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SYNOPSIS

FE-analysis of cracks in plain concrete specimens was carried out using the smeared crack model and
including the concepts of the fictitious crack model. For localized Mode I cracking, the numerical
results obtained with this crack model were identical to those with the fictitious crack model. Certain
differences of the numerical results between the localized and distributed cracking are demonstrated.
The stress locking phenomenon caused by strain softening is also discussed.
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1. INTRODUCTION

It is well known that there are two basic approaches to crack modeling when analyzing crack
propagation in concrete structures with the finite element method(FEM): the discrete crack approach
and the smeared crack approach. Since a crack is essentially a surface of discontinuity in
displacement, the discrete crack approach is a more direct and intuitive modeling method. However,
unless the crack path is known in advance it requires regeneration of the element mesh as the crack
propagates. On the other hand, in the smeared crack approach, concrete is treated as a continuum
even after cracking, and cracks are modeled as changes in the material properties. Crack propagation
can therefore be traced without altering the initial geometiic conditions. Consequently, the smeared
crack approach is very frequently used, especially in the analysis of reinforced concrete structures.

In this study, the authors attempted analysis of the macroscopic behavior of concrete beams during
crack propagation by means of the smeared crack approach, with the focus on unreinforced concrete.
Past studies of crack propagation in unreinforced concrete concentrated on beams with notches
designed to localize the cracks, and little attention was paid to crack propagation and localization in
unnotched beams. Here, the authors investigate how localization of cracking affects the macroscopic
behavior of unnotched beams when using the smeared crack approach. They also consider the issue
of stress locking, caused by the relationship between crack direction and element mesh, when
softening is incorporated into the smeared crack approach.

2. CRACK MODELS BASED ON FRACTURE MECHANICS

The use of fracture mechanics models for the analysis of crack propagation in concrete has recently
been attracting attention. Such models are characterized by the application of energy criteria
resulting from a consideration of fracture mechanics, i.e., criteria based on softening — instead of
conventional strength criteria — which assume that a crack occurs when the stress reaches the tensile
strength and the tensile resistance is then completely lost. Adoption of such energy criteria is
reported to-solve one of the major problems associated with the use of conventional strength criteria,
i.e., the dependence of the analytical results on element size [1]. It has also been reported that the so-
called "size effect” of strength becomes expressible [2]. Typical fracture mechanics models
incorporating energy criteria are the fictitious crack model by Hillerborg et al. [3], whichis a discrete
crack approach, and the crack band model by Bazant et al. [2], which is a smeared crack approach.
Dahlblom et al. [4] proposed another model in which the concepts of the fictitious crack model are
applied to the smeared crack approach.

In the fictitious crack model [3], the propagation of a crack is expressed in terms of the separation of
nodal points, between which a cohesive force acts. This force is determined from the tension
softening curve according to the distance between the nodal points, i.e., the crack width. The tension
softening curve is a modeled relationship between crack width and stress transmitted across the
crack which is obtained from a uniaxial tension test. The area below the curve is equivalent to the
fracture energy, G;..

In the crack band model [2], the crack is expressed as a continuum with a finite width (crack band
width, w_), whose properties are uniform across the width. Softening is incorporated into the stress-
strain relationship (o — €,,) within the crack band. The strain, €, in this stress-strain relationship is
related to the crack band width, w_, and the crack width, w, in the tension softening curve (o0-w)
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of the fictitious crack model by the expression @ = w g,,. Also, the area below the stress-strain curve,
g, is related to the area below the tension softening curve (i.e., the fracture energy, Gy), by the
expression G, =w,g,. The crack band model is therefore formally equivalent to the fictitious crack

model, while having as a characteristic the assumption that the crack band width is a material
property.

On the other hand, in applying the fictitious crack model to the smeared approach, Dahlblom et al.
[4] assume in their model that the elements containing the crack consist of a fictitious crack and an
elastic zone. They determine the stress-strain relationship of an element by combining the properties
of the fictitious crack and those of the elastic zone. When combining these properties, the concept of
"equivalent length" is introduced in order to incorporate the element size. In other words, a
characteristic of this model is that the stress-strain relationship after cracking depends on the element
size.

