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SYNOPSIS

Models based on a neural network were used to analyze the data obtained from
accelerated carbonation tests and concrete mixing. The models were compared
with empirical equations proposed by other researchers, and a study was
implemented to determine important factors not considered in the equations.

The results show that models based on a neural network are effective both in
estimating the experimental results and in making important factors much easier
to isolate than with conventional analysis. This indicates that a neural
network is a valid way to analyze experimental data, not only for the estimating
of values but also to help find important factors governing the phenomenon.
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1. INTRODUCTION

It can be said that concrete technology is to a large extent based on
experimental results and past site experience.  This has led to the use of many
empirical equations since the characteristics of concrete vary greatly. For
this reason, evaluation of the characteristics of concrete should focus on
variations.

It is common these days to see neural networks, which simulate the information
processing functions of the human brain, being applied to handle fuzzy data
Fuzzy data can be handled by this type of method since the information is
expressed not in definite logic but a scatter. Because of its advantages,
neural networks have been tried in various fields, including letter and voice
recognition and the control of robots. In this paper, a neural network model is
proposed for the evaluation of experimental data obtained in accelerated
carbonation tests and concrete mixing. We substitute empirical equations with
a neural network model and determine the key factors governing the phenomena
using the neural network’s output.

2. NEURAL NETWORK

9.1 The principle of neural networks

Conventional computation methods follow logical processes with step by step
serial processing. To simulate the normal human’s activities in this way would
require a very complex and detailed program.

In an attempt to solve this problem, the neural network has been developed.
This means the simulation of information processing in the human brain. This
method is completely different from conventional computation methods, since a
large number of processing elements operate synchronously and carry out
processing in parallel. These elements represent widely scattered information,
and do not have strongly logical relationships. Consequently, this method is
not always suitable for logically strict processing, but it is always suitable
for the processing of information with fuzziness, such as analogy or association
processing. Moreover, it is not necessary to design a complicated progranm,
since techniques are different from the conventional computation method. The
need is to prepare learning data and ensure feedback to the input as to whether
the output from the network is correct or not; the network then learns to
generate the correct answer by gradually changing the logical relationship. As
a consequence, the network is flexible, and systems of information can change
gradually by adding to, or supplementing the incomplete input information.

2. 2 Model

An artificial brain cell is modeled using a multi-input one-output device as
shown in Fig. 1. This is called one unit. Units are connected by lines
corresponding to nerve fibers. Signals are transmitted in one direction, and
become inputs to connection units, which add a certain weight.  The strength of
a connection unit is represented by the value of this weighting.  The summation
of all weighted input values is reduced by a threshold value and the output is
modified by a response function. In this research, a sigmoid function was used
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as shown in Fig. 2. The weights of connection units and the threshold values

can be adjusted by learning. Processing elements of this type are connected in
network form to carry out information processing. The model used in this study
is called a layer type, and is shown in Fig. 3. In this model, signals travel
from the input layer to the output layer.

2.3 Learning method[1]~[5]

The most popular learning mechanism for layer-type networks, and the method
adopted in this study, 1is described in next paragraph (see Fig. 4). If a
certain pattern of input values is introduced into the input layer, a certain
output value is obtained which depends on the value of the connection weights
and which varies time-by-time. The squared error between this output and the
instruction value acts as an evaluating function, and is used to adjust the
connection weights and threshold values. In order to simplify the model, an
input parameter of value -1 is always added so that the related threshold value
can be dealt with as a weight

Suppose following value and function are true for unit j

(input] wu; = Y wjizi—6; M
(output] ¥ = f(ui) (2)
fw) = T (3)

where wj;:connection weight to unit i
z; :input from unit i1
8; :threshold value
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Then the following error function is adopted:
1 .
E = 5 Z(yj,c - yj.:)2 4
PN

Uje :value that unit j should output for a certain input vector c
Yje :actual output of unit j for a certain input vector c¢

