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SYNOPSIS

Many RC members are subjected to parabolic moment distribution and linear shear
force distribution under the combined action of distributed and concentrated
loading. There are also usually some inflection points within the span. In this
study, the shear resisting behavior and shear strength of this type of beam are
examined based on experimental results. Then, a method of estimating the shear
strength of the beams is proposed, based on the "zone shear strength equation" as
proposed separately by the author.
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1. INTRODUCTION

As a result of active research into the shear failure of reinforced concrete
members, the shear failure behavior of simple structures, such as simple beams,
under simple loading - such as with one or two symmetrical concentrated loads - has
to some extent been clarified. The shear strength of such members can be well
estimated based on empirical equations. The accumulation of knowledge and
experimental data on the shear behavior of simple beams subjected to the uniformly
distributed loads is under progress.

on the other hand, the shear failure behavior of even a simple beam under a number
of concentrated loads has not been clarified yet, and shear strength cannot be
estimated with a good accuracy. For frame or continuous beam members, in which the
bending moment changes from positive to negative even under a single concentrated
load or the bending moment and shear force vary parabolic and linear, respectively,
under a uniformly distributed load, we do not yet have enough knowledge to implement
rational design. As a result, such structures are generally designed using
underestimates of shear strength.

The effect of the dead load is usually significant in the design of reinforced
concrete bridges. In the case of underground structures - such as box culverts,
water intake pits and ducts for nuclear power plants - earth pressure is one of the
major loadings. Thus, distributed loading is a very important load effect, and a
study of shear failure of RC members under distributed loading is also very
important.

The purposes of this study are to examine the shear failure behavior of RC members
under general loading and to propose a method of calculating shear strength based
on the results of loading tests of RC beam specimens. These specimens were subjected
to a parabolic bending moment distribution and linear shear force distribution under
the effect of a uniformly distributed load, and had a moment inflection point within
the span. Loading tests of 26 such beams with different moment distribution were
carried out to examine the diagonal cracking behavior and ultimate shear strength.
A method of estimating the shear strength based on the "zone shear strength
equation" is developed, and its accuracy is examined through a comparison with the
experimental results. One of the characteristics of this study is that the
importance of accurately determining the position of the critical diagonal crack,
or the failure location, becomes very clear.

2. OUTLINE OF THE EXPERIMENT
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In examining the shear resisting behavior H [ | [ ! | Iiil
and shear strength of beams subjected to T T
a parabolic bending moment distribution
and a linear shear force distribution and
with moment inflection points within the ) Aﬂm
span, simple RC beam specimens with an

overhang are used for experiments [1] (see M1
Fig. 1). With this type of specimen, while EX 21 22
the bending moment and shear force Zone I | Zone IT
distribution of the members in statically
indeterminate structures can be easily
represented, we can precisely determine
the moment and shear force at any
sectionin the beam, because it is actually Fig. 1 Dimension of test beams
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Table 1 Summary of specimens

Specimen L L’ /M 1,/d 1,/d 1’ P
(cm) (cm) " ! : (kgtjen®) | (D)

11-10 100 37.5 1.0 2.59 1.08 320 3.23
11-20 2.0 2.29 1.68 315

11-30 3.0 2.08 2.08 320

Iv-00 140 42.5 0.0 4,38 0.00 238 3.23
Iv-10 1.0 3.63 1.50 248

v-22 2.2 3.14 2.48 193

1V-30 3.0 2.92 2.92 225

V-025 160 45.0 0.25 | 4.72 0.56 330 3.23
v-050 0.50 | 4.49 1.00 313

v-075 0.75 | 4.30 1.39 341

v-10 1.0 4.14 1.72 299 2.39
v-30 3.0 3.33 3.33 290

V-40 4.0 3.09 3.86 339 3.23
v-50 5.0 2.90 4.2 319

V=70 7.0 2.61 4.78 322

I-10 180 47.5 1.0 4.66 1.93 300 3.23
1-20 2.0 4.12 3.01 435

1-30 3.0 3.75 3.75 338

VI-01 220 52.5 0.1 6.71 0.33 418 3.23
VI-02 0.2 6.56 0.63 300

VI-05 0.5 6.18 1.39 335

VI-10% 1.0 5.70 2.36 320

VI-20% 2.0 5.03 3.68 313

VI-30 3.0 4,58 4.58 336

VI-50 5.0 3.99 5.78 334

VI-10 7.0 3.59 6.57 329

statically determinate. The results of this study can, of course, be applied to
statically indeterminate structures, but the changes in moment and shear force
distribution due to the change in cross-sectional stiffness accompanying crack
development need to be considered separately.