Incidentally, the defect that all these models have in common is that they cannot analyze the
microscopic behavior of the concrete near the crack nor the behavior in the fracture process zone.
They are only able to consider the macroscopic behavior of a member. In recent years, nonlocal
continuum models have been attracting attention as methods which overcome this defect. These
models, such as the nonlocal microplane model, treat all material properties as continuous, and
ignore macroscopic cracking.

3. ELEMENT PROPERTIES AND METHOD OF ANALYSIS

(1) Material Properties

(a) Outline

In this study, concrete is assumed to be a linear elastic body until a crack occurs. In other words, all
nonlinear behavior of a member is attributed solely to cracking. Cracking is assumed to occur when
the maximum principal stress exceeds the tensile strength, in a direction normal to the orientation of
the maximum principal stress. After cracking, the concrete is assumed to be an orthotropic material,
and element properties are determined according to a coordinate system based on the crack direction,
as shown in Fig. 1. These properties are then transformed into the global coordinate system using a
coordinate transformation matrix. Whereas the stress-strain relation in the direction parallel to the
crack remains that of a linear elastic material, tension softening is incorporated into the stress-strain

Fig. 1 Local Coordinate and Equivalent Length
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relationship normal to the crack. Two models, the fixed crack model and the coaxial rotated crack
model, are used for stress evaluations in cases where the direction of the principal strain changes
after cracking. In the fixed crack model, the direction of the crack is fixed after cracking, and when
the direction of the principal strain changes, shear transfer in the crack plane is considered. This
model therefore requires a constitutive model of shear transfer, in addition to the principal strain-
versus-principal stress relationship. On the other hand, in the coaxial rotated crack model, the
direction of the crack is rotated when the principal strain direction rotates after cracking, making the
crack normal to the maximum principal strain. Thus, the direction of the principal strain always
coincides with the direction of the principal stress. It is difficult to physically understand what
rotation of the crack means, but the consequence of adopting this model is that it requires no
material parameters for the analysis of shear properties, since there is no shear stress in the crack
plane.

(b) Stress-strain relationship of crack elements

The fictitious crack model yields the behavior of the member after cracking not by considering the
stress-strain relationship but by the stress-crack width relationship, or the tension softening curve. It
is therefore necessary to convert the crack width to an appropriate strain value when applying this
model to the smeared crack approach. For simplicity's sake, a situation is assumed in which a single
crack occurs in a one-dimensional element with a length L. Since overall deformation of the element
is given as the sum of crack width and elastic deformation of the elastic zone except the crack, the
relationship between the average strain of the element and the stress is given by

_9 o)
-2+ M

€

where w(0) is the tension softening curve (o stress; : crack width), L is the element length, E is
the modulus of elasticity, and ¢ is the average strain in the direction normal to the crack.

In this study, the above equation is adopted as the stress-strain relationship in the direction normal to
the crack in the plane elements. However, 3-node constant strain elements are employed here, and as
proposed by Dahlblom et al. [3], the length of the element projected in the direction parallel to the
crack, A, is adopted as the element size, L, in Eq. (1). This is shown in Fig. 1. This / is hereafter
referred to as the "equivalent length" of the element. Where unloading (decrease in strain) occurs
after cracking, the origin-oriented curve shown in Fig. 2 is adopted. The 1/4 model shown in Fig. 3 is
adopted as the tension softening curve, because it agrees relatively well with normal strength
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Fig. 2 Tensile Stress - Strain Relation Fig. 3 Tension Softening Diagram
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concrete. When such a 1/4 model is used as the tension softening curve, an equivalent length which
exceeds the characteristic length of the concrete, 1,,(= EG, / f*) causes the stress-strain relation-
ship in the direction normal to the crack to snap back after the tensile strength is reached. The
equivalent length is therefore made smaller than the characteristic length when discretizing the mesh.
In the case of the fixed crack model, zero shear stress is assumed on the crack plane as the simplest
shear transfer model at the crack. In this model, the shear retention factor is assumed to be zero, as
in analysis by means of ordinary orthotropic models.

