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SYNOPSIS

Compressive fatigue tests were carried out on about 240 concrete cylinders and
the following characteristics were investigated: i) the form of the fatigue—life
probability distribution; and ii) the effects of specimen size, concrete
properties (including static strength), and frequency of loading on the fatigue
strength and the scatter in fatigue life.
Test results indicate that fatigue~life distributions are logarithmic normal
distributions or 3—parameter Weibull distributions, and that if fatigue tests on
specimens with a diameter—to—maXimum aggregate~size ratio of five or more are
conducted, at loading frequencies from OJltx>l5 Hz, factors such as concrete
strength, specimen size, and loading frequency hardly affect the fatigue
strength, though the scatter in static strength significantly affects the
scatter in fatigue life.
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1 . ImODUCTION

Many researchers have noted that large variations are measured in the fatigue
life of concrete even when fatigue tests are performed under identical
conditions. This large scatter has been considered an intrinsic property of the
fatigue behavior of concrete. Consequentlyl in order to stipulat.e rational
fatigue limits in the design of concrete structures and to improve the accuracy
of fatigue safety checks, it is important to clarify the probabilistic behavior
of a concrete's fatigue life.

The fatigue limit was added to serviceability and ultimate limit states as a
stipulation in the Standard Specifications for I)esign and Construction of
Concrete Structures published by the JSCE in 1981 (called JSCETs specificati.ns
in this paper) [1]. Also the stipulated provisions for fatigue limit state is
that (i) an examination of fatigue safety must be performed when the rati..f
variable load to total load, or the number of applied cycles, is large, and (ii)
a characteristic value of fatigue strength derived from tests which consider
the type of concrete and its exposure conditions shall be used in examinations
of fatigue safety.

However,. these provisions entrust the actual examination of fatigue safety to
the engineer. Today, new materials and new types of structure are being
developed all the time, and the number of concrete structures put up in untested
env!ronm.ents (such as at sea) is increasing every year. Consequently, durability
design =S now being put in practice, and these circumstances demand better
engineering judgment, which should include planning and execution of experiments
and analysis of the results.

In this paper, the form of the probability distribution for concrete fatigue
life - nece?Bar.y to determine the characteristic value of lcompressive fatigue
strength - 1S investigated. That is, we investigate which of several proposed
Probability distribution functions best matches the measured data. =n addition,
the effects of specimen size, concrete properties (including static strength and
its scatter), and frequency of loading on the fatigue strength and the scatter
in fatigue-life is also investigated.

2. EXPERWS

2 .1 Mix proportions and specimens

The concrete mix proportions, the size of cylindrical specimens made from each
Pix, and the compressive strength measured during fatigue testing are summarized
ln Table 1. Ordinary portland cement was used in this study. The coarse
aggregate was crushed stone and the fine aggregate was a mixture of river sand
and crushed sand. The mix design conditions used to select the mix were as

Table 1 Mixproportion
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content=57o, target compressive strength at the age of
(for Mix I and Mix III shown inTable 1) and fc2g -

3io-k;flcm2 (for M{x;s II ;nd IV). The concrete was mixed in a 100 1 open-pan
mixer. The concrete was poured into moulds in two layers, and each layer was
compacted with a rod and then by vibration.

The specimens were cured for 27 days in water maintained at 20+1 0C after
removal from the moulds at the age of 1 day. Thereafter, the specimens were
Stored in the laboratory under normal conditions until the time of the fatigue
tests (at more than 100 days).

klg,f / afmr2
follows: slump=5 +
28 days, fc2g=210n

2 .2 Test procedure

Ref.re beginning the fatigue tests, the mean static strength (Tc) was determined
in static compression tests using 8-15 cylinder specimens selected randomly for
each mix proportion (refer to Table 1).

