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1. INTRODUCTION

In simple reinforced concrete beams without web reinforcement and subjected to a single load or a pair
of symmetrical concentrated loads, the shear strength can be calculated with good accuracy. For example,
Niwa [1] has proposed Eq. (1) to estimate the shear strength of such RC beams.

V,=0.94f p!’(100/d)V*(0.75 +1.4d|a)b,d Q)
Where, f : compressive strength of concrete [kef/cm?]
p,, : reinforcement ratio = 100A/(b,d) [%]

a : shear span length [ecm]
d : effective depth [em]
b, : width of web [cm]

w

A, : cross—sectional area of tensile reinforcement [cm?]
Equation (1) gives no information about the location of the shear failure. Thus, it appears that this type
of equation estimates the shear strength of a beam as a whole rather than estimating the shear strength
of the failed section. Considering this, it is clearly difficult to calculate the shear strength of beams
subjected to uniformly distributed loading and/or multiple concentrated loading; in such cases, the shear
force is not constant along the span and the location of section in which failure occurs should be
determined first in calculating the working shear force.

In the case of bending moment, design is carried out in consideration of both the external moment and
flexural strength at every cross section. It might be convenient to use a similar method also in the design
against shear force. To do so, however, it will be necessary to know the shear strength of each cross
section throughout the span.

When a simple beam is subjected to a single concentrated load, it is well known that the shear span to
depth ratio (a/d) very much affects the shear strength of the beam, and that a beam with a smaller a/d
has higher shear strength. This is usually explained as follows: concentrated load applied to the beam
and the resulting reaction force at the support will produce local compressive stress 0, in the web
concrete, reducing the principal tensile stress ¢, that causes the development of diagonal cracks.
Considering this, it can be expected that the shear strength of a section would be larger at locations
nearer to the loading point and/or the support.

In this study, the relationship between the shear strength of a section and its distance from the load and
support was examined experimentally. A method of calculating the shear strength of a beam under
uniformly distributed loading or multiple concentrated loading was then proposed. The accuracy of
estimates made using the new method was verified by comparing results with published experimental
data.

Because shear failure always results from the development of diagonal cracks, it might be argued that
the sections in which shear strength is examined should be inclined. In this work, a zone including a
diagonal crack and with a finite length is considered instead. When the length of this finite zone is
reduced, it converges to a normal vertical cross section. The method may prove convenient in the design
of the ordinary flexural members subjected to both flexural moment and shear force.

2. PRELIMINARY LOADING TEST

It would be very difficult to examine the shear strength of every zone throughout a span, if ordinary
beams without web reinforcement were used in loading tests. In such cases, the location of the critical
diagonal crack would be almost completely determined by the given conditions, such as a/d ratio, and
we would only find the strength of the weakest zone in the beam.

Here, specially reinforced beam specimens are used. Only small amounts of stirrups are used in the zone

under consideration (the test zone), while heavy stirrups are placed in the remaining parts of the beam
to force a shear failure within the test zone.
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At first, as shown in Fig. 1, an ordinary beam
without web reinforcement (Specimen A) was tested
to find the location of the critical diagonal crack and
the shear failure load in advance. Specimen B
reinforced with stirups except in the zone
equivalent to the critical diagonal cracking zone in
specimen A, was then tested. As shown in Table 1,
though there was little difference in the location of
the critical diagonal cracks in the two specimens,
shear failure load of specimen B was 1.34 times
larger than that of specimen A. The effect of
stirrups placed outside the test zone was clearly
recognized in specimen B.

One way to eliminate the effect of the stirrups
would be to extend the length of the test zone.
However, if this were done, it would be difficult to
assign a particular location to the critical diagonal
crack. We therefore proceeded to think about
another possibility. As shown in Fig.1, specimens C
and D were made and loaded. In these beams, the
test zone was slightly reinforced using ¢ 3.2 stirrups
(dotted lines) while the remainder was reinforced
with D10 stirrups (solid lines). The spacing of all
stirrups was 10 cm. The test zone was 30 cm
(1.43d) and 40 cm (1.90d) long in specimens C and
D, respectively. To compare the failure load and
determine the location of the test zone in C and D,
a loading test was carried out on specimen E in
advance: in this specimen, ¢3.2 stirrups were
arranged at 10 cm pitch throughout the shear span.