(2) Solution Procedure and Evaluation of Element Stiffness

In this analysis, an incremental-iterative solution procedure is employed to determine nonlinear
solutions. The analysis is carried out under displacement control, thus making possible analysis
beyond the point of maximum yield strength. Consequently, problems associated with snapbacks
during loading cannot be analyzed. The stiffness matrix is rewritten only at the first convergent
iterative computation for each incremental loading step(enforced displacement), and is not rewritten
at the second and later iterative computations. This is "modified Newton-Raphson method". The
tangent stiffness matrix, however, is not used here.

As explained in the previous section, the constitutive relationship for the material in this analysis is
stated not in terms of increments but rather in terms of the total stress- strain relationship. The
element stress can therefore be directly computed from the given total strain, instead of by successive
integrations of the tangent stiffness. Thus the material stiffness matrix, [D], used for the convergence
computation at each loading step should not necessarily be the tangent stiffness of the material's
stress-strain relationship, because it is not involved in the stress computation at all but rather is used
only to redistribute the unbalanced force. A [D] matrix which yields a steady and efficient conver-
gence should be selected [6]. The authors adopted the [D] matrix described below, which yields
steady solutions for all the problems presented in the next section. Fig. 4 shows the flow chart for the
computation.

The [D] matrix for a linear elastic body is employed until cracking occurs. The post-crack stiffness in
the direction normal to the crack is commonly set near to zero in the analysis of reinforced concrete,
but here the value is reduced gradually after the tensile strength is reached, so as to stabilize
convergence of the solution (see Eq. (6)). The stiffness in the direction parallel to the crack is
allowed to remain elastic. The term expressing Poisson's effect is set at zero.

The shear stiffness is given a value of 1/1000 of the elastic stiffness in the case of the fixed crack
model so as to stabilize the solution. On the other hand, the shear stiffness term in the case of the
coaxial rotated crack model is introduced only to match the direction of the principal strain with that
of the principal stress independently of the material properties. In other words, if the shear stress
increases by At from a state of equilibrium after cracking (a state in which the directions of the
principal strain and principal stress coincide and the directions of the minimum principal strain and
cracking coincide), the change in the direction of the principal stress, AB_, is

tan240, = 25T @)
0,,—0,

If the increase in shear strain is Ay, the change in the direction of the principal strain, A8,, is

— 107—



7> [ENFORCED DISPLACEMENT INCREMENT]

[ FoRMsTIFFNESS MATRIX |

[ LOAD INCREMENT (Residual Force) |

| SOLVE EQATION |

TOTAL DISPLACEMENT
TOTAL STRAIN

PRINCIPAL STRESS

v
TJENSILE STRENGTH

Fig. 4 Flow Chart for Analysis

tan240, - —2Y ®)

Therefore, in order to ensure that the directions of the principal strain and the principal stress always
match, G,, should be

G, = At Ow—Ou_ @)
Ay 2(e,, —&,)

By integrating all of the above, it follows that :

Before cracking,

1 v 0
[D]=1E2 0 1 0 %)
-V —-
0 0 l_v
2

where E is Young's modulus and v is Poisson's ratio;
and after cracking,
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where o and & are stress and strain in the crack coordinate system respectively, » and 7 in the
direction perpendicular and parallel to the crack, and [D,,] is the following:

uE 0 0
[D,]=| 0 E 0 (M
0 0 G

where p =0, / f, (where o, is the stress in the direction perpendicular to the crack in the preceding
loading step and £, is the tensile strength),

G,, = G/1000 ffixed crack model]
®
= Om =% [coaxial rotated crack model]
2(8nn - ett)

where G (= E/2(1+v)) is the shear elastic modulus.