In the fatigue tests, the maximum stress ratioiS) which was determined as.a
percentage of the mean of static strength_(fc in Table I) for each mix
proportion, was variid from about 70-90Z of fc, while the minimum Stress ratio
was fixed at lox of fc in all tests. The fatigue tests were carried out using a
pulsator fatigue testing machine with a capacity of 20 kN. A load varying
sinusoidally with time was used.

a) Investigation of the form of fatigue-life probability distribution
specimens 10 cm in diameter and 20 cm in height made from Mix I were
this experiment. The fatigue test was carried out with the fatigue
machine set to a constant frequency of 5 Hz. Four levels of S (85, 80,
707.) were selected and fatigue tests using about 30 specimens for each
stress ratio were conducted.

used in
testing
75, and
maximum

b) The effects of specimen size and concrete strength on fatigue life
specimens used in this test were 10 cm in diameter and 20 cm in height (for
Mixes I and IV in Table 1) and 7.5 cm in diameter and 15 cm in height (for Mixes
II and III). Fatigue tests were Carried out using a pulsator testing machine as
well as a servo-hydraulic-control fatigue testing machine with a capacity of 25
kN at Kyoto University. =n these tests, six levels of maximum stress ratio were
selected and the loading frequency was fixed at 5 Hz.

c) Estimation of the effects of loading frequency on fatigue life
specimens used were of Mix II (size of specimen: 07.5X15 cm). These fatigue
tests were conducted using a 25 kN electric servo-hydraulic-control fatigue
testing machine at maximum constant Stress ratio of S=907o. This test was
performed at loading frequencies y of R=0.01, 0.1, 0.5, 1, and 5 Hz.

3. REStJLTS AND DISCUSSION

The results of the fatigue tests are summarized in Table 2. In the table, R is
the loading frequency} N is fatigue life, r is the order statistic; that is
ordinal numbers of fatigue life arranged in order from young to old.

Acc.rding to the mean rank method [2], the probability of survival (P(N))
corresponding to the rth specimen arranged in increasing order of age of total
number (L) of specimens tested under the same test conditions is calculated from
Eq.(1).

p(N) = 1 - r/(IJ+1)
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Table 2 Resultsof fatiguetest

3.1 Investigation of the form of the fatigue life probability distribution

As is evident from Table 2, measurements of the fatigue life of concrete exhibit
great variability even if the test conditions are identical. A probabilitic
treatment is thus the best way to study fatigue life.

various probability distribution models which directly express the measured
fatigue-life distribution have been proposed in the past. When applying these
probability distribution models to fatigue life, the relationship between
fatigue life (N) at each stress ratio and the probability of survival (P(N))
calculated by Eq.(1) can be linearized as shown in Eqs.(2)-(6).

Exponential distribution [3] : ln P(N) = -A.N + B ----------- (2)

Distribution proposed by McCall (hereinafter called McCall distribution) [4] :
1n(-1n P(N)) = A.1n(1n N) + B --------- (3)

2-parameter weibull distribution : 1n(-ln P(N)) = A.ln N + B ------ (4)

3-parameter weibull distribution : ln(Jn P(N)) = A.ln(N-C) + B -- (5)

Logarifh:iz.;o.grmNa1.dS;tribtut-i8n-1[(51l,p[(6N',;[7' : __•`_•`___•`___ (6,

Here, t is the standard normal variate; that is, the distance from the axis of
symmetry of the standard normal probability density function. It can be obtained
from the tables of cumulative distribution function, 0(t), by substituting a
certain value of probability of survival (P(N)-P) for P(N) in Eq.(6).
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Figures 1(a)-(e), in which the various forms of fatigue-life probability
distribution are investigated, show the relationships corresponding to Eqs.(2)

-(6) between fatigue life (N) for individual maximum stress ratios (S) and the
probability of survival (P(N)) calculated by Eq.(1). They are plotted on
probability paper.

Firstly, consider the exponential distribution, as shown in Fig.1(a), and the
fatigue failure process of concrete. The value of N corresponding to P(N)=1
represents the potential (critical) cycle (Nc) in which no fatigue failure
occurs for applied cyclic loads of less than Nc. The slope of points plotted
represents the failure rate (/VN)) which is defined as the ratio of the number
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Table 3 Regressipn analysis and results of Kolmogrov-Smirnov test

of specimens which fail during a single loading cycle -from cycle n to cycle
(n'1)- to the number of specimens surviving until the nth cycle. This figure
indicates that (i) regardless of the value of fatigue life, the failure rate f.r
a particular maximum stress ratio is almost constant ( A(N)-A : constant), and
(ii) the value of Nc is close to zero. This behavior of i(N) is similar t. the
creep failure rate for brittle materials such.as glass ( i(T)), in which the
Parameter is creep failure time, T [3]. This indicates that the physical
quantity which controls concrete fatigue failure under repeated constant-
amplitude compressive loading may be considered to be the rate of failure.