A gradient descent method, entailing differentiation by parameter and adjusting

the parameter in the gradient direction, may be used. In that case, each
weight is changed using following equations:
OF
ij,; = —anj',‘ (6 > 0) (5)
Then we can find the local minimum of E.  The algorithm is shown below
OE . OF dy;. Ouj,. )
dw;; T Byj. dujc Owjic
o= fi(u;) M
o = U (8)
OF
ij,i =€ Z _.f/(uj,c)yi.c (g)
c 3y,,c

¥hen all outputs are obtained using this algorithm, the connection weight can be
changed. However if the value of & is small enough, the connection weight can
be changed every time an output is obtained, and the overall change is almost
the same as in the gradient descent method

OF
Aw;; = —¢€ fi Uje)Yic (10
2 6yj,c ( 7 ) )
Thus, even in a case where the form of the evaluating function is unknown, the

connection weight changes according to the gradient direction every time an
output is obtained, and the output converges to an almost optimum value.

At the output layer

OF
= (Yic— Uic an
395 Wi — Fjc)
e~ e
Pse) = ey
= yj.c(l_yj.c) (]2)
So
Awj; = —e33(y; — 97yl — yj)us (13)
%% is solved easily. On the other hand, gf isn’'t solved easily for units in
hidden layers. Therefore we attempt to solve i¥% for k-layer units in the
¥
network.
OE > OE  dyl*+) gult+y
3y§k) - iay,(kﬂ)dugk“) ayj(k)
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- ):5% Pyl (14)

i

;?% has already been calculated (the error transfer from output to input).

)

Thus;igég can be solved. That is to say, we obtain the error transfer backward,
i

from the output layer to the input layer. The learning algorithm of
this minimize the squared error to the multi-layer network is called "back
propagation” and is often used as a learning law for layer-type networks.

The problem in applying this algorithm is a suitable method of determining the

practical learning constant, the weight increment per learning step, the number
of hidden layer units, and the number of hidden layers, etc..

3. APPLICATION TO ACCELERATED CARBONATION TEST RESULTS

3.1 Carbonation of concrete

Concrete is high in alkalinity. However, the reaction between atmospheric
carbon-dioxide, which diffuses into the concrete, and calcium hydroxide, which
produced in the hydration process, reduces the alkalinity. This process is

called carbonation, and it progresses from the surface inwards. Various
equations have been proposed to predict the progress of concrete carbonation.
The most popular of them is called the Square Root t Law,

Y=kt (15)
where X : carbonation depth

t : time

k . coefficient of carbonation rate

Since carbonation under natural conditions takes a long period of time, we often
use accelerated carbonation tests with high concentrations of carbon-dioxide and

at high temperature. However, the results of accelerated tests do not always
agree well among themselves. Therefore, the relationship between accelerated
test results and carbonation under natural conditions is not clear. To solve

this problem, it is important to obtain an equation for carbonation rate which
takes account of the concentration of carbon-dioxide, temperature, and relative
humidity etc..

3.2 Past investigations

In Uomoto's work(7], the water-cement ratio, temperature, and concentration of
carbon-dioxide were chosen as important factors affecting carbonation, and an
attempt was made to determine the relationship between these factors and
carbonation rate. First of all, the reliability of the Square Root t Law was
checked in the case of accelerated carbonation tests. The coefficient of
carbonation rate was assumed to be a function of temperature, water-cement ratio,
and concentration of carbon-dioxide. The following empirical equation 'based on
the results of their own experiments and those of others’ was proposed:
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X = (2.804-0. 84710g0) X e@ 748—%53»«2. 3912 +44. 6F-3980) X 10-4 X~[Ct (16)

where X : Carbonation depth (mm)

: Concentration of carbon-dioxide (%)
: Absolute temperature (K)

: Water-cement ratio (%)

: Tine (week)