The convergence of solutions is judged as follows:

zg%f‘));sl‘ww‘ )

where f;is the external nodal force and Af; is the unbalanced equivalent nodal force.

4. ANALYTICAL RESULTS AND DISCUSSION

(1) Analysis under Mode I Loading

Unreinforced concrete beams under flexure with a cross-section of 10x10cm and a loading span of
30cm were analyzed. The tensile strength of the concrete was assumed to be 30kgf/cm2, the fracture
energy to be 0.1kgf/cm, and the modulus of elasticity to be 3.0x105kgf/cm?, thus simulating a
concrete of normal strength. The 1/4 model was adopted for the tension softening curve. The
analysis was premised on plane stress conditions throughout.

(a) Discrete crack approach and smeared crack approach

Firstly, analysis was carried out with the element mesh simulating third-point loading, as shown in
Fig. 5, using both the discrete crack approach (fictitious crack model) and the smeared crack
approach for comparison. Making use of the arrangement's symmetry, only one half of the beam was
analyzed. In the analysis by the discrete crack approach, one single crack was assumed to occur at
the center of the tension edge and propagate vertically upward. Since details are available in
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reference [7], the computational method for this approach is not described here. In analysis by the
smeared crack approach, the crack was assumed to occur only in a vertical row of elements along
the symmetry line, in order to localize the crack at the central cross-section of the beam. That is, the
conditions match those of the discrete crack approach.

Fig. 6 shows the load-displacement curves obtained from this analysis. It was confirmed that the
results obtained by the two approaches coincide exactly. It should be noted that when using the
smeared crack approach, the equivalent length of the interface crack elements has to be twice the
value calculated as the length projected in the direction of the crack, because only one half of the
specimen is modeled and the symmetry line coincides with the crack path. Otherwise twice the
prescribed fracture energy would be dissipated in the analysis process. Similarly, when using the
discrete crack approach, the crack width has to be made twice the displacement of the cracked node
point, and the cohesive force across the crack determined from this crack width has to be applied as
the equivalent nodal force. In other words, if a crack propagates along the symmetry line of a beam
which is only partly modeled, it has to be treated differently from cracks in other locations.

(b) Dependence on element size

Analysis was carried out for three mesh sizes under center-point loading, as shown in Fig. 7, to
investigate the effects of element size on the results. Here again the crack was assumed to occur only
along the vertical row of elements in the center of the beam. The results are plotted in Fig. 8. Though
the initial stiffness was higher in (@) with large elements, the overall shape and maximum yield
strength in all three cases nearly coincided. This verifies that the use of models which take account of
equivalent length eliminates the element size dependence. The high initial stiffness of (a) may be
attributed to the low accuracy of the analysis in the elastic zone due to the large mesh.

(c) Localization of cracking

In the case of the above smeared crack approach, it is assumed that no cracking takes place in
elements other than the row at the center of the beam. The maximum load on the beam, however, is
nearly 1.4 times higher than the load at which the stress on the tension edge reaches the tensile
strength, because tension softening is taken into account. It follows that there are elements a side
from those in the center in which the stress is higher than the tensile strength. Therefore, a further
smeared crack analysis was conducted by applying only the principal stress criteria for the judgment
of the onset of cracking, without assuming the crack path in advance and without consideration of
crack localization. In this analysis the entire beam was modeled, as shown in Fig. 9, for the reason
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Fig.9 Discretization of Model for Analysis of Influence of Localization

mentioned above. Both third-point loading and three-point loading were analyzed.