In the case of concrete, there are unfortunately few studies which attempt to
clarify the behavior of failure rate ( i(N)), though it is thought to be
directly connected with the occurrence of fracture cracks and their propagation
rate. Consequently, for practical purposes, a number of distribution models have
been proposed to fit the measured distribution; there have been few studies of
theoretical distributions obtained from an analysis of i(N). In order t.
clarify the form of the measured fatigue-life distribution of concrete against
this background, tests of the other distribution models for goodness of fit are
carried out, including one on the exponential distribution.

The relationships plotted in Figs. 1(a)I-(e) are aim.st linear and the
distribution of fatigue life at each maximum stress ratio is reasonable in all
the distribution models proposed. However, which model exhibits the best
goodness of fit as regards the form of the measured fatigue-life distribution
must be judged by a test for goodness of fit.

Regression equations, shown in Table 3, are calculated by the least squares
method from Eqs.(2)-(6), and the corresponding curves are shown in Fig.1. In
Table 3, the Kolmogrov-Smirnov test [5] is used to determine h.w well the
various theoretical distributions fit the measured fatigue-life distributions.
In this study, theoretical distributions are expressed by the regression
equations in Table 3. It is clear from Table 3 that all measured fatigue-life
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distributions for individual maximum stress ratios can be considered as obeying
the theoretical distriLutions at a significance level of aL=20Z, because the
maximum difference between the theoretical distribution and measured
distribution (Dmax) is less than the critical value (Di ) obtained from the
Kolmogrov-Smirnov Table for a significant level of a=207o. However, looking at
the values of Dmax/I)L&, those for the 3-parameter Weibull and logarithmic normal
distributions are smaller than for the exponential, McCall, and 2-parameter
Weibull distribution; as a result, the measured fatigue-life distribution can be
expressed to better accuracy by using the 3-parameter Weibull or logarithmic
normal distribution. The probable fatigue lives, obtained by substituting
P(N)=0.5 (t=0) and P(N)=0.977 (t=-2) into P(N) of the regression equations, are
also given in the table. It is clear that the probable fatigue life in the
region of P(N) below P(N)=0.977 is not significantly different from the values
calculated from the logarithmic normal distribution and the 3-parameter Weibull
distribution.

The experimental constants A and B in Eq.(6) of the logarithmic normal
distribution can be calculated directly by regression analysis using the least
squares method only. On the other hand, constants A, B, and C in the 3-parameter
Weibull distribution cannot be found directly, and must be calculated by the
following procedure: (i) calculations of a set of three constants A, B, and C in
Eq.(5); and (ii) finding of a set of constants value of A, B and C which the
absolute value of correlation coefficients has a maximum. The value of A and B
for a given value of C , when the value of C changes, can be calculated by
using least squares method. This calculation is considerable complicated.
Therefore, Considering simplicity, convenience, and utility, it is concluded
that the most appropriate distribution for the measured fatigue-life is the
logarithmic normal distribution.

3.2 Variation in fatigue life and its mean

When the distribution of fatigue life for each maximum stress ratio obeys the
logarithmic normal distribution as given by Eq.(6), the mean fatigue life (the
value of N corresponding to P(N)-0.5 (t-0)), represented byW, and the mean and
standard deviation of logN, m[1ogN], and V[1ogN], are calculated as follows:

W=10-B/A, m[1.gN]--B/A, V[1ogN]-1/A (7)

Figure 2 gives the relationship between fatigue life for each maximum stress
ratio and the survival probability calculated by Eq.(i). It is plotted from the
results of a fatigue test
in the region of maximum

conducted at the minimum stress ratio of Smin=10Z and
stress ratio, S=72-85Z. Specimens made with Mix I and
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Mix II are used. The regression equations are calculated by the least squares
method from Eq.(6) and the corresponding curves are shown in Fig. 2.