S|S0

3.3 Application of a neural network (1)

a) Estimation model

The first need is to check whether the coefficient of carbonation rate as
calculated by the equation above can be estimated from the temperature, water-
cement ratio, and concentration of carbon-dioxide using a neural network. The
data introduced into the network is the same as used to determine the equation
The number of learning data is 150, obtained from various experiments performed
by more than 20 groups of researchers. These data are taken only from
experiments with ordinary portland cement; other parameters selected are 10°C~
40°C in temperature, 30% ~80 % in water-cement ratio, and 0.07 % (natural
environment) ~ 100 % carbon-dioxide concentration. From these data, three
factors (temperature, water-cement ratio, and concentration of carbon-dioxide)
were selected as inputs for the network; the coefficient of carbonation rate was
the output. Since there are the other contributory factors, such as curing
conditions, relative humidity, and errors, etc., the input factors, which have
the same value of each, do not always give the same coefficient of carbonation
rate. Therefore, for such data, the average coefficient of carbonation rate
has been adopted as the instruction value.  After this treatment, the number of
learning data becomes T71. The network has three layers and three units in the
input layer, six units in the hidden layer, and one unit in the output layer, as
shown in Fig. 5.

b) Results and discussion

Fhen learning has progressed until it converged, the output was checked. In
the learning process, the weight modification per learning step was varied.
One of the learning results (number of learning=80000) is shown in Table 1 and
Fig. 6. Next we estimate the result for the original 150 data by using the
learned network and compare the result with an estimation by the empirical
equation (Table 2). This comparison shows that the estimate made by the neural
network is better than that by the equation for the data used in this case.

In order to further check the neural network against the equation, two of the
three factors were fixed while the other was gradually changed or one factor was
fixed while the others were gradually changed. The network’s output for these
conditions is shown in Figs. §, 9. In the graph, T represents temperature (°C),
¥ is water-cement ratio (%), and C is concentration of carbon-dioxide (% ).
For example, T40.VW60 means that concentration of carbon-dioxide was gradually
changed under conditions of temperature 40°C and water-cement ratio 60%. The
same has been done for the empirical equation as a comparison. From these
results, it can be seen that the output of the network is almost the same trend
as the result given by the equation, which was derived from theoretical
considerations. However, when the temperature is varied, the results are
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Table 1 Eatimation results (Input 3)

Number of learning data 71
Learning times 80000
Average squard error 0. 7364
Correlation coefficient 0. 9570

Table 2 Comparison of the estimation results (1)

Network Proposed
equation
(CASEL) (eq. 16)
Number of data 150 150
Average squared error 1. 3823 1. 7244
Correlation coefficient 0. 8878 0. 8572
slightly different. As previously mentioned, the equation was obtained from

experimental data at 20°C~40°C. After this work, test results for 50°C were
obtained, and they matched the curve drawn by this network

3.4 Application of a neural network (2)

a)The estimation model

As a next step, the curing conditions were added as an input parameter, since
they may influence the coefficient of carbonation rate. Since curing
conditions cannot be described by a simple numerical value as can the other
three factors, three units are chosen to represent curing. Each one, when
given a value of 1 represents a certain curing condition — water curing, steam
curing, or spray curing. Air curing is represented by a value of (0 for all
three units. Therefore, using this method, four different curing conditions
can be distinguished. Because many of the data used in the previous section
were obtained from experiments with water curing, 46 further data points are
added, many of which are obtained from experiments with other curing conditions.
As in the previous section, the input parameters of learning data, which are now
six, do not always give the same coefficient of carbonation rate, so we regarded
the average of it as the instruction value. After this treatment, the number
of learning data becomes 96. The network is the same as that used in section
3.3, except that there are six units in the input layer and eight in the hidden
layer (Fig.9).
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Table 3 Learning results (lnputf)

Number of learning data 96
Learning times 150000

Average squared error 0.5274

Correlation coefficient 0.9705

Table 4 Comparison of the estimation results (2)

Network Proposed
equation
Input 6 Input 3 (eq. 16)
Nuber of data 141 141 141
Average squard error 0.9124 1. 3616 1.5912
Correlation coefficient 0. 9285 0.8914 0.8218
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b) Results and discussion

Learning is stopped when the network’s output converges and has a value little
different from the instruction value. The relationship between instruction
values and estimated values as obtained by the learned network is shown (Table 3
Fig. 10). These results demonstrate that the correlation of the instruction
values and estimated values is better than that obtained from a network with a
three unit input layer. To compare the results of the network with a three
units input layer and the equation, 141 of the 150 data used in section 3.3 —
for which the curing conditions are known— are used (Table 4). It is clear
that including curing conditions as input parameters improves the estimation,
and results indicate that it can give a better estimation than both the network
with a three-unit input layer and the empirical equation.

