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SYNOPSIS

This paper aims to develop a RC discrete crack model under reversed cyclic loading, which is composed
of a reinforcement part and a concrete part. The concrete model is proposed to be based on the
generalized contact density model which has been examined under various sorts of loading paths and
the criterion of crack occurrence. The reinforcement part is based on the steel strain-slip model. The
cyclic steel strain-slip model after yielding is formulated by considering both inelastic and plastic zones
in addition to dealing with the effect of adjacent cracks. The versatility of the discrete crack model to
the structural crack planes is mainly checked through the comparison of RC plates. The accuracy for
estimating the shear capacity of a RC crack is also verified by pure shear tests such as push-off tests.

Keywords: RC discrete crack model, reversed cyclic loading, RC plates, shear transfer , steel slip,
shear capacity

T. Mishima is a research engineer at Technical Research Institute, Maeda Corporation, Tokyo, Japan.
He received his Doctor of Engineering degree from the University of Tokyo in 1992. His research
interests include nonlinear FEM analysis of reinforced concrete members, shear transfer mechanism
along crack surfaces and construction joints, and thermal stress analysis of mass-concrete structures.

K. Maekawa is an associate professor in the Department of Civil Engineering at the University of
Tokyo, Tokyo, Japan. He received his Doctor of Engineering degree in 1985 from the University of
Tokyo. His research interests include constitutive models for concrete, cracks and reinforced concrete
in-plane elements, structural analysis of reinforced concrete and development of high-performance
concrete.

— 115—



1 INTRODUCTION

Finite-element models of reinforced concrete structures can largely be divided into smeared crack
models, which are formulated based on the average behavior of members, and discrete crack models,
which are formulated based on individual cracks[1]. Finite elements based on a smeared crack model
are suitable for members in which many cracks occur and the stress gradient is relatively gentle, such
as the wall portions of shear walls. A discrete crack model is suitable for members whose behavior
is governed by a small number of cracks or for the purpose of expressing the behavior of joints of
members. Shin et al.[2] and Shin[3] successfully analyzed the restoring force characteristics and the
ductility of shear walls accurately by applying a smeared crack model to walls and applying joint
elements to joints in shear walls. These joint elements can be obtained by modeling the slippage[4] of
reinforcing steel out of a crack surface and the mechanism of stress transfer[5] due to the interaction
of aggregate along the crack surfaces. A major characteristic of these joint elements is that they can
be applied to cyclic loading[3].

The model proposed by Shin et al. has already been verified by the measurement of the local behavior
of joints in shear walls[2], and the model is highly reliable. The model, however, is not designed
for application to cases where reinforcing steel and cracks cross at some angles. In addition, the
deformation history expressed by the model was verified on the assumption that either the crack
width or the shear slip varies substantially and variations of the other displacement components are
relatively small. If the applicability of the model is to be expanded, it is desirable that it be expanded
so that it can be applied to cracks in the ordinary portions of reinforced concrete members.

The goal of this study is to generalize material models constituting the proposed discrete crack model
on the basis of the results of a uniaxially reversed cyclic loading test [6] on reinforced concrete plates,
which was newly carried out in this study, designed to investigate behavior at the joint element level.
When a discrete crack model is applied to cracks governing the global behavior of members, the crack
surface and reinforcing steel often cross at some angle and the deformation process of the crack surface
often include a complicated mixture of shear slip and opening. Slip characteristics of reinforcing steel
might be affected by adjacent cracks. These factors have been considered in constructing material
models.

As a result, the steel strain-slip model[3] proposed by Shin was expanded so that it could be applied
to diagonal reinforcement. At the same time, a model applicable to reversed cyclic loading after
yielding of reinforcing steel, in which the ranges of slip back during and after plastic deformation
due to compression, was developed. With respect to a concrete model, the concept of Li-Maekawa’s
contact density function[5] was used to construct a generalized contact density model[7] with enhanced
accuracy in shear-slip-opening modes under small restraint. Thus, the applicability of the discrete
crack model including cracking conditions was expanded.