A summary of the loading test results is given in
Table 1. Specimen C, with a zone length of 30 cm,
failed due to yielding of the axial reinforcement
before diagonal cracks fully developed. Also the
shear strength was clearly seen to increase due to
the effects of the stirrups outside the test zone. On
the other hand, in specimen D, where the zone
length was 40 cm, both the critical diagonal crack
location and the shear failure load corresponded to
that of the uniformly reinforced beam
specimen E, showing that the stirrups
outside the test zone had negligible
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Fig. 1 Preliminary Specimens

Table 1 Summary of preliminary test

effect. On the basis of these No. f) Failure load Location Failure
experimental results, the length of the kgf/cm? P, (tf) x (cm) mode
test zone was fixed at 40 cm, with ¢ 3.
2 (10 cm pitch) stirrups in the test zone | A 218 11.5 (1.00) 350 Shear
and D10 (10 cm pitch) stirrups outside | B A8 15.4 (1.34) 38.2 Shear
the test zone, for subsequent test C 288 21.7 [142] ~ Flexure
Specimens. D 277 16.2 [1.06] 56.3 Shear

. . E 252 15.3 [1.00] 52.5 Shear
In these experiments, the cross section

of the beam was 15 cm in width and 21

cm in effective depth. The longitudinal reinforcement ratio (p,) was 2.46% (2D22) or 3.22% (2D25).

The ratio of shear span to effective depth was 4.00 i
8 cm wide were used at both the loading point and

n all specimens. Steel bearing plates 3 cm thick and
supports.
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The physical properties of the reinforcing bars used

are shown in Table 2. In Fig. 1, the critical diagonal 1A-1E i 5 $ i Unit : em

cracks that caused shear failure are also sketched. In T

Table 1, the location given for the critical diagonal “l Pl I l I I I l I I l I I

crack (x) denotes the distance from the support to j:ﬂ'l j

the cross section where the djagonal crack intersects 2, 140 |2

the mid-height of the effective depth. 2G - 28 $ 5 i JF/

3. OUTLINE OF LOADING TESTS TO “UHI'HIIHHH]H
DETERMINE ZONE SHEAR STRENGTH w21 [ ]

In a beam with shear span length a, the shear 3E-3F 5 JF/

strength v, of a zone is assumed to be determined ”H l | l I ie s ] l l I [ I ] I ll‘

by the values (x,) and (a-x,), which represent the = L =

distances from the nearest support and from the 0 63 - ] 20

loading point to the zone under consideration,
respectively. Namely, the zone shear strength is
assumed to be expressed by Eq. (2). Here, the Fig. 2 Specimens for the study of zone strength
location of a zone is conveniently represented by the

abscissa at the center of the zone.

v, = f(x/d, (a-x)[d)v, ©) Table 2 Properties of bars
Where, v, denotes the basic shear strength of the Bars Yield point E,
section under ideal conditions; that is, it is located kef/cm? 10%gf/cm®
at infinite distance from both the load and reactions
and there is no influence from them at all. The basic $3.2 3,838 2.07
strength, v,, is determined by the shape and D10 3,820 1.86
dimensions of the cross section, the quality of the D22 3,455 1.77
materials, and the arrangement of shear D25 3,602 1.94
reinforcement.

The beam specimens used to examine the zone shear strength are shown in Fig. 2. These beams have
. identical cross sections to the preliminary specimen D. The nominal distance, x,, from the support to the
center of the test zone is varied between 1.0d (21 cm), 2.0d (42 cm), and 3.0d (36 cm). Two to four
identical beams with the same value of x, were made. A concentrated load was applied to each beam
at different position (a/d) to find the effect of x/d and (a—x,)/d on the shear strength of the test zone.
The value of a/d ranged from 2.0 to 5.0.