4. APPLICATION TO MIXING TEST RESULTS

4.1 The mixing of concrete

The mixing of concrete must be carefully managed to get the best quality
However, as things stand now, the mixing method is specified only such that the
standard deviation of fractional volumes of mortar and aggregate in the concrete
must be lower than a certain value as given in JIS A 1110. The characteristics
of the concrete are not considered at all. Further, the results of various
past experiments related to concrete mixing cannot be compared because there are
no quantitative parameters which are independent of mixer type or mixer volume.

4. 2 Past investigations

In the research carried out by Kishi,et al.[8], the effects of mixer type and
mixing time on the characteristics of concrete were examined by using identical
materials and mix proportions. Results showed that characteristics such as
slump and compressive strength altered with increasing mixing time, even after
the constituents in the mixer had become uniform. The trend of such changes
depended on the mixer type. Thus, the characteristics of concrete depend not
only on the mixing time but also on the mixer type. Finally, it was
demonstrated that identical characteristics could be obtained if the same total
amount of electric power per unit volume of concrete were used regardless of
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differences in mixer type and mixing time. The electric power consumption of a
mixer is the power (the rotational torque) acting on the mixer wings directly
during mixing time. This means that the work, the sum of the product of
external force on the concrete and its displacement, can be used as an
evaluation parameter.

In research by Uomoto, et al.[9], the same things were examined in terms of
different mix proportions. And then, even in the different mix proportion;
with different water-cement ratios, water per volume, maximum size of aggregate,
or addition of chemical admixture, it was shown that the characteristics of
concrete are affected by an increase in mixing time.  Where different mixers or
mix proportions are used, the quantitative evaluation method based on electric
power consumption was proposed. Slump, air content, and compressive strength
were chosen as parameters representing the characteristics of the concrete, and
these were normalized to relative slump, relative air content, and relative
compressive strength. The regression curve for each was plotted (Eq.17-19).
0f these parameters, the change in slump value with mixing time was great and
showed a characteristic tendency to increase with mixing time and then decrease
after reaching maximum value in a certain time (Fig. 11)

[S1lump]
SIr=95.74—29. 071ogP—49. 63(logP)2 an
where SIr :relative slump
(ratio of a slump at each mixing time SI to maximum slump Slmax
=81/SInmax*100)
P :electric power comsumption of mixer (wh/1)

except in the case of using superplasticizer

[Air content]
(a)In the case of plain concrete ,
Airr=100. 0—15. TlogP+15. T(logP)? (18.a)

(b)In the case of AE concrete
Airr=100. 0—102. 91ogP—3. 6(logP)2+93. 3(1logP)3 (18.b)
where Airr : relative air content when an electric power consumption
of 1 wh/1 is regarded as 100

P :electric power comsumption of mixer (wh/1)
[Compressive strength]
CSr=100. 0+4071ogP (19)
where Csr :relative compressive strength when an electric power consumption

of 1 wh/l is regarded as 100
P :electric power comsumption of mixer (wh/l) (P > 0.05 wh/D)

4.3 Estimation of influential factors using a neural network

a)Method of estimation

The network's learning ability is used to check the validity of using the
mixer's electric power consumption as a parameter to estimate the changing
characteristics of concrete with mixing time. It can be expected that a
suitable relationship between input factors and outputs will improve the degree
of convergence of learning and the correlation between instruction values and
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Table 5 Mix proportion of learning data