In our loading tests, a uniformly distributed load w (resultant force P) was applied
to a simple span and a concentrated load, P’, was applied to the top face of the
overhang. By changing the ratio of P’ and P, the ratio of positive span moment, M,
and negative support moment, M,, could easily be adjusted. As shown in Table f,
specimens had a rectangular section 15 cm in width and 20 cm in height, with an
effective depth of 16 cm. Equal amounts of compression and tension reinforcement
were used. The standard reinforcement ratio, p, ,was 3.23% (2p22), but in some
specimens the ratio was reduced to 2.30% (2D19). The length of the simple span was
varied within the range 100 to 220 cm. The ratio of simple span length to effective
depth (L/d) was thus between 6.25 and 13.75, and the ratio of MZ/MI was varied within
the wide range of 0 to 7.0.

Measurements and observations were concentrated in zone I, between the maximum span
moment (Mmu) and the moment inflection point (I.P.), and zone II, between the
inflection point and the internal support. To force shear failure in these zones,
closed stirrups (2D10, 10 cm pitch) were arranged as shear reinforcement in the
remaining parts of the specimen. In specimens VI-10 and VI-20, zone II was also
reinforced with closed stirrups (2D10, 10 cm pitch) to force a shear failure to
occur in zone I.



2.2 Loading test method

$P H-beam
The system for applying the uniformly “P*° 4 Hobean v
distributed load is shown in Fig. 2. Two. I A
fire-fighting hoses (di?,meter 75 mm, L -
maximum pressure 32 kgf/cm‘), connected at \
one end with a U-shaped steel pipe and = , =N
filled with an appropriate quantity of Specimen
water, were held to the simple span with : oo .
an H-profile steel beam. The concentrated Fig. 2 gfstgl:fbﬁtfegpfj;glng uniformly

load was applied through another H-beam,
as shown. The height of upper surface of

uniformly loaded part was 1 cm higher than Table 2 Reinforcement

that in the remaining parts, so that the Series Bars f B

transmissionof uniformly distributed load Vo S o

could be worked well. , kgt/cu kef /e
LII D22 | 3,660 | 1.80¢10°

Steel bearing plates 3 cm thick and 8 cm

6
wide were used at both supports. A D10 3,390 1.51410

concentrated load, P’, was applied to the
overhanging part through a vertical hole W baz 3,750 1'87*102
in the specimen using a PC bar and a D10 3,390 1.68*10
center-hole hydraulie jack. Loads P and 5
P’ were incremented until failure. The v D22 3,620 1.78+10
increment in load P’ was 0.25 tf or 0.5 D19 3,760 1.87%10%
Yy D10 | 3,30 | 1.68:20°
VI D22 | 3,600 | 1.78%10°
2.3 Observations and measurements D10 3,390 1.68+10°

The resultant of uniformly distributed

load, P, and concentrated load, P’, on the overhang were measured by each load cell.
Water pressure in the hoses was monitored using a pressure gauge attached to the U-
pipe. During testing, the ratio P’/P was continually monitored and held within
certain limits by the fine adjustment of load P’.

The deflection of specimens was measured at both supports, at the concentrated load
point, and at the point of maximum span moment. At the same time, the reinforcing
bar strain was measured at the points of maximum span moment, internal support, and
moment inflection. The development of cracks was observed and recorded manually
using magnifier lenses.

2.4 Materials

D22 and D19 were used for axial reinforcement, and D10 for stirrups. The yield point
and Young’s modulus of these bars are shown in Table 2. High-early-strength Portland
cement, crushed stone with maximum size of 20 mm, and river sand were used for the
concrete. The W/C ratio of the concrete was 55% to 70%, and the target slump value
was 8 cm or 15 cm. Even though the standard age at the time of loading tests was 14
days, the actual age of specimens ranged from 8 to 44 days. The compressive strength
of the concrete at the time of loading tests is also shown in Table 1.

