CONCRETE LIBRARY OF JSCE NO. 20, DECEMBER 1992

STRAIN-SPACE PLASTICITY MODELING FOR COMPRESSIVE SOFTENING BEHAVIOR
OF CONCRETE MATERIALS

(Rearrangement of papers of Concrete Research and Technology, JCI, Vol.2, No.2,
1991 and J. Engrg. Mech., ASCE, Vol.118, No.8, 1992)

Eiji MIZUNO Shigemitsu HATANAKA

SYNOPSIS

A strain-space-based plasticity model is proposed to represent the softening
as well as hardening behavior of concrete under low confining pressure. A
general strain-space formulation is presented in some detail by introducing the
Lade type of loading function F and a new plastic potential function G defined
in strain space. The incremental stress-strain relation is given in a tensorial
form. Using the experimental data available from triaxial compression tests,
the model parameters are determined, and model simulation 1is performed to
demonstrate the model capability. It is confirmed that the proposed model can
sufficiently predict the softening as well as hardening behavior of concrete
materials under low confining pressure.
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1. INTRODUCTION

It is well known that an increase in the toughness (energy absorption
capacity) of concrete in the compressive zone of reinforced concrete (RC)
members is quite effective for improving their ductility. An introduction of
lateral confinement 1is considered one of the actual and effective ways to
enhance the compression toughness of concrete. Although a use of the lateral
reinforcing bars can introduce such lateral confinement, the magnitude o
effective lateral pressure is not generally so high, e.g., less than 20 kegf/cm
(1.96 MPa) in compression. Therefore, the concrete, even with lateral reinforc-
ing bars, causes the compressive softening behavior in a relatively higher
strain region, which plays an important role in controlling the plastic deforma-
tion behavior of RC members.

Since experimental data for concrete in the compressive softening region
have been lacking, there have been, so far, a few theoretical challenges for
modeling a softening behavior of concrete [1][2]1[3][4][5]. To clarify such
compressive softening behavior of concrete under low lateral confining pressure
from the experimental point of view and to provide the experimental data for
theoretical development of a concrete constitutive model, one of the writers has
carried out a series of triaxial compression tests on concrete [6][7]1[8].

On the other hand, some other experimental studies have been reported on the
complete stress-strain curves of concrete under triaxial compression [9]1[10]
[11]. In these reports, however, experimental data were obtained from specimens
with height/diameter (H/D) ratio = 2 - 3. As has been pointed out by Van Mier
[12] and Kosaka et al.[6], the uniaxial stress-strain curves obtained from
specimens with different H/D ratios are quite different from each other, i.e.,
the softening portion of the stress-strain curve becomes steeper due to damage
concentration as the H/D ratio increases. Kosaka et al.[6] have found that
damage occurs in a relatively uniform manner inside a specimen with H/D = 1.

In the present study, therefore, by examining the experimental data of
concrete specimens with H/D = 1 [6][7][8], a concrete constitutive model has
been proposed to represent the strain-softening as well as strain-hardening
behavior under 1low lateral confining pressure. - The constitutive equation 1is
formulated by using the strain-space-based plasticity theory, taking into
consideration the representation capacity for the compressive softening behavior
of concrete and the applicability to the finite element analysis of RC struc-
tures.

The Lade type of loading surface and the new plastic potential surface, in
particular, are defined in the strain space, then employed into the strain-
space-based constitutive equation. The material parameters incorporated in the
proposed model are determined from triaxial compression test data including the
softening part, and model simulations are performed to examine the model capa-
bility.

2. STRATIN-SPACE-BASED PLASTICITY FORMULATION

The stress-space plasticity formulation based on the Drucker's postulate
[13] has been extensively employed for modeling strain-hardening behavior of
engineering materials in general and concrete material in particular [14]1[15]
[16].

On the other hand, the strain-space plasticity formulation, which is

basically derived from the Il'yushin's postulate [17], has been proposed to
represent softening behavior as well as hardening behavior completely without a
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mathematical discrepancy [3]1[18]1[19][20]{21][22].

In the following, the strain-space-based plasticity formulation is briefly
described.

2.1 Loading Function

A loading surface F defined in the strain space can be, in general, written

as

F=Fless, e84 £,) =0 (1)
1 lJ’ ’

where ¢ , and f,_ = strains, plastic strains, and a loading parameter that

is rela%ed %8 a surfgce size and is usually a function of plastic work W re-
spectively.