Name of Gmax | W/cey) | Fater per Chemical admixture Mixer type
mixX volume
proportion| (mm) (kg/ms)
F1 10 55 213
F2 20 585 96
F3 40 55 82 Pan type F
F1’ 10 55 198
F2 20 55 182 A E agent
F 3’ 40 95 169
M1 20 40 165
M2 20 40 165 Water reducing agent Pan type M
M3 20 40 165 Superplasticizer@
M4 20 40 165 Superplasticizer@
M1’ 20 40 165
M2’ 20 40 165 Water reducing agent 2-axis type
M3 20 40 165 Superplasticizer®
M4’ 20 40 165 Superplasticizer®
M5 20 40 175
M6 20 55 175 Pan type M
M7 20 70 178
M8 20 40 185
Table 6 Variation of network
Parameter relating to the mixing Number of
Case Electric power | Mixing time Mixer type | hidden layer
consumption
A—-1 O 10
A—2 O 12
A-3 @) 14
B-1 [@) 10
B—2 O 12
B-3 O 14
C—-1 @) O 12
c—-2 O @) 14
C—3 (@) O 16
D-—1 O O 12
D-—2 [@) O 14
D—3 @] O 16
E—1 @] @) @) 12
E-2 @) O @) 14
E-3 O O O 16

Maximum size of aggregate
Water-cement ratio
Water per volume

Chemical admixture

Parameter

relating to the mixing

Input  Hidden Output
layer layer layer

(8~12) (10~16) (3)

Slump
Air content

Compressive strength

Flg. 12 Network model
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outputs. A layer type network was forced to learn using the data obtained by
Uomoto, et al.[9] Five combinations of input data were set up from three input
factors: mixing time, mixer type, and power consumption. These were applied to

the network and the results compared. The combinations are shown in Table 6.
Factors relating to the mix proportion, such as water-cement ratio or chemical
admixture, were adopted as inputs to all combinations. The characteristics

which we wish to estimate are slump, air content, and compressive strength.

b)Model

The number of learning data was 108 and these were distributed in the range of
40 9% ~T70 % in water-cement ratio, 10mm~ 40mm in maximum size of aggregate,
165kg/m3 ~ 185kg/m3 in water per unit volume, and included added chemical
admixtures such as air-entraining agents, water reducing agents, and
superplasticizers (two cases). Three types of mixer were used in the
experiments: two different speeds of 100 1 pan-type mixers, and a 90 1
"horizontal 2-axis” mixer. The mix proportions of the concrete are shown in
Table 5, and for each mix proportion, the slump, air content, and compressive
strength were measured at six points between 10sec and 1000sec. As Table 5
shows, to clarify the effect of each factor, experiments were carried out with
the others held constant in each mix proportion. The resulting distribution of
learning data is clustered. The factors relating to the mixing time are added
to the five factors shown in Table 5, the number of input factors become six.
It is not denied that there are few learning data compared with them. As for
how to represent the learning data, numerical values were given to factors such
as water-cement ratio and electric power consumption, eftc.. For factors that
cannot be represented by quantitative values, such as chemical admixture or
mixer type, etc., units were prepared for each factor and set up 1 or { as in
Section 3.4. The network has three layers, and the number of units in the
hidden layer was three cases (see Table 6) for five sets considered in 4.3 a).
Because not to progress the learning were wanted to avoid, for the reason that
the number of hidden layer was not suitable. The numbers of units in the input
la¥er was)eight in set A and set B, eleven in set C and set D, and twelve in set
E (Fig. 12).

c)Comparison of results

The results of 10, 000 learning events in each case are shown in Table 7. To
ensure the same learning conditions in all five sets, the weight modification
per learning step was the same in each case. In all cases, the output values
of air content and compressive strength were better than that of slump in
accuracy, and have already converged by the 10, 000th step. Thus, there is no
difference in convergence level of all the combinations of parameters relating
to mixing. Differences in convergence level due to the number of units in the
hidden layer were small in all sets. ¥hen compared with the set E, to which
all parameters relating to mixing are applied, sets C and D have lower
convergence levels and sets A and B are much lower. And comparing set A with
set B or set C with set D, whether the electric power consumption or the mixing
time was adopted as a parameter, almost the same results were obtained and no
difference could be pointed out. Based on the differences between sets which
include mixer type as an input parameter (set C and set D) and sets which do not
(set A and set B), it can be said that mixer type is also an important parameter
beside mixing time and electric power consumption. To verify this, the networks
in set A and set B were left for 30,000 learning steps, and the convergence
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Table 7 Learning results (Learning times 10000)