3. DIAGONAL CRACKING AND SHEAR FAILURE

The shear failure of all 26 specimens occurred in zone I or zone II. No yielding of
the axial reinforcement was noted until the time of failure.



Typical cracking patterns of specimens in
the test zone are shown in Fig. 3. These
are examples of the V series of specimens
with a simple span length of 160 cm and an
M/M ratio of 0.25 to 7.0. When the M,/M
ratlo is small, a critical diagonal crack
develops and the shear failure occurs in
zone I, where the moment is positive. When
the ratio is bigger, the critical diagonal
crack and shear failure are observed in
zone 1I, which has a negative moment. For
the specimens used in this study, the
failure zone moved from zone I to zone II
at the limit Mz/M1 value of about 2.

As shown in Fig. 4, when the position of
the first diagonal crack @ happened to
be near the point of maximum moment in
zone I, or when it was near the internal
support in zone II, an additional diagonal
crack @ then developed and this was
followed by shear failure. There was some
difficulty judging which diagonal crack
played a more important role in this type
of failure. Depending on the ratio of zone
I to zone II length (1 /1 ), there were
some cases in which an adhltlonal diagonal
crack @ also occurred in the non-failure
zone.

Where a diagonal tension failure occurs in
a simple beam subjected to a concentrated
load, shear failure usually occurs just
after the formation of the critical
diagonal crack. In the case of specimens
V-075 and V-70 among others, though the
crack pattern was very similar to that of
for a simple beam under concentrated load,
a relatively larger load increment could
be sustained after diagonal cracking. As
a result, the ratio of failure load (P,)
to dlagonal cracking load (P r) ranged from
1.00 to 2.18. But because the value of
Pu/Pcr approached 1.0 asymptotically when
1 /d or 1,/d were bigger than 5, as shown
1n Fig. g this might not be a peculiar
feature of beams subjected to a uniformly
distributed load.

The test results for shear failure load

(P r) and position of shear failure - or
position of the critical diagonal crack -
(x,/d, xz/d) are shown in Table 3. Here, x
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denotes the distance from the inflection point to the inclined crack in zone I, and
X, denotes the distance from the internal support to the inclined crack in zone II.
Here the position of the diagonal crack is defined as the point at which the crack
intersects the mid-height of effective depth.



Table 3 Summary of loading tests and calculations

Experiment Calculation(1) Calculation(2)
Specimen | My/M, | Zone P, Position | Zme B, P, /R | Zome B, Position  P,/P,
(tf) x1/d x2/d (tf) (tf) xlc/d sz/d