Wire strain gages were attached to three ¢ 3.2 stirrups in the test zone and to two D10 stirrups adjacent
to the test zone. If the position of the critical diagonal crack deviated very much from its assumed
location, stirrups adjacent to the test zone would intersect the diagonal crack, and the correct shear
strength of the test zone could not be found. The purpose of the latter strain gages is to detect such a
possible situation.

During the loading tests, the applied load and the strains of stirrups were measured. The development
of cracks was observed with magnifier lenses. The same steel bearing plates as described in Section 2
were also used here. The compressive strength of concrete at the time of the tests is shown in Table 3,
and the physical properties of the reinforcing bars are the same as given in Table 2.

4. ZONE SHEAR STRENGTH EQUATION

A summary of the loading test results is shown in Table 3. All specimens except 2F, failed in shear due
to the development of a critical diagonal crack within the test zone. At shear failure, it was confirmed
that all stirrups in the test zone yielded. In specimen 1C, a diagonal crack intersected a stirrup outside
the test zone, and the effect of this on the stirrup was clearly seen in the strain measurements. Thus, the
data for specimen 1C was omitted from the analysis. In Table 3, the test results for the preliminary

— 170—



Table 3 Summary of loading test to examine zone strength

No. a/d x,/d f' Vv, v, x/d Vel
kgf/cm?® tf kgf/cm? kgf/cm®
1A 2.0 1.0 283 14.68 46.61 1.21 41.03
1B 2.5 1.0 284 7.62 24.19 1.18 27.72
1C 3.0 1.0 264 9.41 29.87 1.68 -
1E 4.0 1.0 260 6.25 19.87 1.51 19.75
2C 3.0 2.0 292 9.06 28.77 2.14 31.02
2D 3.5 2.0 279 7.37 23.39 2.14 21.79
2E 4.0 2.0 278 6.63 21.05 1.98 19.12
2F 5.0 2.0 260 6.83 - - -
3E 4.0 3.0 255 7.66 2432 3.01 25.63
3F 5.0 3.0 272 6.83 21.69 3.62 20.72
D 4.0 2.5 277 6.43 20.42 2.68 21.56
E 4.0 - 252 6.11 19.39 2.50 19.95

specimens, D and E, are also shown.

The purpose of the experiments was to determine the zone shear strength of beams without web
reinforcement; that is, to more accurately fix the function fin Eq. (2). As described in Section 2, a small
amounts of stirrups were arranged in the test zone and their effect should be isolated from the test
results. Scince the effect of stirrups on shear strength has not been fully clarified yet, v, is assumed to
be expressed by Eq. (3) simply through the ordinary truss analogy.

v = v, * 1, ®
Where, r : web reinforcement ratio = A /(b,s)

f,,: yield point of web reinforcement

A, : cross—sectional area of a stirrup

s : stirrup spacing

In the experiment, the value of rf,, was 4.04 kef/cm?. Strength v, denotes the basic shear strength of a
section without web reinforcement, and it is assumed to be expressed by Eq. (4) [2].

v, = 0.94£°(1+B +B ) @)
B, = Jp_w - 10 <0732

B, = 00| - 1.0

As clearly seen from the results in Table 3 and Fig. 3, the shear strength of a zone is almost constant,
at about 20 kgf/cm?® whatever the value of x/d, when the distance (a—x) from the load point to the crack
is greater than about 1.5d. On the other hand, the shear strength increases as the value (a—x)/d falls
below 1.0. This tendency is more notable when the value of x/d is smaller.