Slump Air content Compressive strength

Case Average Corre!a?ion Average Corre!a;ion Average Corre;aFion

error coefficient error coefficient error coefficient
A-1 4.3072 0.9117 0. 0273 0. 9801 474. 88 0. 9874
A-2 5. 8087 0. 9087 0. 0331 0. 9757 443. 87 0. 9867
A-3 5. 5401 0.9043 0. 0332 0. 9758 360. 76 0. 9867
B—-1 4. 3911 0. 9126 0. 0307 0. 9775 577. 96 0. 9850
B—2 5. 7660 0. 9065 0. 0329 0. 9760 414.81 0. 9890
B—3 8. 0331 0.8910 0. 0366 0. 9733 321.18 0. 9304
c—-1 0.9319 0.9712 0.0146 0. 9893 247. 97 0. 9926
c-2 0. 9871 0. 9695 0.0172 0. 9875 247. 94 0.9927
c-3 1. 0656 0. 3671 0. 0205 0. 9850 264. 49 0. 9921
D—-1 0. 8806 0. 9728 0.0154 0. 9888 254. 58 0.9924
D—2 1. 0564 0. 9674 0.0164 0. 9880 271. 37 0. 9920
D—-3 0.8738 0. 9731 0. 0139 0. 9899 247. 15 0.9927
E-1 0. 8839 0.9728 0.0137 0. 9900 253.72 0. 9925
E-2 0.8122 0.9750 0.0122 0.9911 249. 52 0. 9926
E-3 0. 7442 0.9771 0.0116 0. 9916 234. 11 0.9931

¥ Average error means average square error between the
estimated value and instruction value

Table 8 Learning results (Learning times 30000)

Slump Alr content Compresive strength
Case Average Correlation Average correlation Average Correlation
error coefficient error coefficient error coefficient
A-1 2. 6750 0.9339 0. 0221 0. 9838 709. 89 0.9845
A-2 2.2918 0. 9504 0.0176 0. 9872 371. 42 0. 9893
A-3 2. 3083 0. 9502 0.0219 0. 9841 353. 04 0.9902
B—1 3. 4495 0.9315 0. 0226 0. 9835 759.98 0. 9840
B—2 2.2529 0. 9517 0. 0262 0.9810 363. 14 0.9903
B-—3 7. 4777 0.9018 0. 0344 0.9753 350. 44 - 0.9899

¥ Average error means average square error between the
estimated value and instruction value

Table 9 Estimation by the regresion equation

Slump Air content Compresive
strength
Number of data 84 72 105
Average squard error 0.6428 0.0320 358. 24
Correlation coefficient 0. 9708 0. 9908 0. 9902
Table 10 Estimation by the network(C-1)
Slump Alr content Compresive
strength
Mumber of data 84 72 105
Average squared error 0. 4254 0.0172 169. 29
Correlation coefficient 0. 9801 0. 9950 0. 9952
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Fig. 14 Instruction value and network’s output(2)
levels were also checked (Table 8). The results showed that their convergence
levels are quite similar, with set B a little higher.  Their convergence levels
are lower than those of sets C, D, and E. Based on these results, it is
advisable to select the mixer type as a parameter representing the
characteristics of the mixing process. However, a better estimation is

obtained when many units are used in the network, since the degrees of freedom
of the connection weights increases if the number of learning data is same. In
this analysis, whether the mixing time or the electric power consumption is
selected, there is no great difference in the accuracy of each estimated value.

d) Discussion

The network's output is compared with the regression equation in section 4. 2.
The generalized values can be obtained from the regression equation and the
standard values, such as maximum slump or air content and compressive strength,
when the electric power consumption of mixer is 1 wh/l. After these
calculations, the original values were estimated and compared with the outputs
of the network. This comparison is not essential because different input data
are given to the regression equation and the network, and because the regression
estimation has limited application. However, it does act as a reference for
evaluating the accuracy of the network estimation (Table 9). The results of
the network(C-1) estimation for the same data are also shown in Table 10.
These comparisons show that the estimations by the network are better than those
by the regression equation for all factors.