Figures 3 and 4 show, respectively, the relationship between maximum stress
ratio and standard deviation of logN, V[1ogN], and mean of fatigue life, W;
these are obtained by substituting the known constants A and B as in Fig. 2 into
Eq.(7). Figure 3 demonstrates that the values of V[1ogN] for a specimen of
diameter 7.5 cm (4)7.5 cm) are somewhat larger than those for a specimen of 4)lO
cm, though the coefficient of variance in static compressive strength for the
O7.5 cm specimen is smaller than that for the Plo cm specimen (refer t. Table
i). This indicates that the variation in fatigue life becomes larger as the
specimen size decreases as in the case of static compressive strength. With
regard to the effects of the magnitude of stress ratio on value of V[1ogN] when
the coefficient of variance in static strength is constant, V[1ogN] increases as
the stress ratio rises.

I,J

?nhethse-NOt:eqruahtain.di;tthF irge.ga4rdtthOatthi ;:ann.otf :;tflicuteedlifbey'd"i,ffWeereCnOcneCsludlenf:o1:
J•`

J-

proportion and specimen size. Accordingly9 the relationship between S and N,
which is common to both specimens used in this study> is the following:

J•`

S = -4.395 log N + 97.506

The fatigue•`strength at 2X106
into the S-N equation (8), is
maximum value, S=70Z, and the
in tests within the region of
et a1 [5], Matusita et a1 [6],
Bennet et a1 [12]. Similarly,

(8)
JU

cycles, which is obtained by substituting N=2X106
S=69.8Z. This value lies in the region between the
minimum value, S=60Z of fatigue strength obtained
minimum stress ratio (Smin=(2 - 227o)) by Sakata

aRlatjhu.u[g9h], thOeplsel.e,te a.lf [ tlhO2, s_Aiterqiunatelf.na1(_[4li! ; )a;nd
this study lies between minimum value (-6.369) and maxim&m value (-4.292)
suggested by Raju [9] and Rennet et a1 [12], it approaches theupper limit of
this range. The values of these slopes indicate that the fatigue life of
concrete under repeated compressive loading is increased by approximately one
order as the maximum stress ratio falls by 5Z. The fatigue life is also sham to
be very sensitive to small changes in maximum stress ratio.3i-Bff*
According to the JSCETs specifications, it is desirable to determine fatigue
characteristics through tests using specimens which are similar to the actual
structure in all respects. This includes strength and size. However, most
fatigue testing machines are limited to a capacity of about 20 kN at most,
while the compressive strength of concrete in recent civil structures is 30 MPa
or more. Thus, it is almost impossible to carry out fatigue tests on the
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standard types of cylindrical specimens ( Q15X30 cm and Q10X20 cm). In order

to address this problem and thereby reduce testing time and experimental costs,
we here examine the effects of factors such as concrete strength, specimen size,
and frequency of loading on the fatigue life.

These tests were carried out on specimens with an air content of 5Z and with a
specimen diameter to maximum size of coarse aggregate ratio of five. This
excludes the effects of both air content and maximum aggregate size on fatigue
life, as pointed out by Bennet [13].

Figure 5 shows the relationship between fatigue life and probability of survival

1i,nectlymOenCasSiezSe:.(fa)i:7?5Pxelr5Sctmr,eScS.nrcartei : sotfreSn=g7t7hZ,. fl oaba.duitngfcf=r2e5q.uEgnfC/ycmos;Ra=n5dH(zb;

:tarxelnmg;hm.SftrfecS=S4.r.a EgifO/cOmf2,S=s9,OeZJlmlenoasdliznegs.ffre@q,u.e5nXCly5cmOfanRd=Oioll.xH2Z.;m.COTnaCbrleetZ
gives the results of a variance analysis conducted to examine whether or not
there is a difference in the value of logN for the two cases at a selected
significant level,a-. This analysis of fatigue life variance indicates that no
significant difference is exhibited in the fatigue life of each case at the 95Z
significance level.