Several types of function, which might adequately express this behavior, were selected and their
adaptability to the experimental results was examined using the non-linear least squares method [3]. The
results of using Eq. (5), the hyperbolic function, were found to be most suitable [4]. In this analysis,
the actual position of the critical diagonal crack (x) was used instead of the nominal position of the test
zone (X,).

f = 0.958[coth(x/d)]"*®[coth{(a-x)/d}]*** 5

Where, coth(®) = (e’ + e (e’ - ™)
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The ratio of calculated shear strength v, as determined by Eq. (5) to the experimental value, v, was
1.00 on average with a coefficient of variation of 8.0% for the 10 specimens shown in Table 3. The
accuracy of Eq. (5) is satisfactory, and this equation will from now on be used as the "Zone shear

strength equation".

5. APPLICATION TO SIMPLE BEAMS SUBJECTED TO UNIFORMLY DISTRIBUTED
LOADING

When we use the zone shear strength equation to calculate the shear strength of a simple beam subjected
to uniformly distributed loading, the load must first be transformed into a series of concentrated loads.
Furthermore, the interaction between these loads should be considered.

First, the uniformly distributed load is transformed into a group of concentrated loads P, to P,, as shown
in Fig. 4. Here, w and / denote the intensity of the uniformly distributed load and span length,
respectively.

P; = wiin ' ©)

The shear strength of section i against each concentrated load P, is expressed by Eq. (2) and Eg. (5).
That is, the shear strength increases to f times the basic shear strength v,. Here a substitution is used:
shear strength is left unchanged but the effect of applied shear force is decreased to 1/f times the actual
value. This imaginary shear force is defined here as the "Effective shear force", (V). The effective shear
force at section i due to force P; is expressed by Eq. (7).

V, =P (I -a)l G > i)
= -P,afl G <)
f; =0958 [coth(x,/d)]*®[coth {(a,~x)/d]' *** G > i)
= 0.958[coth{( - x)/d)}]"*®[coth{(-a; + x)/d}]'** (G <)
Vej = Vilfy 7

Then, as the shear failure criterion for the section under the combined action of the concentrated loads,
a linear accumulation of damage is assumed. That is, as shown in Eq. (8), shear failure is assumed to
occur when the sum of effective shear forces due to n concentrated loads reaches the basic shear strength

V, of the section.

V=V (©)]
1
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The shear failure load of a section is calculated using the procedure and assumptions described above.
Repeating the calculation for every cross section throughout the span, the failure load of a beam is found
as the minimum of all the values. The position of the critical section is also given by the x, that results
in the minimum shear failure load [4].

Iguro [5], Ishibashi [6], and Niwa [1] have independently proposed methods for calculating the shear
strength of simple beams subjected to uniformly distributed loading. Iguro et al. replace a uniformly
distributed load with an equivalent pair of concentrated loads acting at the one—fourth points along the
span, following the idea by Kani. Then using the a/d ratio for the substituted concentrated load, the shear
capacity of the beam is calculated using published equations for shear strength under concentrated
loading.

Ishibashi et al. assume that the shear capacity of a section V, is expressed by the sum of V, and V,
as shown in Eq. (9). Here, V,, and V,, represent the favorable effects of local compressive stress 0, due
to the load and support reaction, respectively.

V, =V, +V, ©)
v, =V

ur u(a =2(a,-x))/ 2.0
Vie = Vataez 120

V, = af?U + B, + Bb,d
« = glajd

Where, a, is the clear distance between the bearing plates at Joad point and support and roughly
corresponds to the shear span length. Also, x is the distance between the inner edge of the bearing plate
at the support and the section under consideration. That is, V. and V, are equal to half the shear
capacity of beams with shear span lengths a',=2(a,-x) and a',=2x, respectively.

The assumed failure criterion, under the combined action of n concentrated loads, is that the sum of the

ratio of V; to V; is unity, as shown in Eq. (10). Here, V; is the shear force due to P;, and V,; is the shear
strength of the section against P;.