Next, consider the performance of the network. To investigate the relationship
between the network estimate and instruction value in each mix proportion, the
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relationships of slump versus electric power consumption and slump versus mixing
time are shown in Figs. 13 and 14. The estimation is not affected by the chosen
value of parameters, and the estimation results are acceptable. It can also be
said that networks including mixer type as an input parameter (set C and set D)
give better results than those not including mixer type. Additionally,
networks that do not include mixer type as an input parameter (in mix proportion
M1’) give larger results although the behavior is similar. Therefore, the
mixer type affects the estimates. Based on this fact, suppose that with a
certain mix proportion and three types of mixer are used, then the relationship
between the output parameters (slump, air content, and compressive strength) and
input parameters (mixing time and electric power consumption) are shown in
Figs.15 and 16. In all cases, the mixer type affects the behavior of the
estimated value. However, there are problems in the distribution of learning
data as mentioned before, so the reliability of this result is not certain
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Finally, consider the suitability of learning data. The network modifies the
connection weights and self-organizes to give a correct value according to the
instruction value. Therefore, the distribution of learning data is important
as well as its accuracy. If only to adjust the estimation value to the
instruction value of learning data, it is probable that the coincidence of thenm
becomes rather good when there are bad distribution of learning data and the
degree of freedom of network’s connection weights are large. In this case,
though, the reliability of the estimate for the extent of not learning is not so
high. To use the network obtained by learning for the sake of mentioned above,
the reliability is not so high unless the data are independent of all input
items and distributed over as wide a range as possible. Ideally, the number of
learning data should be increased as in an exponential function as the number of
input items rises. In this analysis (see Table 5), if the data are classified
according to mixer type, then for mix proportion F1~F3’, in which a pan-type F
was used, the water-cement ratio is constant, for M1~M8, in which pan-type M
was used, the maximum size of aggregate is constant, and for M1’ ~M4’, in which
the two-axis mixer type was used, all the data except the chemical admixture
were the same.  Therefore, to use such data that two or more items are constant

is not perfect. The experimental mixing data used in this analysis are
obtained from the identical experiment, different from the results of
accelerated carbonation test. Thus the errors caused by differences in

experimental method can be neglected, but the number of learning data is
relatively few compared with the number of input items, and the distribution of
learning data is poor. For this reason, the reliability of the estimate to the
extent where there is no learning data is low.

5. CONCLUSION

In this research, a number of neural network models are applied to data obtained
through experiment on concrete, and their applicability is examined. The
following results were obtained.

(1) Application to accelerated carbonation tests

Carbonation depths as mesured in experiments are estimated using the
conventional empirical equation (considering carbon-dioxide, temperature, and
water-cement ratio as influential factors) and by a neural network models. The
results are compared. It is clear that estimation by the network is better
than that by the empirical equation. The accuracy of estimation is also shown
to increase when curing conditions, which are not considered in the equation
are included as an input parameter.

(2)Application to the mixing of concrete

The learning function of a neural network is used to find suitable factors for
evaluating how the characteristics of concrete are affected by mixing time. A
comparison of mixing time and electrical power consumption shows that there is
no certain difference between them. In each case, the accuracy of the
estimation is improved by including the mixer type as an input parameter.

(3)Data analysis by neural network
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When an empirical equation is proposed to fit some experimental data, or if
multi-regression analysis is done, the basic equation is derived according to a
theoretical background. The result depends on whether the theoretical
assumption is correct or not. A neural network method can be said to have the
following characteristics.

1. The ability to determine the relationship between each factor through learning.
In this relationship, there are no subjective assumptions by the researcher,
so it can be used to find theoretical background.

9.By comparing the convergent level of each case, in which the input combination
of learning data is different, the affecting factor can be easily obtained.

3. Learning and estimation accuracy can be improved by increasing the reliability
of the data, or by obtaining new data, or by incorporating a new factor, and
SO on.

4. The network’s learning data accuracy is important, since in the learning
process, the error between the instruction value and network output value
forms the basis of evaluation. Thus it is necessary to prepare many
accurate data that are distributed over a wide range.

Finally, it can be said that a neural network is applicable to the field of
concrete technology. If a method of finding clear information about the
relationship between inputs and outputs can be obtained by an analysis of the
connections within the network, a wider range of applications can be expected.
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