Besides, noting the S-W diagram shown in Fig. 4, almost linear relationships are
obtained for both @15cm and Q7.5cm specimens and, if fatigue tests are
conducted at the same stress ratio, the mean fatigue life for the two kinds of
specimens are almost equal. From these results, we judge that if the applied
maximum stress ratio is equal, differences in concrete strength and specimen
size barely affect the mean fatigue life.

Figure 6, in which the effects of loading frequency on the fatigue life are
examined using data corresponding to the stress ratio of S=90Z presented in
Table 2, shows the relationship between fatigue life (N) and survival
probability on logarithmic normal probability paper. The regression equations
calculated by the least squares method from Eq.(6), and the corresponding
curves, are shown. It is clear from this figure that the fatigue life
corresponding to a particular survival probability (P(N)=P) is extended with an
increase in the loading frequency (A) in the region R=0.01-0.1 Hz but is holds
almost the same values in the region R=0.1-5 Hz.

In order to quantitatively clarify this characteristic a variance analysis was
conducted to determine whether or not the difference in the value of logN in the
two cases presented in Table 5 exists at a selected 95Z significance level. The
two cases were (a): loading frequencies of R=0.1 and 0.01 Hz; and case (b): four
loading frequencies of R20.1 Hz. The variance analysis in Table 5 shows no
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Table 4 Analysis Qfvariance ((a) : Q7.5 X 15 cm. R-5 Hz, S

=77% (b) :fc=400 kgf/cm2, R-0.01 Hz, S-90%)

Table 5 Analysisof variance

significant difference among fatigue lives at the loading frequency of R=0.1,
0.5, i, and 5 Hz but there is a significant difference between fatigue lives at
0.1 Hz and 0.01 Hz.

Considering these variance results and the report by Kesler, et a1 [14] which
says the loading frequency hardly affects fatigue life in the region R--1.2-15
Hz, it is inferred that loading frequencies within the region R=0.1-15 Hz have
little effect on fatigue life.

3.4 Characteristic S-N curves

In order to produce a characteristic S-N curve, information on variations in
fatigue life is required. Generally speaking9 Since the variation in static
strength of concrete is greater than that of metals? the following two sources
are generally thought to contribute to variations in the fatigue life of
concrete: (A) variations due to natural phenomena included in fatigue failure
Process Of concrete and metal; and (B) variations induced by variations in the
static strength. of concrete. For this reason> compressive fatigue for concrete
and tensile fatigue for metal are commonly investigated. Particular differences
in the S-N equations for concrete and metal are (i) the magnitude of fatigue
strength (in MPa) of concrete in the same cycle is lower by one.rder than that
of metal, (ii) S-N curves for concrete give a straight line on semi-log graph
paper, where S is plotted on the normal scale, but with metal the line is
straight when plotted on log-log Scales. This indicates that the fatigue life of
concrete is more sensitive to small changes in stress than that of metal, and
variations in concrete fatigue are mainly a results of (B) above.

With respect to compressive fatigue failure using cylindrical specimens, cracks
Propagate COntinuously in the circumferential direction and specimens eventually
separate into two conical shapes in failure. Thus, it can be assumed that this
fracture process is not a local failure due to stress concentration which
induces metal fatigue under repeated tensile stress, but is rather complete
failure after the stress is fully redistributed. Consequentlyl from the
viewpoint of (A), complete failure makes the fatigue life of concrete unif.rm;
that is, it gives rise to less variation in fatigue life. From the viewpoint of
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(B), complete failure &ives rise to an equivalent effect; making the apparent
variation in static strength small.

The variation in fatigue life of concrete is thought to be closely related to
the complex behavior described above. However, it is generally agreed that the
variation is a results of (A) when the variation in static strength of the
concrete is very small or nonexistent and a result of only (B) when the
variation in static strength lies within a certain range.

The validity of this argument, that is, whether the variation in fatigue life
can be predicted by variations in the static strength only or not, is examined
using concrete with a coefficient of variance in static strength of V[fc]=3.5
•`13.5Z. The effect of variations in static strength on the variation in fatigue
life is then examined by assuming that the relationship between mean stress
ratio, 7;, defined by, the ratio of applied stress, 6max, to the mean static
strength, fTc, and the_mo•`st probable value of fatigue life, W-N(i), is already
known and that this S-N relationship is described by Eq.(8) or Eq.(9) as a
Goodman type of i-5 equation. A design S-N equation based on the results of the
variations in static strength and fatigue life will be considered later.