Table 4 Analysis of Leonhardt's experimental results

Experiment Zone strength method Ishibashi's method Niwa's method
NO' l/ d fc' Pu X Puca] Pucal/P u Xcal Pucal PucaI/P u Xual Pucal Pucal/P u xcal
tff cm tf cm tf cm tf cm
11/1 5.17 355 55.10 29 42.61 0.77 30.0 36.28 066 300 3469 0.63 33.0
1172 5.07 355 59.63 - 4447 075 300 3766 0.63 300 3624 0.61 330
12/1 7.33 343 40.50 29 2941 073 343 26.14 065 343 2423 0.60 314
12/2 7.35 343 3210 - 2919 091 343 2599 081 343 2408 075 314
13/1 9.16 348 27.80 44 2494 0.90 389 2271 082 333 21.54 0.77 333
13/2 9.19 348 2780 - 2477 0.89 389 2254 081 333 2141 0.77 333
14/1 10.99 337 21.39 38 2202 1.03 409 2038 095 355 19.51 091 327
14/2 10.99 337 2148 - 22,02 103 409 2038 095 355 1951 091 327
15/1 14.71 357 19.05 43 1937 1.02 453 1839 097 373 1798 0.94 320
15/2 14.65 357 2032 - 1936 0.95 48.0 1837 0.90 373 1795 0.88 320
16/1 18.32 352 19.25 46 17.69 092 50.0 1699 0.88 41.7 16.89 0.88 38.9
16/2 18.25 352 19.15 -~ 1771 092 50.0 17.00 0.89 41.7 16.89 0.88 38.9
Number of beams 12 12 12
Average P, /P, 0.90 0.83 0.79
CV.of P ./P, 11.1% 14.0% 15.0%
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In thejgilculation for simple beams under uniformly distributed loading, the load is represented by a
number of concentrated loads, and Eq. (9) and Eq. (10) are used.

In Niwa's method, the idea is similar to that in Eq. (9) but his original equations of shear strength are
used. The failure criterion is fundamentaly the same as Eq. (8). The significant difference between the
author's method and Niwa's or Ishibashi's is that the distribution of shear strength of the section is
formulated on the basis of the experimental results, while it is assumed almost intuitively in the latter
two methods.

Leonhardt [7] carried out loading tests to study the shear strength of simple beams subjected to
uniformly distributed loading. The cross section of his specimens was 19 cm (width) by 27.3 cm
(effective depth) and with an axial reinforcement ratio of 2.05%. No web reinforcement was included
in the shear span. A uniform load was applied using water pressure. A summary of his experimental
results is given in Table 4. Test data for specimens 17/1 and 17/2 are omitted from the analysis, because
one of these two identical specimens failed in flexure. The shear failure loads given in the table include
the effect of the beams' own weight.

In Table 4, the shear strength and location of failure as calculated by the author's method, Ishibashi's
method, and Niwa's method are shown. Though the calculated value changes according to the number
of divisions of the span and load, it is confirmed that the calculation can be considered almost
convergent if the number of divisions is greater than 50 for these specimens. In the calculations shown
in Table 4, span and load are equally divided with a pitch of about 0.1d to precisely determine the
location of failure. As a result, the number of divisions is between 50 and 180. The term //d in the table
denotes the ratio of span length to effective depth, and P, and P, denote experimental and calculated
failure loads, respectively. Also, x and x,, are the experimental and calculated distances from the support
to the critical diagonal crack. The cubic strength, ,5 of the concrete is transformed into a cylindrical
strength, £.', by multiplying 8., by 0.85.

w3

For all 12 specimens, the average and coefficient of variation (C.V.) of the ratio between calculated and
experimental shear failure load (P,.,/P,) is, respectively, 0.90 and 11.1% by the zone strength method,
0.83 and 14.0% by Ishibashi's method, and 0.79 and 15.0% by Niwa's method. Although, the differences
are not large, the accuracy of the estimate made by the zone strength method is the best.