I1-10 1.0 I 3517 0.94 I 29.20 0.830 I 28.18 1.04 0.801
11-20 2.0 27.26  0.75 11 23.43 (0.860) 1T 23.43 0.75 (0.860)
11-30 3.0 IT 25.09 0.93 II 16.74 0.667 II 16.74 0.94  0.667
IV-00 0.0 | I 18.70 1.63 1 13.53 0724 [ 1 13.54 1.36 0.724
1v-10 1.0 I 17.60 1.13 I 19.19 1.090 I 1535 1.24 0.872
Iv-22 2.2 | II 14.00 0.94 | II 12081 0772 | II 10.81 L1l 0.772
1V-30 3.0 | II 14.70 0.98 | II 9.66 0.657 | II 9.66 1.2 0.657
V-025 0.25 I 19.19 1.712 I 15.18 0.796 I 15,18 1.47 0.795
V-050 0.50 I 22.90 1.63 I 16.19 0.707 I 16.19 1.40 0.703
v-075 0.75 | T 20.50 1.31 I 17.95 0.876 I 15.02 1.34 0.733
v-10 1.0 I 16.00 1.79 I 16.60 1.038 I 12.23 1.35 0.764
V-30 3.0 II 10.40 1.21 II 8.43 0.811 I 8.43 1.44  0.811
V-40 4.0 IT 12.40 1.4 II  9.01 0.727 II 9.01 1.53 0.727
V-50 5.0 II 11.40 1.7 II  8.38 0.73% II  8.38 1.58 0.735
V-10 7.0 I 9.50 1.70 II  7.87 0.828 I 1.87 1.62  0.828
I-10 1.0 I 1421 1.03 I 16.90 1.189 I 11.54 1.45 0.812
1-20 2.0 II 13.45 1.45 II 11.36 0.845 II 11.36 1.31  0.845
1-30 3.0 II 12.52 1.28 II  9.00 0.720 I 9.01 1.59 0.720
VI-01 0.1 I 12,93 1.4 I 13.02 1.007 I 13.02 1.65 1.007
VI-02 0.2 I 13.28 1.49 I 12,04 0.907 I 12.04 1.62 0.907
VI-05 0.5 I 12.42 1.47 I 13.69 1.102 I 11.46 1.65 0.923
VI-10% 1.0 I 12,49 1.34 I 15.28 1.223 I 10,18 1.55 0.815
VI-20% 2.0 I 15.96 1.11 I 18.46 1.157 I 12.31 1.5 0.771
VI-30 3.0 II 8.8 1.81 I 8.05 0.910 II  8.05 1.714 0.910
VI-50 5.0 II 791 1.78 IT  7.31  0.924 II 131 1.83 0.924
VI-70 7.0 II 7.43 1.17 II  6.89 0.927 I 6.89 1.88 0.927

4. METHOD OF CALCULATING SHEAR STRENGTH 2tk
UTILIZING THE ZONE SHEAR STRENGTH
EQUATION ¢ .

4.1 Outline of zone shear strength - .
equation 5\; * .. % ..'

It is well known that when a simple beam LUt L

is subjected to concentrated loading, ;ts i e e

shear strength changes greatly depend}ng

on the ratio of shear span to effective e Failed in Zone I

depth (a/d). This is generally thOUghF to » Failed in Zone II

be the effect of 1local vertical

compressive stress o , which is generated s i \ R R R .

by the load acting o§1 the top surface of 0 2 4 6

the beam and the supporting reaction Ly Ay
acting on the bottom of the beam. This . . . .
stress reduces the principal tension Fig. 5 Relationship between diagonal

stress o which causes the development of cracking load and failure load



diagonal cracks in the web concrete. The a

shear strength in the vieinity of the P _ 5
support and load point is higher than at /B0 S=10en &, o 5=10en 1
the other points due to the larger value rﬁ e e me'(E[g
of o there. In a beam with a short shear ”' N LTI %

sparl, o, is larger due to the short T_Lj—ﬁi 2932 s=ten T fen]
distance between the load and support, Testing zone

resulting in a greater shear strength than |. SI_ 1 __—
in a beam with longer shear span. _;,7
Generally, load and support conditions X ] 1

under which a vertical compressive stress

occurs in the web are called "direct Fig. 6 Specimens for determining
loading" and "direct support, " zone shear strength
respectively, while "indirect loading" and

"indirect support"” are the terms for a condition in which no local vertical
compression stress occurs.

The author has examined experimentally the change in shear strength in a test zone
as the distance from a diagonal crack to support (x) and to loading point (a-x)
varies. Specially reinforced beam specimens were used in this experiment as shown
in Fig.6 : the shear reinforcement in one part (the test zone) of the shear span was
substantially reduced in order to force a shear failure within the test zone. Based
on the results of this experiment, Eq. 1 was proposed [2].

V,=RV,=0.958[coth (x/d) 117" [coth{(a-x} / d} 1%V, (1)
\A is the basic shear strength of a cross section when there is no influence from oy,
and is assumed to be expressed by Eq. 2.

V,=0.94£,p? (100/d)Vb,d (2)

Where, fc’: compressive strength of {

concrete [

p, : axial reinforcement ratio T L =
100As/(b d) [%]

d : effective depth [em]
web width [cm] Mnax 1.P. Mz
After calculatlng Vu for every cross

section between the support and loading
point, the shear strength of the beam and M
the 1location of the critical diagonal 2 2 22
crack can be solved by finding the minimum Zone 1 Zone 11

value of VlL and the corresponding value of N x
X, respectively. 1 I

Vi &l\ V —diag.
4.2 Application of zone shear strength a;

equation to the test specimens Pny

P
w i P’

1117 I RERR 4

M —diag.