If the shape of loading surface F in the strain space is assumed analogous
to that of the well-defined loading surface f in the stress space, as pointed
out by Naghdi and Trapp [181, the loading function F may be derived in the
following manner: Assuming that an elastic behavior is linear and that the
strains ¢ 1 can be decomposed into the elastic strains eC. and plastic strains
ELy the stresses ¢.. are given by the generalized Hooke'S law as

ij
_ e _ _ P
735 = Cijk1 fk1 = Cigkl Cr1 T fka) (2)
where C = the fourth-order elastic stiffness tensor. Substitution of stress

tensor in Eq.(2) into the loading function f written in terms of stress varia-
bles yields the loading function F in terms of strain variables. For example, a
use of isotropic hardening/softening type of loading surface, f = flo;:, T ),
leads to L P

f

£ log5, fp)

- _ P = P -
= fl Cijkl(ekl Ekl), fp ] =F(e;s, e5:, £ ) = 0. (3)

2.2 Loading Criteria

Some difficulties arise when the loading criteria corresponding to loading
surface f are used in the stress-space formulation. For example, an explicit
distinction cannot be made between strain softening and unloading conditions
that are written as af/ao < 0, nor between perfect plasticity loading and
neutral loading condltlons wrl%%en as af/ao ij d”ij = 0.

on the other hand, the loading criteria corresponding to loading surface F
are mathematically expressed by

aF

.. >0 : Loading (Hardening, softening, and perfect plasticity)

e ; ij

ij (4.a)
3F de.. =0 : Neutral loading (4.b)
AL s+ 1]

1]
AF _g.. <0 : Unloading. (4.c)
asij ij

As can be understood from Egs.(4a-4c), it becomes clear that the above
loading criteria in the strain space do not result in such a contradiction
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caused by loading criteria in the stress space. Thus, the strain-space-based
plasticity may provide a useful approach to model the softening behavior of
engineering materials such as soils, rocks, and concretes.

2.3 Flow Rule

According to_the Il'yushin's postulate, the scalar product of the relaxation
stress tensor dy?. and the incremental strain tensor de.. is always nonnegative
on the loading su}face F in the strain space. This conﬁition is written mathe-
matically as

p
dgij dejj > 0, | (5)
where the relaxation stress d7gj is defined as

| b
iy = Cijpp Qg - (6)
The nonnegativeness of Eq.(5) guarantees the normality of the relaxation
stress drs . to the loading surface F. In a similar manner to the derivation of
the plas%lc strain increment de¥, in the stress-space formulation based on the

Drucker's postulate, the relaxatian stress d’?j can be derived as
P _ aF
Vij T P 0

where dA = a nonnegative scalar quantity; and aF/ses.. = the normal components to
the loading surface F. Equation (7) corresponds td the associated flow rule
defined in the stress-space formulation.

On the other hand, the introduction of plastic potential function G = G(eij,
&P, fp) leads to a nonassociated flow rule given by

P _ aG
dyij dx %15 . (8)

The plastic strain increment dagj can be written from Eq.(6) as

P _ -1,.p _ p
dejj = [Ciqpq] ~ oy = Dyjpq Dpgs (9)
where Dijkl = a compliance tensor. Application of Eq.(8) into Eq.(9) leads to
P _ aG
dsij = dA Dijkl'gg__ . (10)
k1l
A similar derivation can be seen in the work by Han and Chen [3]. On the

other hand, Kiousis [22] showed a different form of flow rule that the vector of
plastic strain increments is normal to the plastic potential function G.

2.4 Elastic-Plastic Constitutive Relations

A consistency condition of the loading function F = F(aij, sgj, fp) can be
written as

aF =2F g+ 2F P BF g g (11)

. . i ij
351J J aggj J afp p

where fp = a function of the plastic work Wp whose incremental form de is given
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by aij dsgj. Substituting the following relation:
af. = P aw = Lo, d?. (12)

into Eq.(11), further substituting Eq.(10), and solving for di lead to

aF
e, . ij
a = T : (13)
_ 3aF a6 _3F p . 3G
p abcd 3.4 afp de ab “abcd CLYY

ag ab

Backsubstitution of Eq.(13) into Eq.(10) and further application into the
incremental 1linear elastic stress-strain relation dyi. = Ci' l(dekl - aP))
yields the following incremental elastic-plastic constitu%ive rékation in %ﬁe

strain space.

aG aF
JE . s QAE .
ij kl
;. = C,. - de,,q. (14)
1 1jkl _ aF a6 _ aF dfp c . D aG ki
aggb abcd 3.4 afp de ab “abcd 3.4

The comparison between the strain-space and stress-space formulations is
presented in Table 1.