Fig. 10 shows the results of this analysis in the case of third-point loading. The results for the case
where the crack was assumed to be localized to the mid span elements is also included in the figure.
In the case of distributed cracking, the enforced displacement was controlled such that it increased in
one step up to the point immediately before cracking, and then in increments of 1/2000 mm. If the
solution began to diverge or oscillate, the increment was reduced further, and iterative computations
were continued until the convergent conditions shown in Eq. (9) were fulfilled. After the onset of
cracking, 70 steps were required before the maximum load was reached. In the case of localized
cracking, the increment in displacement was 1/1000 mm after the onset of cracking. Twelve steps
were required until the maximum load was reached. Fig. 10 reveals that the maximum load as well as
the displacement at the maximum load were higher in the case of distributed cracking than in the case
of localized cracking.
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Fig. 11 shows the cracking pattern at the point of maximum load in the case of distributed cracking.
While Fig. 11(a) shows all cracks that had occurred by that time, Fig. 11(b) shows only those cracks
which occurred in the loaded elements; that is, the elements in which the stress-strain relation is on
the envelope of the stress-strain curve shown in Fig. 2. These figures reveal that, in the case of
distributed cracking, the cracks occur over the entire tension edge within the moment span. By the
time of maximum load, many of these cracks have reached the unloaded state, while the cracks in the
loaded state are divided into two lines, instead of concentrating in one.

The reason for the high load in the case of dispersed cracking can be explained. Suppose a uniform
bar is under uniaxial tension, as shown in Fig. 12, for the sake of simplicity. If cracking is distributed,
the shape of the softening region in the entire bar's load-displacement curve, — i.e., the average
stress-strain curve — depends on the number of cracks occurring in the member. The slope of the
curve becomes gentler as the number increases. Similarly, when more than one crack occurs on the
tension side of a beam specimen, the slope of the softening region of the average stress-strain curve
on the tension edge becomes gentler. This leads to the increase in beam, just as the flexural strength
increases as the slope of the tension-softening curve becomes gentler in the discrete crack approach.

The analytical results for the three-point loading with localized and distributed cracking are shown in

Fig. 13. Fig. 14 shows the cracking at the time of the maximum load. The coaxial rotating model was
used in this analysis, and the displacement increments were the same as in the case of third-point
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loading. Since the flexural moment is a maximum at the central cross-section of the specimen in the
case of three-point loading, cracking naturally tends to congregate in the center of the specimen even
without intentional localization. The difference between the load-displacement curves for localized
and distributed cracks is less than in the case of third-point loading.

As a result of the above, it is considered that an operation to localize cracking to a row of elements
is necessary when using the smeared crack approach adopted in this study to analyze a member, such
as an unreinforced concrete beam under third-point loading; that is, in a member in which the
cracking occurs in a region where the stress conditions are uniform immediately before cracking and
in which it is localized as it propagates. It is also necessary to introduce a parameter to determine the
range of influence of localization in the direction normal to the crack, i.e., a localization limiter. Here,
the method of crack localization adopted is that as cracking develops, if the centroids of neighboring
elements falls within the projection area in the direction normal to cracking in the crack-tip element,
they are assumed to be noncracking elements. This is shown in Fig. 15. The element adjacent to the
crack-tip element and ahead of the crack is assumed to remain a crackable element. By adopting this
method, the cracking of a flexural beam can be localized to a single row of elements without
assuming a particular crack path in advance, and the analytical results are the same as those obtained
when a crack path is assumed in advance. Though cracking may be localized in this manner,
probability theory has to be introduced to specify the first element which cracks within the region of
uniform stress. Here, this first crack element was assumed to be the lowermost element in the center
of the beams, for the sake of simplicity. The localization limiter determining the range of influence of
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localization was assumed to be significantly larger than the beam. In other words, only one crack was
assumed to occur in a beam. This is a prerequisite to the discrete crack approach as well, and
corresponds to the discrete cracks interval [8]. In a case where the stress is non-uniform from the
beginning, such as under three-point loading, the results for distributed cracking may be close to
those for localized cracking. In this study, rather small displacement increments were adopted, but
the influence of increment size on the results was not investigated. This is a issue to be investigated
in the future.

(2) Crack Propagation Analysis under Mixed-mode Loading

Although the terms Mode I (tension) and Mode II (in-plane shear) are not used for reinforced
concrete members, the so-called shear fracture — fracturing under shear loading — is still being
actively studied. As regards analysis, a number of studies have focused on this as a problem of shear
transfer across a crack plane, and a variety of models have been proposed. Most of them, however,
model a visible crack wider than 0.1 mm, across which reinforcement is arranged or a confining force
acts in the direction normal to the crack. Thus they model the so-called interlocking effect of the
aggregates.