The specimens tested here are simple beams !
with an overhang. A uniformly distributed T
load w (w = P/L) acts on the simple span )
and a concentrated load P’ acts on the top Simple bean A e
of the overhanging part. Based on the At
ratio of P to P’, the ratio of span moment Cantllever B | 4 , 1 i
M1 and support moment M, varies and, L_.
consequently, the position of the L2
inflection point of bending moment (I.P.)

also changes. Here, we denote the distance Fig. 7 Simplified model of the
from the left support to the inflection specimen
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point and that from the inflection point to the internal support as 21, and 1
respectively. The shear strength is analyzed only in zone I and zone II (see Flg
7).

First, the specimen is divided into a simple beam A - a span from the left support
to the inflection point - and a cantilever B fixed at the internal support and of
length 12.

(a) Analysis in zone I

The uniformly distributed load w is divided equally into n, concentrated loads P; (P,
P/n = wL/n , j=1,2, ..,nl) Then the shear strength of each of the n equi;
d1v1ded sectlons is calculated We must consider the interactive effect of lche large
number of concentrated loads, and it is more convenient to assume that the effect
of the applied shear force will decrease to 1/R than to consider the shear strength
increasing by R times in response to the value of x and a. Based on this way of
thinking, the effective shear force V., is defined as 1/R times the applied shear
force. It is also assumed that shear failure occurs when the total effective shear
force due to n; concentrated loads reaches the basic shear strength LA of the
section. The shear force V and effective shear force Veu produced in X; sectlon by

load P can be expressed byJ Eq. 3.

91_7 Vij/RiJ (3)
Where,
Vlj=Pj (211‘31)/(211) ‘ j)i (4)
Vij=-Psa;/ (21,), Jsi
Ryy=0.958 [coth (x,/d)17-°%° [coth{ (a;-x,) /d}] %% (5)

The total effective shear force produced by P, to P,, can be written as Eq. 6, and the
intensity of the uniformly distributed load w, Wi @ shear failure of section X; can
be expressed by Eq. 7.

y
Vei=z: Vsij (6)
71
Y
i n R
ay ~ 21;-a, (7)
71 MRy 7 DRy

Repeating these calculations from section 1 to n/2 the shear failure load w and
the position of the critical diagonal crack for zone I can be determined be finding
the minimum value of L and the corresponding X

W, ;=

ulli

In the calculation above, both supports of the simple beam A are treated as direct
supports, but in fact the right support is imaginary and there is no actual reaction
on the bottom of the beam. Hence, this support should be treated as an indirect
support. This discrepancy in the support conditions will be discussed in section 5.

(b) Analysis in zone II

In zone II, the span and uniformly distributed load are divided into n, equal parts,
and the shear strength is calculated using a method basically the same as that used
in zone I. In this case, however, an imaginary concentrated load (P, = wl,) - equal
to the reaction of an imaginary support for simple beam A - is applied to the free
end of the cantilever beam.



Taking into account the fact that loads (P;, j<i) located nearer to the fixed end
than the section under consideration X e ert no shear force on section x; , the
shear force and effective shear force 1n section X due to P; are expressed by Eq.
8 and Eq. 9. The total effective shear force due to all loads i‘s expressed by Eq. 10.
Finally, the value of the uniformly distributed load Wi upon the shear failure of
section X; can be calculated using Eq. 11.

0 S (8)

Vesi=Vis/ Ryj ’ (9)
(10)

1= 7

e -Zx;l 31+1 Rij R:.

0
Wy =
YR L L (11)

T Ry Ry
Where, Ri denotes the factor R for Ps' as expressed by Eq. 12.
R;=0.958[coth (x,/d) 1% [coth{ (I,~x;) /d}]1-4* (12)

By repeating these calculations from section 1 to n,, the shear failure load w, and
the position of the critical diagonal crack for zone II can be found as the minimum
value of Wi and the corresponding X;.