3. APPLICATION OF THE LADE LOADING FUNCTION

The research on softening behavior has been, so far, proceeded not only for
concretes, but also for soils. Lade [23] proposed a stress-space-based plastic-
ity model for strain softening as well as strain hardening of soils.

An analogous shape to that of the Lade loading surface defined in the stress
space is here applied to those of the loading surface and plastic potential
surface in the strain space. The loading function F and plastic potential func-
tion G will be derived in the following:

3.1 Loading Function F

The Lade type of loading function f for material such as concrete with a
tensile strength can be written in terms of stress invariants as [24]

P
- 3 _ a myrl 3 _1 _
Il +a
where 1., J2, and J, = the first invariant of stress tensor and the second and
third invariants of %he deviatoric stress tensors, respectively; P, = the atmos-

pheric pressure; m = the shape parameter; a = a magnitude of movement to the
tensile direction along the hydrostatic pressure axis; and f_ = the loading
parameter. The loading parameter f_ takes initially zero on Phe hydrostatic
pressure axis, increases gradually uB to the maximum value of 79 at a failure
state, then decreases as the strain softening progresses.
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Table 1.

Comparison of Stress Space and Strain Space Formulations

Stress Space Formulation

(1)

Strain Space Formulation

(2)

(a) Loading Function
= = b =
f = f(oij' fp) 0 F F(Eij' EiJ. fp) 0
(b) Loading Condition
af . aF .
Py d”ij > 0 : Strain Hardening Py ij > 0 : Strain Hardening
ij ij
af . aF . ;
P d”ij < 0 : Strain Softening 3% 1j >0 : Strain‘Softenlng
ij 1j
af _ . ; aF . :
o Yij = 0 : Perfect Plasticity Py i > 0 : Perfect Plasticity
ij i
(c) Neutral Condition
af aF
., =0 —— dg =0
(d) Unloading Condition
af aF
do,; <0 <0
aoij ij aaij ij

(e) Flow Rule

Drucker's Postulate

=dAL

asP.
1) aaij

%

f

0

I1'yushin's Postulate

. aF
djgj =a 245
p
daij
F=0

(f) Stress-Strain Relation

Use Consistency Condition

Use Consistency Condition
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In the present research, a loading function F in the strain space is defined
through the following transformation of Eq.(15) by Eq.(3).

The hydrostatic pressure p and the deviatoric stresses s
terms of the strain as

ij are written in

= .
8ij = 2 u (eij

where K, u, €53 and eg. = the bulk modulus, the shear modulus, the deviatoric
strain tensor, Qnd the piastic deviatoric strain tensor, respectively.

- egj), (a7

Thus, the stress invariants 11, Jz, and J3 are written as

I, =3p=3K (eq; - efy) (18.a)
Iy = g syysyy = 247 legy - efy)egy - efy) (18.b)
Jg = si5Sycki = 3 40 (egy - efp) ey - ef ey - efy)- (18.c)
. Further, introducing the following strain invariants il’ 32, and 33 defined
y

il =&51 Bgi (19.a)
Iy =% (eg; - ebj) (egy - ey (19.b)
Ty = g (egy - efp) ey - i (e — eky)- - (19.0)

the stress invariants of Eq.(18) can be rewritten as

I = A il (20.a)
Jy =B, (20.b)
Jg = C 33, (20.c)

where A = 3K, B = 4 uz, C=28 us.

Substitution of Egs.(20) into Eq.(15) leads to the Lade type of loading
surface F

P
(—2—)" x

F=( il+a)3 - [27+f
AL, +a

P
(A T,+a)% - L(AT,+a) BJ, + CJ,1 =0 (21)
27 1 3 1 2 3 *

Figure 1 shows a schematic view of Eq.(21) with the different values of
loading parameters fp in the principal elastic-strain space.

3.2 Plastic Potential Function G

It is found that, in the present research, the plastic potential surface
determined from the procedure by Lade [23] does not give a good prediction of
the plastic volumetric strain compared with the experimental data. For example,
for the case that a dilatancy is expected to occur, the model may predict a
compaction. Thus, a new procedure to define a plastic potential function G has
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Initial Yield
Surface

L
K

.