On the other hand, in the case of unreinforced concrete members, no answer has yet been obtained to
even such simple question as whether fracture in Mode II is practically possible or not. There is nor
any experimental data on shear properties within a fracture process zone or on the state of
microcracking immediately after tension softening. The crack width of normal concrete is as small as
0.025 mm at the knee point of the tension softening curve used in this study, i.e., the point where the
stress decreases to a quarter of the tensile strength. It would be extremely difficult to conduct shear
tests while controlling such a small crack width. Analytically, Rots [9] and Bocca et al. [10] reported
on the analysis of unreinforced concrete beams under mixed-mode loading. According to their
reports, however, most experimental results for unreinforced concrete under mixed-mode loading
can be simulated by an analysis which considers only Mode I fracture.

Here the applicability of this method of analysis to unreinforced concrete beams under mixed-mode
loading is discussed as well as a problem associated with such an application. In the analyses, the
crack onset conditions, direction of crack occurrence, and element properties were assumed to be
the same as the Mode I cracking, and the Mode II fracture conditions were not included, in
consideration of the results by Rots and Bocca et al.

(a) Outline of experiments
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Three types of notched specimen as shown in Fig. 16 were used in the experiments. A test method
with simple boundary conditions and easy loading was selected here, out of such mixed mode test
using the double notched shear beam which is loaded anti-symmetrically or using push-off specimens.
Specimen A is a Mode I specimen with a notch 4.5mm wide extending over the bottom edge and
both sides. Specimens B and C were subjected to mixed-mode loading. Specimen B has a notch only
on the bottom edge, from which skew crack development can be expected. Specimen C has a notch
around the entire perimeter of the fracture cross-section designed to maximize the influence of Mode
IT loading by predetermining the crack path. The load and displacement at the loading point were
measured during the loading tests. The concrete was a normal strength concrete with a maximum
aggregate size of 15mm. The compressive strength(¢10x20cm), splitting tensile strength (¢p15%20
cm), and modulus of elasticity were 317kgf/cm?2, 28.5kgf/cm2, and 3.3x105kgf/cm2, respectively.
Four to six specimens of each type were prepared.

(b) Results of experiments and analyses

Figs. 17 (a) and 18 show the element mesh and the load-displacement curve for Specimen A. The
shaded area in Fig. 18 represents the scatter in experimental values. In the analysis, the fracture
energy was assumed to be 0.1kgf/cm. The 1/4 model was adopted as the tension softening curve, and
plane stress conditions were assumed. Only Mode I cracking occurred in this type of beam, and there
was no difference between the results of the fixed crack model and the co-axial rotated crack model.
Only the analytical results for the co-axial rotated crack case are shown here. Fig. 18 shows that the
experimental and analytical results agree well, thus verifying the adequacy of the fracture energy
value assumed in the analysis and the concrete tension softening curve model used in the experiment.
The same fracture energy and tension softening curve were thus employed for the analysis of
Specimens B and C as described below. Since Specimen A had a notch around the sides as well and
the ligament consisted of a single row of elements, the crack occurred only in a single row of
elements in the analysis even without an operation to localize the crack.

Fig. 17 (b) shows the element mesh of Specimen B. Fig. 19 shows the results of analysis using the

fixed crack model and the co-axial rotated crack model with distributed cracking. Although the peak
load and the displacement at peak load is larger in the analyses than in the experiment, the overall
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shape of the analytical and experimental load-displacement curves practically coincide. Specimen B
exhibited little difference between analysis with different crack models, demonstrating that the
effects of Mode I cracking overwhelm those of Mode II cracking.