Finally, the failure load W, of the specimen is determined as the smaller of the two
values w,, and L and the value of x corresponding to w, represents the location of
the eritical diagonal crack which induces the shear fallure.

Some similar methods have been proposed in the past [3],[4], but in these methods
the shear strength multiplier or the shear force reduction factor, corresponding to
the factor R here, has generally been assumed almost intuitively, with no
experimental nor theoretical support. No application of these other methods to RC
members with a moment inflection point has been published as yet, so far as the
author knows.

5. EXAMINATION OF SHEAR STRENGTH AND FAILURE LOCATION

The shear failure loads P of specimens as calculated according to the method
proposed in section 4 are s?xown in Table 3 (Calculation (1)).

The average ratio of calculated to experimental failure loads (P ,/P ) for all
specimens is 0.886, and the coefficient of variation (C.V.) is 18. 509}, %‘or the 12
specimens which failed in zone II, the average P, /P, and C.V. values are 0.794 and
11.6%, respectively, while for the 13 specimens wh % failed in zone I, the values
are 0.973 and 17.5%, respectively. It is clear that in the latter case, the average
ucl/P and C.V. are relatively high compared with the former specimens.

As already mentioned in section 4.(2), this can be considered a result of the
assumption that the inflection point is a direct support in calculations of shear
strength in zone I. If the length 1 from inflection point to the internal support
is very short - that is, if the rea.l support is very near to the imagined support -
then the inflection point might be approximated in this way, but if 1, is greater
than a certain value, such an approximation can be expected to lose applicability,
and it should be treated as an indirect support.



The relationship between the load ratio
Pyet /P and the values of 1 /d for
spec1mens which failed in zone I, is
plotted in Fig. 8. As is clear, lz/d has no
influence over the load ratio if it is
less than 1.0. But in the range from 1 to
2, the load ratio clearly increases with
rising 1,/d value. Then, if.Q/d is greater
than 2, %he load ratio does not change any
further This result could be taken as
proof that the above explanation
concerning the physical condition of the
imaginary support in beam A is correct.

Thus it is understood that, in analyzing
the shear capacity of zone I, the shear
strength calculated by the zone strength
equation needs to be reduced by dividing
it by the correction factor K in Eq. 13.
While the ratio of P _./P, can be expected
to be 1.0 in the range 1/d<1 0, it is
actually around 0.8 as shown in Fig. 8.

This discrepancy is regarded as the error

caused by the =zone shear strength
equation, and the relationship
representing the broken line (K’) in Fig.
8 is transformed into Eq. 13.

KE1+O.SUZ/d-1)
Where, 1.0 <K £ 1.5

(13)

The calculated shear failure load (Pcﬂ
and the location of the shear failure x
Xy, taking into consideration t%e
correction factor K are shown in Table 3
(Calculation (2)). Here, x, and X, are the
respective distances from éhe locatlon of
the failure to the inflection point in
zone I and to the internal support in zone
II. The suffix c¢ denotes that these are
calculated results. Hereafter, I will
describe the shear strength calculation
method based on the zone shear strength
equation and on this correction factor K
the "zone shear strength method".

The average and coefficient of variation
of P, /P for all 26 specimens is 0.808 and
10. 9%& respectively. Moreover, the values
are 0.817 and 10.3% for the 13 specimens
that failed in zone I, and 0.794 and 11.6%
for the 12 specimens that failed in zone
II. The average calculated shear strength
is about 20% lower than the experimental
result, but the coefficient of variation
is small enough and there is a good
balance in the accuracy of the estimates
of shear strength in zone I and zone II.
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The calculated failure zone agrees with Taple 4 Shear strength of eritical
the experimental result in all specimens section
except for II-20, in which the calculated

shear capacity of both zone I and zone II Specimen MZ/M Failure | v. v v /"o
is very close. The relationship between 1 0 UG u
calculated and experimental failure Zone kgf/em
locations is shown in Fig. 9. The average "

difference between the calculated and iiég ;g é iig ggg ég:
experimental value of x/d, whether the 11-30 10 I 150 26.1 i41
failure is in zone I or zone II, is less