Fig.2 Definition of Plastic Potential Surface in Strain Space

been proposed in the following manner: Assuming that the current strain state
is at point A(I,, /J,) on the current loading surface F, as shown in Fig.2, the
plastic potentlal surface G is defined so that it has the same apex as that of
the loading surface F and passes through a specific point B(I,, /J,/|k|) where k
is a variable. As a special case, when 1/k is 1, the plastic potefitial function
G becomes identical to the loading function F, while it becomes the von Mises
type when 1/k is zero. The normal tensor aG/as,. calculated at this specific
point B is directly used in Eq.(14) for the caseJof a positive value Kk, while
for a negative value k, the tensor with the same deviatoric components but a

negative volumetric component to that of aG/aeij is used in Eq. (14).
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4. MODEL CALIBRATION

In the following, the strain-space-based plasticity model developed in the
preceding section is calibrated by using the triaxial compression test data to
simulate the hardening and softening behavior of concrete.

4.1 Experimental Data

The experimental data used for model calibration are obtained from the
triaxial compression tests on cubic plain concrete specimen (10cm X 10cm X 10cm)
with the water/cement ratios (W/C ratios),of 0.45, 0.55, and2 0.7, under the
different confining pressures o, = 0 kgf/cm® (0 kPQ), 1 kgf/cm® (98 kPa), 3 kgf/
cm® (294 kPa), 6 kgf/cm” (588 ﬁPa), and 12 kgf/cm® (1176 kPa) [8].3 Speiimens
were loaded axially under the constant strain rate of about 2 x 10 * min. ~, by
using a high-rigidity compression testing machine. The friction at the inter-
face between specimen and loading plate was reduced by placing the friction-
reducing pads that consist of two polypropylene sheets with silicon grease
between them. Further information on testing conditions and procedures is given
in the earlier papers [7][8].

Note that the experimental data under a confining pressure 0 = 12 kgf/cm2
(1176 kPa) are available only for the concrete specimen with W/C ratio = 0.55.
These experimental data are shown later with several symbols in Figs.13 through
15.

4.2 Determination of Material Parameters

The following material parameters are required in the proposed model.

(A) Elastic Constants

Since concrete is here assumed to be linearly isotropic in the elastic
range, only two material constants, such as the bulk modulus K and the shear
modulus g, are determined by using the initial portion of stress 5 strain curves
from uniaxial compression tests (confining pressure o, = 0 kgf/cm® = 0 kPa) for
the different W/C ratios. These values are presented in Table 2.

Table 2. Elastic Moduli

Water/Cement | Bulk Modulus K Shear Modulus z
Ratio (W/C) 9 9
(kgf/cm®) (kef/cn®)
0.45 166,667 125,000
0.55 150,000 112,500
0.70 133,333 100,000

Note: 1 kgf/cm2 = 98 kPa

(B) Parameters for Failure Surface

The parameters in Eq.(21) at the failure state are ., m, and a. As shown
in Fig.3, the failure states corresponding to all 13 setS of experimental data
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Fig.3 Failure Points in Nondimensional Stress Invariant Space

are plotted in the nondimensional stress invariant space (I /fé, /ﬁ—/fé) where
f' is thezuniaxial compressive strength, that is, 338 (33.1}, 273 126.8), and
of6 kgf/cm® (21.2 MPa) for the W/C ratio of 0.45, 0.55, and 0.7, respectively.

Three parameters are evaluated as 7, = 165 (maximum value of f ), m = 0, and a =
0.31 f' in tension side. For the case of parameter m = 0, a mgridian of failure
surface becomes a straight line and overestimates the a-value that is usually on

the order of (0.1 - 0.15) fé.

Since the concrete is known to exhibit linearly elastic behavior up to about
30 % of failure strength [14], the initial loading surface is located at a level

0
of fp = 26.

(C) Loading Parameter

The 1loading parameter fp is defined as a function of plastic work Wp (= s

p .
aij dsij), that is,
WP %
f =aexp(-BW) ()", (22)
P p Pa
where P_ = an atmospheric pressure; and a¢, 8, and y = parameters. The param-

eters «a and B are defined as functions of the parameter y and the plastic work

W corresponding to the peak value n, of parameter f . These mathematical
eak . . 1 P

eRBres51ons are given as [23]

e Pa %
a =7 (w ) (23)
ppeak
B =, (24)
7 ppeak

where e = the natural logarithmic base.
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A W/C=0.55
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wp/Pa

Fig.4 fp - Wp/Pa Relation (oc =0 kgf/cmz; 1 kgf/cm2 = 98 kPa)

WPPeak/Pa
re———3A

B O wW/C=0. 45
A W/C=0.55
T O w/Cc=0.70
Dé T T T T T T T T T 1
0 0.5 1 1.5 2 2.5
Wp/Pa

Fig.5 fp - Wp/Pa Relation (aC =1 kgf/cmz; 1 kgf/cm2 = 98 kPa)

The f_ - W /P_ relations calculated from the experimental data are shown in
Figs.42 tBrou 7 for each confining pressure 0, 1 (98kPa), 3 (294 kPa), and 6
kegf/cm® (588 kPa). It can be understood from these figures that there seems to
be a similar relation between f_and W /Pa under the same confining pressure,
irrespective of the different W/B ratiog.