2 MATERIAL MODELS CONSTITUTING THE RC DISCRETE CRACK MODEL

2.1 Basic model of discrete crack

Figure 1 illustrates a discrete crack considered in this study. The crack considered here is a model of a
crack in a reinforced concrete member and a joint of reinforced concrete members. The angle between
reinforcement and the crack is represented by 8. Uniform distribution of reinforcement in the discrete
crack section is assumed so that the reinforcement can be considered as a virtual continuum, as with
a smeared crack model.

With respect to the mechanism of resistance of a crack in reinforced concrete to external forces,
stresses transferred in concrete due to the interaction of the crack surfaces and longitudinal stresses
in reinforcement are considered here. The constitutive laws for reinforcing steel and concrete cracks
are assumed to be independent. It is further assumed, based on the assumption of infinitesimal
deformation, that axial forces in reinforcing steel are always in the direction of the reinforcement axis
before deformation. This assumption is equivalent to ignoring shear transfer in reinforcing steel (dowel
action).
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The discussion on the proposed model in this chapter deals only with discrete cracks in isotropically
reinforced concrete. It is, however, easy to expand the model to make it applicable to cases where
multiple reinforcing bars are laid in multiple directions, by assuming that the constitutive laws of each
reinforcing bar are independent.

2.2 Stresses at discrete crack surfaces and their equilibrium

It can be considered, from the basic assumptions, that the stress {o;} = [r,o]” along a discrete crack
surface is the sum of the stress {o;.} due to concrete and the stress {o;s} due to reinforcing steel.
Thus,

{aj} = {ch} + {st} = [TCaUC]T + [Ts,as]T ) (1)

where 7 : shear stress at discrete crack surface
o : normal stress at discrete crack surface (tension=positive)
T.: shear stress in concrete
o.: normal stress in concrete (tension=positive)
Ts: shear stress due to reinforcing steel
0,: normal stress due to reinforcing steel (tension=positive).

Since axial forces in reinforcing steel are in the direction of the reinforcement axis before deformation,
if the reinforcement ratio (total sectional area of reinforcing steel passing through crack surface + area
of crack surface) for a crack surface is represented by p* , the steel stresses 75 and o, can be expressed
as follows:

Ts = P ogscosl , 05 =p o.ssinb, (2)

where o, is axial stress in reinforcing steel.

The relationship between the reinforcement ratios denoted by p for a section perpendicular to rein-
forcing steel and p* can be expressed as follows:

p* = psinf. (3)
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From the above, the total stresses 7 and o can be calculated from the axial stress 0,5 and the concrete
stress 7.,0.:

T =T, +pogscosfsing , =0, +pogssin?é. (4)

2.3 Compatibility conditions for displacement

It is assumed that the displacement {u} of a crack surface in reinforced concrete can be represented
by the shear slip § and the opening w of the discrete crack:

{u} = [8,0]". (5)

It is generally known that in cases where deformed bars are used for reinforcement, the widths of cracks
near the reinforcing bars are very small and become larger as the distance from the bars increases.
This means that the widths of local cracks in a section are not uniform (Fig.2)[8]. Since the model
considered here is formulated on the basis of average behavior in a section, the opening w of a discrete
crack can be regarded as the average opening in the section.

In this study, steel stress is given as a function of the slip S of steel out of a discrete crack surface. To
determine the steel stress {o;,} for the crack displacement {u} , therefore, it is necessary to determine
the relationship between the steel slip S out of the crack surface and the discrete crack displacement
{u} . By assuming that the steel slip S out of the crack surface equals half of the crack opening w
when reinforcement is perpendicular to the crack surface, the steel slip S out of the crack surface was
defined, using the opening w, as follows:

$=w/2. (6)

It is estimated that in cases where reinforcing steel passes through a crack surface diagonally, the
steel develops local shear deformation if displacement occurs. Nevertheless, because the crack width
is sufficiently small as compared with the diameter of reinforcing steel, the steel in concrete can be
considered to continue to act as a linear element after the occurrence of deformation. By ignoring the
deformation of concrete, compatibility conditions for infinitesimal deformation shown below can be
derived.

S = (6cosf + wsinf)/2. (7
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If 6 = n/2 is substituted in Eq.(7), Eq.(7) becomes identical to Eq.(6) and hence the equation is
applicable to orthogonal reinforcement.

