analytically proved to be
inefficient on confinement (see Section 4.2). The models except for Sheikh and Uzumeri's one
give higher predictions because the sensitivity of volume ratio on strength gain is assumed
linear. Sheikh and Uzumeri's model alone assumes the square root sensitivity of volume ratio.

According to analytical and experimental investigations, volumetric ratio should not be
regarded as being proportional to the induced sectional confinement due to the remaining
elasticity in steel, which means inefficient usage of lateral reinforcement. The accuracy of
analysis was verified in the case of steel lateral encasing in the previous chapter.

Intermediate cross ties change stress distribution over a cross section. Contrary to the simple
square hoop, the analytically obtained compressive capacity of cross tied members is found to
be smaller than the one predicted by Sheikh and Uzumeri (see Fig. 23). Other models are
avoided in the discussion since the presence of intermediate cross ties cannot be taken into
account in their proposals. The tendency is that smaller spacing shows bigger discrepancy
between the predictions of authors and those of Sheikh and Uzumeri. Actually, in the analysis,
there exists no greater difference between the strength gain of cross tie reinforcement and that
of having no ties. In reality, design equations including Sheikh and Uzumeri's were derived
from the loading experiments having longitudinal reinforcing bars which can serve to confine
the lateral expansion of the core concrete concerned as well as to carry some of the axial load.
Cross tie arrangement implies effective lateral confinement by longitudinal reinforcement.

The finite element analysis proposed in this paper does not take into account the presence of
longitudinal reinforcement as lateral confinement agent. In other words, it can be understood
that design equations do not separate confinement efficiency into those originating in the lateral
and longitudinal reinforcement. This will be analytically clarified in the next stage of
investigation as well as the effect of flexural rigidity of discretely arranged bars.
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6. CONCLUSIONS

The compressive load bearing capacity of laterally reinforced concrete results from complex
three-dimensional stress distribution. To elucidate the confinement efficiency by lateral steel, a
three-dimensional stress field is analyzed using finite element method and elasto-plastic and
fracture models for concrete. Sectional averaged lateral stress and volumetric averaging were
quantitatively evaluated. This stress-based information cannot be obtained experimentally.
The following are analytically investigated.

6.1 Steel Encased Confined Concrete Columns

(1) It was clarified that the strength gain due to confinement is approximately proportional to
sectional averaging of lateral mean stress at each particular point in a section, regardless of the
geometry of steel arrangement, while the proportional sensitivity of strength gain versus
spatially averaged lateral mean stress is dependent on the type of steel laterally placed. Three-
dimensional finite element analysis was verified to quantify confinement efficiency related to
the geometry of lateral steel.

(2) Sectional averaging of lateral mean stress was found to be exactly proportional to the
amount and yield strength of steel for circular sections. But as for square sections, it was
numerically shown that the linearity between the mean confinement stress in concrete and the
amount of steel does not hold. It means that the strength gain cannot be rationally predicted by
the conventional factor "p, f;" where p; is the volume ratio and f, is the yield strength of steel.

(3) The confinement efficiency for a square section is not improved when the amount of lateral
steel becomes large. The nonlinear relationship between the strength gain and the volume ratio
of steel casing is rooted in the premature failure of concrete before the yielding of the lateral
steel. It was numerically investigated that confined concrete with a square section will lose the
ability to induce plasticity to greater amount of lateral steel. Even if more steel were be added
to the confinement system, the stress arising in the steel is simultaneously reduced. As a whole,
the confinement efficiency is not improved effectively by increasing the volume of steel.

(4) It was verified that compressive strength of confined concrete and yield strength of steel
affect the relationship between lateral averaged stress of concrete and the amount of steel.
Higher strength of concrete, which can act to induce greater plasticity to steel, extends the
effective range of steel volume where the whole steel yields and the confinement efficiency is
the maximum under the given material. Higher yield strength of steel reserves more
confinement stress that can be mobilized, as long as concrete can induce plasticity to the steel.

6.2 Discretely Confined Concrete Columns

(1) For circular columns with discrete lateral hoops, larger spacing between adjacent hoops
results in less lateral confinement to the critical section of core concrete. It is computationally
shown that lateral confinement stress which is transferred along an axis is reduced as the
distance increases. In addition, absolute hoop stress itself is reduced with greater spacing.
Spacing has duplicated effects on the whole confinement efficiency.

(2) For square columns with or without cross ties, spacing has a similar influence on

confinement to the core concrete. It is analytically pointed out that square hoops lose
confinement efficiency when a larger spacing and/or greater amount of steel would be assumed.



(3) The presence of cross tie is taken into account in the analysis. The tie improves
confinement efficiency since the intermediate steel reinforcement makes internal stress and
damage distribution smoother even when the same amount of steel would be allocated in
concrete. The mean value of sectional non-uniform damage, which is indicated by the fracture
parameter, is proved to be greater than the one of lateral square ties without any cross
reinforcement. This comparison is made under the same amount of steel which means the same
volumetric averaging of lateral confinement stress, which can be attained provided the entire
plasticity of lateral steel reinforcement.

(4) Analytical results are compared with the prediction by empirical formula oriented to the
design for confined members. The computed strength gain is examined to be close to some
empirical equations. Through verification, the sensitivity of each factor to strength gain is
studied for a new proposal of design equations having the mechanical background in future.
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APPENDIX

Let us consider laterally confined concrete, as shown in Fig. Al. Applying the virtual work
principle, we obtain,

[0, 8, av =] Fouas. A

where F is the external force applied on the boundary of the domain and V denotes the domain
of the whole volume. When we apply the following virtual displacement and associated field of
perfect isotropic virtual strain,

casing

y
X Steel Encased Discretely Confined
Column Column

Fig. Al Confined Concrete



%, =8, #0 (A-2a)

e, =0 (A-2b)
8, =0 fori#j, (A-2¢)

the right term of Eq. (A-1) becomes zero because the X-Y component of F as a surface force
applied to the confined concrete is not present.

By substituting the above equations into Eq. (A-1) and assuming uniaxial stress state o, in the
steel, we obtain the following integrals in the concrete and steel domains, V, and V,:

J;c,j&,.j dV=JVCc“.j 3, dV+L’c“.J.8£,.j dv=0 (A3)

Senj;c (©,, +0,,,)dV+3¢, J;‘GS dv =0

&)y

(A-4)

According to the compatibility condition of the prescribed field, virtual strain along lateral
reinforcement coincides with the value designated by Eq. (A-2) regardless of the way of steel
arrangement. Then, we have,

J; : ©.. t0.,)dV +L 0,dV=0 (A-5)

Here, let us define the local lateral confinement stress, which is the first invariant under a two-
dimensional stress field, by taking,

G — GC,XX +0{_’,yy (A'6)
¢ 2

By substituting Eq. (A-6) into Eq. (A-5), we have,

2J‘V£0'C(X,Y,Z) dv +JV‘0: dv =0 AT

Using the above equation, we can compute the spatial averaging of local lateral confinement
induced in concrete with respect to the steel stress as follows;

1
5 =V—L£ 6. (X,Y,Z)dV

c

(A-8)

— 1
Gv =_WJ;; G: dv (A-9)

Provided that the whole domain of lateral steel would be in yield condition where the steel
reaches yield strength f, spatial averaging of lateral confinement becomes,

LI [ N S L/ P
Gv—_zvc v, fy —_zvcfy s = 2 Vc fy—_2 Psfy. (A-10)
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