Utilizing the averaged value Wp eak of plastic works corresponding to the
peak values of f_ in the f - W /P ?e?ations under the sapme confining pressure
(in Figs.4 through T, thepcorrgla%ion between (W eak " W eak)/Pa and oC/P is
checked in the 1n -,ln diagram (Fig.8). Here, W gg 1s tgg averaged plastic
work (0.345 kgf/cm® = 33.8 kPa) 2correspondingpgo %he peak value of f _ under
confining pressure o _ = 0 kgf/cm“. A strong linear correlation can be geen in
Fig.8 and, thus, writ%en mathematically as
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Fig.6 f, - W /P, Relation (o, = 3 kegf/cn?; 1 kef/cn® = 98 kPa)
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oc=6 kgf/cen®

O W/C=0. 45
A W/C=0. 55
O W/ Cc=0.170
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0 1 2 3 4 5

Wp/Pa

Fig.7 f, - W /P, Relation (o, = 6 kegf/cm?; 1 kef/cn? = 98 kPa)

P+ W

a ppeak’ (25)

W P (S

ppeak ~

where P and ¢ = constants. Using the method of least squares, P and 2 are
estimated as 0.099 and 0.867, respectively.

On the other hand, the values of paramﬁter v for confining pressures 0. =
0, 1 (98), 3 (294), 6 (588), and 12 kgf/cm“ (1176 kPa) are determined by a
curve-fitting method so that the curve calculated by Eq.(22) results in a good
agreement with the f W /Pa relations in Figs.4 through 7. The variation of 7
values is shown in Fgg.s ghere a strong linear correlation between 7 and ¢ can

be seen. It can be written mathematically as ¢
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Fig.8 ln((Wppeak - wppeak)/Pa) - ln(oC/Pa) Relation
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Fig.9 Variation of Parameter y
Table 3. Model Parameters
Constant Units Value
n — 165
m1 —_ 0.
a —_ 0.31 fé
P — 0.099
QO — 0.867
wppeak kegf/cm 0.345
7] cm”/kgf 0.1012
79 — 2.41

Note: fé = 338 kgf/cmg for W/C
216 kgf/cm® for W/C

non

0.45; 273 kgf/
0.70; 1 kef/cm

Em

2 for W/C = 0.55
= 98 kPa

— 167—



T =710, * 79 (26)
where 7, = 0.1012 cn’/kgf (1.033x10™° kPa™l), and 7, = 2.41.
The material parameters, such as for failure and loading, determined in the

present study are summarized in Table 3.

(D) Parameter k in Plastic Potential Function G

The value k to define the plastic potential function G is calculated by
using the plastic volumetric strain increment and square root of the second

o

—

]

4l O wW/C=0. 45
A W/C=0. 55
=4 O W/C=0. 170

= 107
1
fe}
o~
1
1 oc¢=0 kgf/em?
o T T T T T T T T T 1
0 40 80 120 160 200
f
p

Fig.10 Variation of k-Value in Hardening Region

0 40 80 120 160 = 200

Fig.11 Variation of k-Value in Softening Region
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invariant of incremental plastic strain tensor that are obtained from experimen-
tal data. The variations of k values before and after the peak stress (nl =
165) are e§amined for each confining pressure, 0, 1 (98), 3 (294), 6 (588), “and
12 kegf/cm® (1176 kPa). As an example, the variations of k values before and
after the peak stress are shown in Figs.10 and 11, respectively, for a confining
pressure o, = 0 kef/cm”.

From these figures, the following characteristics can be concluded: In the
hardening region (before the peak stress), the parameter k has a negative value
of approximately -1 around f_ = 90, and gradually increases in magnitude up to
the value more than -10, as %he loading parameter f_ approaches the peak value
(fp = 165). On the other hand, in the softening reggon (after the peak stress),
as® the loading parameter fp decreases from the peak value, it shows a mild

P S it

fr
5
(a) Hardening Region
K
parad®2
k.,
k»
fr
0 100 n.=165

(b) Softening Region

Fig.12 Idealized Variation of k-Value
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reduction between the values of 2 and 1, after a sudden reduction of positive
k-value at the peak stress. A negative value before the peak stress, a large
negative/positive value 1in the vicinity of peak stress, and a positive value
after peak stress are related to plastic compaction, little plastic volumetric
change, and dilatancy, respectively.