Fig. 20 shows the analytical results for Specimen B using the coaxial rotated crack model with
localized cracking ("Mesh a" in the figure). The strength calculated by this analysis was much higher
than the experimental value. This may be due to the stress locking phenomenon pointed out by Rots
[10]. Fig. 21 shows the distribution of principal tensile stresses, demonstrating that crack localization
led to a significant disturbance of the stress conditions around the cracking elements. This can be
explained as follows: As shown in Fig. 22, when strain softening is incorporated into the smeared
crack approach, softening of a cracking element satisfies the equilibrium and compatibility conditions
by unloading in the noncracking elements adjacent to it, if the boundaries between them are parallel
to the cracks. If the boundaries are not parallel to the crack, softening of a cracking element — that is,
an increase in the principal strain in the direction normal to the cracking — increases the shear strain
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in the adjacent elements due to the restraint imposed by the compatibility condition. This increases
the principal stress, offsetting the decrease in normal stress in nearby elements. In other words, when
a cracking element is about to soften, the stress in the adjacent elements increases. This causes a
phenomenon known as locking, which hampers the deformation, or softening, of the cracking
element, and results in an increase in the strength of the beam.

Though locking inevitably becomes a problem when strain softening is incorporated into the smeared
crack approach, its effects may be reduced if the element mesh is so arranged that the direction of the
mesh is as parallel as possible to the cracks. Thus an analysis was performed with a mesh pattern
which was modified in the region where the dispersed cracking is considered to propagate, as shown
in Fig. 23. This yielded a marked improvement regarding locking, as shown in Fig. 24. The load-
displacement curve, as shown in Fig. 20 ("Mesh b"), also moved closer to the experiment values than
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in the case of analysis of dispersed cracking shown in Fig. 19. This suggests that regeneration of the
mesh according to the direction of crack propagation may be an effective way of avoiding the

influence of locking.

The load-displacement curves of Specimen C are shown in Fig. 25. Though there is no difference
between the curves up to the peak load, the fixed crack model indicates higher loads than those of
the coaxial rotated model in the descending region. The curves generated by the analysis with
distributed cracking both fall within the range of experimental scatter, though there are some

differences between them.

On the other hand, the curves resulting from analysis with localized cracking indicate high loads in
the descending region, and they are outside the range of experimental scatter. This is because, as
shown in Fig. 26, the cracks tend to escape from the notched section toward the loaded side, leading
to intense locking. In the experiments as well, the rupture surface was convex towards the loading
side, as shown in Fig. 27. A more accurate investigation of this type of specimen is thought to

require three-dimensional analysis.
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5. CONCLUSIONS

Various types of analysis were carried out using a model in which the concepts of the fictitious crack
model are applied to the smeared crack approach. This model is designed for the FE analysis of the
macroscopic fracture phenomenon resulting from crack propagation in unreinforced beams. Analysis
confirmed the following characteristics of fracture under Mode I loading:

(1) The results of analysis when the fictitious crack model is applied to the smeared crack approach
coincide with the results of the analysis when the fictitious crack model is directly applied to the
discrete crack approach.

(2) When applying the concept of the fictitious crack model to the smeared crack approach, the
dependence of the analytical results on element size can be eliminated by introducing an
equivalent length.

The following new findings were also made:

(1) Analysis of cracks distributed among more than one row of elements and that with cracking
localized to a single row of elements leads to different results. A method of localizing the
cracking during analysis was proposed.

(2) The load-displacement relationship of specimens under mixed-mode loading as employed in this
study can be approximately estimated by the use of a model in which the concept of the fictitious
crack model is applied to the smeared crack approach. Care should be exercised, however, to
avoid locking during the analysis.

(3) Though the problem of locking is inevitable when strain softening is incorporated into the
smeared crack approach, its effects can be reduced to a certain extent by arranging the element
mesh parallel to the direction of crack propagation.

Finally, the smeared crack approach used in this study might be dependent on the element mesh
especially in the direction of the element boundaries, as described above. For this reason, care should
be exercised when using this approach. This dependence on the element mesh adopted in the
analytical method , including the one used in this study, requires more detailed investigation.

>
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