2.4 Steel slip model

The steel slip model for discrete cracks considered in this study is based on the steel strain-slip models
proposed by Shima et al.[4] and Shin et al.[3]. The model reflects bond deterioration of reinforcement
in any direction and is designed to accurately express the behavior of reinforcing steel after being
subjected to a high degree of plasticity under reversed cyclic loading. Since the details of the model
will be given in Chapter 3, the procedure for calculating steel stress from the steel slip S out of the
crack surface will be explained here. Hereafter § will be referred to as the steel slip for convenience.

The steel strain-slip model is formulated on the basis of the normalized steel slip denoted by s[4] which

was derived by normalizing the steel slip .5, considering the influences of steel diameter and concrete
strength. Generally, the model can be expressed as a function of steel strain ¢, at the crack:

s = s(€,), (8)
where s = (5/D) - Ky,

Kye = (f1/20)5

D : diameter of reinforcing steel

fL: concrete compressive strength (MPa)
s(es) : function reflecting the history of steel strain ¢,.

For the purposes of this study, Eq.(8) solved for s is used in the following form:

€s = €5(8)- 9)
Generally, the steel stress-strain relationship can be expressed as follows:

Tas = Tas(Es)- (10)

Steel stress o, , therefore, can be obtained by calculating the steel strain ¢, from the steel slip S by
use of Eq.(9), and then using Eq.(10). Thus, the axial stress in reinforcing steel is a unique function
of the steel slip s , and can be expressed as follows:

Oas = Fs(s), (11)

where F(s) is a nonlinear function dependent on the history of the steel slip s. In this study, Kato’s
model[9] is used as the model of the steel stress-strain relationship. The accuracy of the model is not
discussed here with the understanding that it has already been demonstrated.

2.5 Concrete model

(a) Before cracking

Assuming that concrete at a discrete crack surface before cracking behaves elastically, concrete stresses
7. and o, at the discrete crack surface were defined as follows:

{;Z}=[G6/e Eg/z]{f;} (12)
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where E, : Young’s modulus
G, : shear modulus
£ : effective height of crack surface.

Generally, thickness is not considered in a discrete crack model. The effective height ! of the crack
surface, therefore, should be 0. However, if £ = 0 is assumed, the stiffness term in Eq.(12) becomes
infinite. Hence the effective height of the crack surface was represented by ¢ , and a value roughly
corresponding to the maximum aggregate size for concrete was used for purposes of numerical analysis.

(b) Cracking conditions

It can be considered that while a discrete crack surface is purely in tension, that is, while only normal
stress o, is applied, cracking occurs when o, has exceeded the tensile strength f; of concrete. On the
other hand, there are still many unknowns about cracking conditions under simultaneously applied
shear stress and normal stress. This is particularly true in cases where a great compressive stress is
being applied on a discrete crack surface.

In this study, the cracking conditions were expressed, on the basis of the results of the push-off test[10],
on plain concrete specimens conducted by Lim et al., as follows (Fig.3):

,_ [ 0.14 - 1370/ f!
Tc/fc = { 0.14 - 0.140c;ft ) (13)

Since Lim et al. did not refer to cases where tensile stress is applied on a discrete crack surface, the
failure criterion for cases where normal stress is not applied on the discrete crack surface (Point A)
and the one for cases where only tensile stress is applied on the discrete crack surface (Point B) were
interpolated linearly, as shown in Fig.3.

Cracking was taken as having occurred when concrete stress calculated from Eq.(12) entered the
shaded zone. Thereafter, a universal contact density model proposed by Bujadham et al., explained
below, was used.

(c) After cracking

As a model of stress transfer at a surface of a crack in concrete after cracking, a model proposed by
Bujadham et al., a generalized version of Li and Maekawa’s contact surface density function[5], was
used. The model expresses (1) friction and local plastic deformation at contact points on the crack
surface, (2) progressive fracture at contact points, and (3) anisotropic plastic behavior at contact
points individually in a highly generalized manner. For details of the model, see Reference [7].
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The universal contact surface density model of Bujadham et al., like Li-Maekawa’s model, is based
on a contact density function, and the model has improved accuracy in deformation modes in which
both the closing of cracks and shear slip occur. If the normal and tangential contact force densities of
a unit crack element are represented by Z, and Z, respectively, then concrete stresses 7. and ¢, can
be given, as functions of crack displacement é§ and w , as follows:

/2
/ {Z0(6,0,0) sin 8 + Z,(6,,8) cos §)}d6
2

T =
_.7(/
/2

oo = / | (n(60,0)cos 0~ 7,(5,0,0)sin0)) a0 (14)
—-7rf2

If the normal contact stress and the tangential frictional stress of a unit crack element are represented
by 0con and 7y, , the contact force densities Z, and Z; can be expressed as follows:

Zn = Aiocon(b,w,0)K(w)(8)
Zy = Aimpric(8,w,0) K (w)Q(8), (15)

where A; : contact surface ratio
K(w): contact ratio of crack surface
() : contact density function.