In the present model development, the variations of parameter k in the
hardening and softening region are assumed from the experimental data, as shown
in Fig.12, and incorporated into the model simulation. The values of k1 (the
value of parameter k at f_ = nl) and k., (the value of parameter k at f "= 100)
in the softening region arb presented in Table 4, for all 13 sets of eXBerimen—
tal data.

Table 4. The Values of Parameter k
Water/ |k values k values k values k values k values
Cement |under 00 g under 909 under 00 g under U=y under 0c=2
Ratio 0 kgf/cm 1 kef/cm®] 3 kgf/cm“| 6 kgf/ém“| 12 kgf/cm
W/C
Ky R p R Ry R kg LR Ry KKy
0.45 1.6 } 1.1} 2.0} 1.2 2.0 1.5 2.2 | 1.8 - -
0.55 1.2} 1.1 1.7 1.1}2.0] 1.3 2.0} 1.6 3.5| 2.0
0.70 2.0 1.4 2.0} 1.6 2.1 1.6 3.0} 2.0 - -
Note: 1 kgf/cm2 = 98 kPa
5. MODEL SIMULATION AND EVALUATION
Using the model parameters determined in the previous section, the model

simulation has been performed for the experimental data, to assess a representa-
tion capacity of the model. The axial strain e,/lateral strain £y = &g - axial
stress o, relation and the axial strain &, - volumetric strain ¢ rela%ion are
shown in~ Figs.13 through 15, where the solid lines and symbols represent the
model simulations and experimental data, respectively. In these figures, the
compressive stress and strain are taken as positive. The model can simulate
well not only the axial strain but also the lateral strains. This means that
the plastic potential function G has been correctly assumed in the modeling.

6. CONCLUDING REMARKS

In this paper, a strain-space-based plasticity model has been proposed to
represent the softening as well as hardening behavior of concrete materials
under low lateral confining pressure. Unlike the stress-space plasticity theory
based on the Drucker's postulate, the strain-space plasticity theory based on
the Il1'yushin's postulate can give a clear definition of 1loading (hardening,
softening, and perfect plasticity), neutral loading, and unloading.

The general strain-space formulation, which is of great advantage in repre-
senting the softening behavior of concrete and in application to the finite
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0, 102 kgf/en?)

+ +t
S

_4+

wW/C=0. 45

O oc=0 kgf/cn? )
O oc=1
D oc=3
+ g¢=6
€y = &g (x 10—2) £y (x 10_2) LI
£2 O d 7

(a)

(b) Volumetric Strain - Axial Strain Relation

Fig.13 Model Simulation (W/C = 0.45; lkgf/cm2 = 98 kPa)

element elastic-plastic analysis of RC structures, has been presented in some
detail within the framework of the associated and nonassociated flow rule, by
introducing the loading function F and the plastic potential function G, which
are functions of the strain, plastic strain, and loading parameter.

The incremental stress-strain relations have been given in a tensorial form.
Use of the Lade type of loading function and newly defined plastic potential
function has been made in the incremental stress-strain equation.

The proposed model requires only a few parameters. These are elastic modu-
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Fig.14 Model Simulation (W/C = 0.55; 1lkef/cm? = 98 kPa)

1li K and pg; failure surface parameters, n,, m, and a; loading parameter f and
parameter k related to the plastic potentlal function G.

Using the triaxial compression test data available, the model parameters
have been determined with relative ease, and then model simulation has been
performed to demonstrate the representation capability of the model.

Although the capability of the proposed model was demonstrated by being
applied back to the experimental data that are used to determine the model

parameters, 1t should be noted that unified parameter functions such as wppeak
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and 7 given by Egs.(25) and (26) are used for all back-predictions of three
types of concretes. Even though an f -W relation in Eq.(22) was exactly fitted
with the experimental data, the relatgong shown in Figs.13 through 15 could not
be obtained unless a plastic potential function was moderately defined.

It has been confirmed that the proposed model can sufficiently predict the
softening as well as hardening behavior of concrete materials under low 1lateral
confining pressure. The two-dimensional or three-dimensional softening behavior
of concrete under varying confining pressures, nonproportional loadings and
unloadings are now undertaken as a further research work.
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