The relationship between //d and P,.,/P, is shown in Fig. 5. In the case of the zone strength method,
P,../P, is greater than about 90% in the range of //d higher than about 10, showing the good agreement
with the experimental results. On the other hand, when //d is about 5 and 7, the accuracy is not very
good. In these cases, the location of the critical diagonal crack (x/d) is near to 1.0. This problem might
be caused by the larger variation in shear strength itself and by the insufficient experimental data

— 174—



Table 5 Analysis of beams under multiple concentrated loading

No. | Number a/d Ratio of loads a'/d P, P P,./P, Xe/d
of (tH (
loads

K71 4 1.50,4.50 | 028, 022, 023, 027 | 3.0 | 214 19.4 0.91 1.90

K72 4 1.00, 3.00 0.29, 0.21, 0.23, 0.26 2.0 28.4 24.1 0.85 1.50

K73 4 075,225 | 028, 022, 025 025 | 1.5 | 380 30.1 0.79 1.10

K74 4 0.58, 1.72 0.29, 0.22, 0.24, 0.26 1.15 | 64.6 46.5 0.72 0.90

L75 8 0.75, 2.25 0.18, 0.10, 0.13, 0.11 3.0 18.6 175 0.94 1.50
3.75, 5.25 0.12, 0.11, 0.10, 0.16

L76 8 0.50, 1.50 0.20, 0.10, 0.14, 0.07 2.0 30.6 26.4 0.96 1.20
2.50, 3.50 0.09, 0.13, 0.11, 0.17

L77 8 0.38, 1.13 0.16, 0.13, 0.15, 0.06 1.5 50.2 375 0.75 0.90
1.88, 2.63 0.08, 0.12, 0.12, 0.17

L78 8 0.29, 0.86 0.17, 0.12, 0.11, 0.09 1.15 69.6 55.9 0.80 0.90
1.44, 2.01 0.09, 0.12, 0.11, 0.19

M79 8 0.75, 2.25 0.27, 0.14, 0.08, 0.02 2.0 36.6 32.0 0.87 1.30
3.75, 5.25 0.01, 0.07, 0.14, 0.27

M80 8 0.56, 1.69 0.27, 0.14, 0.08, 0.02 1.5 49.8 38.0 0.76 1.10
2.81,3.94 0.01, 0.07, 0.14, 0.27

M81 8 0.43, 1.29 0.29, 0.13, 0.08, 0.02 1.15 | 70.8 58.6 0.83 0.90
2.16, 3.02 0.02, 0.06, 0.13, 0.28

N82 8 0.56, 1.69 0.07, 0.10, 0.17, 0.17 3.0 16.2 154 0.95 1.50
2.81, 3.94 0.19, 0.17, 0.07, 0.07

N83 8 0.38, 1.13 0.10, 0.10, 0.21, 0.10 2.0 334 24.7 0.74 1.10
1.88, 2.63 0.13, 0.21, 0.07, 0.07

N84 8 0.28, 0.84 0.10, 0.12, 0.18, 0.11 1.5 55.0 38.1 0.69 0.90
1.41, 1.97 0.15, 0.18, 0.09, 0.07

N85 8 0.22, 0.65 0.07, 0.08, 0.18, 0.16 115 | 65.0 59.6 0.92 0.70

1.08, 1.51 0.13, 0.18, 0.11, 0.09

available in determining the zone strength equation for x/d smaller than 1.0.

Figure 6 shows the relationship between //d and x. Though there is some scatter in the experimental
results, x can be considered to increase monotonously with increasing //d. In the zone strength method,
calculated values of x behave similarly to the experimental results, and there is little difference between
the calculated and experimental values. On the other hand, calculated values of x by Ishibashi's method
have irregular variations in the vicinity of //d equal to 8. Those calculated x by Niwa's method are almost
constant when //d is smaller than 15. These results verify that for simple beams without web
reinforcement and subjected to uniformly distributed loading, we can well estimate the shear strength
and the location of failure by the proposed method.