¥ogF- log N(7, - Alif_';1 or
K

--------------- (9)

1 - Smin

where Fmin is the mean of minimum stress ratio and A1, B1, and K are the
already-known experimental constants.

In performing the calculation, the assumptions made for the concrete are that
0 the distribution of static strength obeys a normal distribution,and @ the

distribution of fatigue life obeys a logarithmic normal distribution.

According to assumption 0 , when a sample corresponding to a
probability of P[fc]=P is taken from the concrete population whose
coefficient of variance of static compressive strength are known
V[fc]=V, the corresponding strength of the sample specimen, fc(t), is
Eq.(10).

fc(t)-{c(let.V/100) , t-@-1(1-P), Tc-fc(0)

survival
mean and

as Tc and
given by

(10)

when the applied maximum stress, 6max, is constant, the true stress ratio for
sample specimen, S(t), is calculated using Eq.(ll).

6Tmax S(0)
S(t) = i - s(o) - 6max/fc(0) ---- (ll)

fc(t) (1+ t.V/100)

The most probable value of fatigue life, N(S(t)), corresponding to the true
stress ratio, S(t), can be obtained by substituting S(t) forg in Eq.(9), that
is, from Eq.(12).

10 A1. S(t)+BI

N(S(t)) = 10 K(1-S(t))/(1-Smin(t)) Or
(12)

where Smin(t) is the value of S(t) calculated by replacing 5max in Eq.(ll)
with minimum stress, 6min.
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in staticstrength

Consequently, the effects of variations in static strength on the variation in
fatigue life can be evaluated from the S(0)-N(S(t)) curve, in which N(S(t)) is
calculated using Eq.(ll) and Eq.(12) for a certain value of S(0) and t, as shown
in the rough sketch in Fig. 7. In this figure, the dash-dot line represents the
S(0)-N(0) equation corresponding to P-0.5 (t-0) and the solid lines represent
S(0)-N(S(t)) curve at t= i: 1 (P=0.84, 0.16).

On the other hand, according to assumption @ , when the parameters of logarit-
hmic normal
V[1ogN]=1/A,
or Table 3,
survival of tph(eN)P-r,0?a.brlet-f ai-ii?; }p5; ;

distribution for the mean stress ratio S=S(0), m[1ogN]= -B/Av, and
have been determined from the experimental data as shown in Fig. 2

corresponding to a certain probability of
N(t), is calculated using Eq.(13).

N(t)=10 m[1ogN]+V[1ogN].t

equation S(0)-N(S(0)) obtained
arbitrary survival probability P
N(S(t)) curve.

(13)

The broken lines in Fig. 7 represent the S(0)-N(t) curve, which is obtained by
substituting t= i 1 into Eq.(13).

Holmen [15] has proposed that the S(0)-N(S(t)) curve corresponding to an
arbitrary value of t almost agrees with the S(0)-N(t) curve; that is, if the

¥(tt=he@-Sf(o1)_-P")()?)
curve corresponding to an

can be predicted from the S(0)-

I n Fig. 8 (A), the validity of Holmen's proposal is examined for the results of
this study. The plotted points in the figure are probable fatigue lives, N(t),
obtained by Substituting the known values of A and B (as shown in Fig. 2) and
t=-1 into Eq.(13), the•`dash-dot line represents equation S(0)-N(S(0))

S;a;-nNC(lsd(itn,g,:bittahint:debSy-"suebqsutaftiuotni:gn tFigi 4a'n,daVn[dfct]h=e3.S50fi fd.1rinaes ie7?5rXelS5ecnmt
specimen, as shown in Table 1) or 77o (for a 4)10X20cm specimen) as the
coefficient of variance in Eq.(ll) and Eq.(12). Figures 8 (B) and (C) show the
results of treating Sakata, et a1 [5] and Matusita, et a1 [6] using the same
procedure.

In all results of this study using Q7.5cm specimens and most results.f
Matusita'S study using the same size specimens, the plotted points on the S(0)-
N(t--1) curve almost fit with the solid line corresponding to the S(0)-N(S(t=-
1)) curve, so indicating that HolmenTs proposal is valid.