than 0.1 and the standard deviation is 1v-00 0.0 I 13.6 19.4 1.43
within 0.25. Hence, it could be said that 1v-10 1.0 I 13.8 17.4 ] 1.26
the accuracy of the estimation is v-22 2.2 1I 12.7 23.2 1.83
satisfactory. Since the error in V=30 3.0 11 13.4 21.0 1.57
estimating x/d is directly reflected in

the error in the calculation of the shear 3:%3 ggg % iié ggg 1&3
force to be considered, accuracy in V=075 675 I 153 18@ 152
estimating the position of failure is very V-10 fu I n's 1;3 f08
important in the analysis of the members v-30 35 I 151 183 1.@
subjected to a non-uniform shear force V40 {0 1 153 m‘z 132
distribution. v-50 | 5.0 | 1 | 15.0 19.3 | 1.29
These results indicate that the zone shear V-0 10 1 15.0 18.8 ) 1.2
strength method can be used to estimate 1-10 1.0 1 14.7 13.7 0.93
the shear strength and failure position of 1-20 2.0 11 16.6 24.5 1.48
specimens with good accuracy. Table 4 1-30 3.0 I 15.3 19.7 1.29
gives comparisons of calculated shear

strength Vie and basic shear strength v,. 3?3; g% % i?# fgg ig%
The value of v, is basically identical to . : : :
the shear strength given in the JSCE VI-05 0.5 I 15.3 15.8 | 1.08
Standard Specifications for Concrete, VI-10¢ 1.0 I 15.0 12.8 0.85
except that the safety margins are not VI-20% 2.0 I 14.9 13.1 0.88
included in v, . As all values of vm/v are zijg g'g ii i?g i%t }&g
larger than %.85 and are mostly in the VI-T {0 I 152 173 1&4
range 1.0 to 3.4, and considering the ) : : '

estimation error of the zone shear

strength method, it might be said that the Standard Specification equation
frequently underestimates the shear strength.

The zone shear strength equation was originally derived from a loading test of beams
under a concentrated load. It has been shown that it is suitable for application to
uniformly distributed loads, too. It now seems that this method is also applicable
to general load conditions, such as where there is a large number of concentrated
loads, a non-uniformly distributed load, or a combination of these. However, when
there is no load acting in zone II, a somewhat special condition, zone II will be
subjected to entirely indirect loading, and the calculation of shear strength under
such unusual loading might need to be examined separately. It is not suggested that
the results given in this paper be applied directly to practical design; studies of
the application of this method to practical design is in progress and will be
published at another opportunity.

6. CONCLUSIONS

The objective of this study was to develop a calculation method for the shear
strength of members in statically indeterminate structures - such as continuous
beams, frame structures, and underground box structures - that are subject to
parabolic bending moment distributions and linear shear force distributions and that



have some moment inflection points. Loading test, under the combined action of a
uniformly distributed load and a concentrated load, were carried out using the
simple beam specimens with an overhang. Then, based on the experimental results, a
new method for calculating the shear strength was proposed. The conclusions of this
study can be summarized as follows:

1. Though the applied shear force in zone II {negative moment zone) is always larger
than that in zone I (positive span moment zone), the occurrence of shear failure is
not limited in zone II only. It can occur even in zone I, if the ratio of support
moment and span moment (MZ/MI) is small.

2. The margin of shear strength after the development of a diagonal crack depends
mainly on the span length; a beam with short span will fail under shear compression
while a beam with a long span will fail under diagonal tension. This characteristic
is very similar to that of a simple beam subjected to one or two symmetric
concentrated loads.

3. The zone shear strength method was proposed for calculating the shear failure
load of RC members subjected to a parabolic moment distribution and with a moment
inflection point. In this method, a member is decomposed into some simpler elements,
the uniformly distributed load is replaced by a number of small concentrated loads,
and the "zone shear strength equation" - proposed separately by the author - is
applied. The accuracy of the method was verified by comparing the results with
experimental measurements.

4. From the results of calculations using the zone shear strength method, it was
demonstrated that, in many cases, the equation given in the JSCE standard
specifications underestimates the shear strength of RC members.
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