6. APPLICATION TO SIMPLE BEAMS SUBJECTED TO MULTIPLE CONCENTRATED
LOADS

Kobayashi et al. [8][9] carried out a systematic series of experiments concerning the shear strength of
simple beams under multiple concentrated loading. The specimens used had a rectangular cross section
with width 20 cm, effective depth 24 cm, and a tensile reinforcement ratio of 1.61% (2D19 + D16).
No web reinforcement was used in the shear span. Compressive strength of the concrete (') at the time
of loading was 239 kgf/cm?® for all specimens.

Two groups of two or four concentrated loads were loaded symmetrically on the simple 288 cm spans.
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The loading pattern is shown schematically in
Fig. 7. All concentrated loads were equal in Table 6 Summary of loads
series K and L. On the other hand, in the M - — -
and N series, loads were increased or | Series | Load position | Resultant [ Load ratio
decreased toward the span center, a/d nominal max./min.
respectively. The position of each a/d
concentrated load on one side (a;/d) and the K 0.58 — 4.50 115 - 3.00 127 - 138
measured ratio of the loads at failure are L 0.29 — 5.25 115 - 3.00 133 - 2.86
shown in Table 5. Here, P, denotes the shear M 043 - 595 | 115-200 | 13.50 - 27.00
failure load, which is the sum of all four or N 0'22 _ 3'9 4 1'15 ~3.00 1'80 _3 '00
eight concentrated loads on the beam. As : ) ) : : :

summarized in Table 6, for two or four loads

on one side, the location of each load (a;/d) and that of the resultant (a'/d) ranged from 0.22 to 5.25 and
from 1.15 to 3.00, respectively. The ratio of maximum load to minimum load in the K and N series
ranges from 13.50 to 27.00 and from 1.80 to 3.00, respectively. These load conditions can be considered
covering very wide range.

For the 15 specimens above, the shear failure load (P,.,) and the location of failure (x/d) were
calculated using the zone shear strength equation as in Section 5 (see Table 5). Calculations were carried
out for all the 120 cross sections that equally divid the span. The pitch of the sections was 0.1d.

As shown in Table 5, the average ratio of calculated to experimental failure load (P,,/P,) for the three
or four specimens in each series was between 0.82 and 0.84. No significant difference was observed in
the ratio with different loading patterns. For all specimens, the average value and C.V. of the failure load
ratio (P,../P,) was 0.83 and 9.8%, respectively. It can be said that the zone shear strength method well
estimates the shear strength of beams subjected to multiple concentrated loading, too, though it does on
average give a slightly lower failure load.

The relationship between failure load ratio (P,.,/P,) and the calculated failure position (x,/d) is shown
in Fig. 8. As seen in this figure, the failure load ratio is lower in the range of x/d from about 0.9 to
1.1, as in the case of uniformly distributed loading. It would be necessary to accumulate more
experimental data on zone shear strength in the range of small x/d to improve the accuracy of the zone
shear strength equation.

7. CONCLUSIONS
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The conclusions of this study are summarized as below:

(1) In order to calculate the shear strength of an RC beam, the shear strength of all cross sections
throughout the span need to be known. Scince a diagonal crack develops over a zone with a finite length,
it is more practical to consider the shear strength of a finite zone than that of a simple cross section.

(2) In rectanguler beams without web reinforcement, the shear strength of a zone is determined by the
distances from the section to the loading point and to the support, as well as by the basic shear strength
that is dictated by the shape and dimensions of the cross section and the physical properties of the
materials used. The shear strength of a zone is expressed by Eq. (5).

(3) The shear strength of simple beams subjected to uniformly distributed loading can be calculated with
good accuracy by the proposed zone shear strength method, in which the uniformly distributed load is
transformed into a series of small concentrated loads, and the zone shear strength equation (Eq. (5)) is
applied to the transformed loads. A linear accumulation of damage (Eq. (8)) is assumed as the failure
criterion.

(4) The shear strength of simple beams under multiple concentrated loading can also be well estimated
using the zone shear strength method, irrespective of the location and the distribution of the concentrated
loads.
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