On the other hand, in Sakatafs results and the results of this study using
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strength

4)10X20 cm specimens, the S(0)-N(S(t--1)) curve estimated from the variations in
static strength is larger than the S(0)-N(t=-1) curve estimated from the
variation in fatigue life. Thus> when fatigue tests using specimens bigger than
4)7.5X15 cm are conducted, the P-S-N curve for an arbitrary survival probability
may be predicted with considerable accuracy and on the safe side by substituting
the S(0)-N(S(t)) curve calculated from Eqs. (ll) and (12) for the P-S-N curve.

In cast-in-situ concrete, since its coefficient of variance in static strength
(v[fc]=V2) is generally considered to be larger than that of laboratory test
concrete (v[fc]=V1), the P-S-N curve for the cast-in-situ concrete can be
estimated by substituting V=V2 into V in Eq.(ll).

Fina11y1 1etTs consider a design S-N equation. One specification of the JSCETs
standard Specifications is that when no fatigue test to confirm fatigue
performance is carried out, the design fatigue life, Nd, Should in general be
computed using Eq.(14).

1 - rc.S(t)/k1
log Nd(S(t)) I K

1 - rc.Smin(t)

where rc=1.3 is a material factor and k1-0.85,

(14)

and K=17 for compression.

p utting k1-1, n;-1 in Eq.(14), itagreeswith Eq.(12). Inthiscase, it is
clear, as stated before that the P-S-N curve for an arbitrary value of survival
probability, P, can be estimated with considerable accuracy from Eq.(12).
Examining the S-N equation obtained from tests conducted in a region of lower
stress ratio, Smin=2-227o, the mean fatigue life becomes longer (or shorter) by
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approximately one order with each 5Z decrease (increase) in maximum stress
ratio. Still requiring examination is the most appropriate value.f r:c f.r theJ=_LJ _ __ _ 1 .fatigue
about 10 ai ::ta1 ;te; t eihbauntNt(B;t,d,eslingnthfeatciagsuee.1fif e{c="i.'3S' ta)n)d,

JL

4 . CONCLtlSIONS

may be assumed to be
k1=1.

This study wa? carried out to clarify the characteristics .f pr.bability
distribution ln.COmPreeSive fatigue life, and to determine quantitatively the
effect of specimen Size, CO.nCrete Static strength and its scatter, loading
frequency, and other factors ln fatigue testing on the mean fatigue life and
the scatter in fatigue life.

The following is a summary of the results obtained:

(1) The distribution of fatigue life under compressive repetitive loading was
confirmed to an exponential distribution, the distribution proposed by McCall,
the 2- or 3-parameter Weibull distribution? and the logarithmic normal
distribution. I)istributions with the best fit are the 3-parameter Weibull
distribution and the logarithmic normal distribution. Considering simplicity,
convenience, and utility, however, the most appropriate is the logarithmicnormal distribution.

(2) When concrete specimens of different sizes have the same c.efficient.f
variance and standard deviation of logN (V[1ogN]) is used to indicate the am.unt
of vari?tion in fa?igue life, the value of V[1ogN] becomes somewhat larger with
decreasing of specimen Size.

(3) When fatigue tests are carried out on specimens with a ratio of height to
diameter of 2 and with a ratio of specimen diameter to maximum aggregate size of
5, differences in specimen size and concrete static strength have hardly any
effect on the mean fatigue life, i

(4) Data obtained from fatigue tests at a high stress ratio of S=90Z, loading
frequency from 0.01 Hz to 0.1 Hz have some effect on fatigue life, but from 0.1
Hz to 15 Hz, when considering this experimental results and the KeslerTs report
[14], hardy affect fatigue life.

(5) Variations iAiatigue life are closely related t. variati.ns in static
strength. If the S-N relationship between stress ratio based on the mean static
strength and the mean fatigue life corresponding to a stress ratio is known,
together with the mean and sta.ndard deviation in static strength, a P-S-N curve
taking account of survival probability> P, can be estimated with considerable
accuracy fro-m Eq.(ll) and Eq.(12).
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