Since concrete stress in this model is given explicitly as a nonlinear function of crack displacement,
tangential material matrices of stiffness are not necessary for stress evaluation. Tangential material
matrices may be necessary, however, in obtaining an equilibrium solution. For example, when the
crack displacement corresponding to a given stress is to be calculated, tangential material matrices
may be needed to obtain an equilibrium solution through iterative calculation. If the convergence of
the solution is guaranteed, tangential matrices do not need to be exact[11]. Since the differentiation in
Eq.(14) is very complicated, for purposes of this study, the following approximate tangential material
matrix was used in nonlinear iterative calculation:

/2
Dy = / A @)(Basin® 0~ G cos” (0)d0
—rf2
/2
Dy = ) A¢K (w)(Ect cos® 8 + Gt cos fsin 6)Q(0)d6
—-7/2
/2 .
Dy = / / ALK (0)(Eet c0520 + Gy sin? )Q(6)d0
-r/2
Dy = D, (16)

where Dy1 = dr./dé , D1z = dre/dw
D21 = doc/dé 5 D22 = dac/dw
E. : tangential stiffness (material constant) of individual fine crack element
in the normal direction
Gt : tangential stiffness (material constant) of individual fine crack element
in the tangential direction.

2.6  Material matrices for reinforced concrete discrete cracks

Since the material models used are nonlinear, it is necessary to use repeated calculation to obtain
solutions. The basic constitutive equations in the incremental form are given below.
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The reinforcement model can be written, in the incremental form, as follows:
do,s = DsdS, (17)

where D, = (dFy/ds) - K¢./D . Substituting the incremental form of Eq.(7) in Eq.(17) and
expressing it in matrix representation using Eq.(2), we obtain

{dojs} = pDysin /2 - [R(O)][R(6){du} = [Djsl{du}, (18)

where [R()] = [cosf,sinf] . The incremental form of the concrete model can be written as

dre

do,

D11d6 + D]zdw
D21d6 + D22dw. (19)

Expressing the above equation in matrix representation, we have
{dojc} = [Dj;c){du}. (20)

By substituting Eq.(18) and Eq.(20) in the incremental form of Eq.(1), the following constitutive
equation for discrete cracks is obtained:

{do;} = [D;|{du}, (21)

where [D;] = [Dj] + [Djs] . Since [D;] can be considered to be a tangential material matrix for
discrete cracks, it can be represented by components as follows:

(D;] = Dyy + pDscos?0sin8/2 Dya + pD,cosfsin /2 (22)
337 | Dy + pD;cosfsin? /2 Dyy + pD,sin®8/2 ’

3 _GENERALIZED STEEL MODEL FOR DISCRETE CRACK IDEALIZATION

The steel slip model employed here is based on the steel strain-slip model[4] proposed by Shima et
al.. However, their model was derived on the basis of an experiment conducted under ideal conditions
(for example, the possibility of the occurrence of a splitting crack in concrete at the loading end is
minimized). In this study, we are going to carry out a test of RC plates subjected to reversed cyclic
loading and to reconstruct a steel model based upon the experimental results.

3.1 Test of RC plates

(a) Specimens and test conditions

As shown in Fig.4, the specimens used in the test are reinforced concrete plates, (thickness: 100 mm)
each of which has a 1,000-mm-long, through-depth crack running through the center of the plate in the
direction perpendicular to the axis of loading. The notch running through the center of the specimen
is intended to limit the location of the crack. The crack, which is induced by the notch, is the object
of measurement. As shown, each specimen is provided with another set of notches 150 mm from the
center line of the specimen. The purpose of this arrangement is to ensure an adequate stiffness of the
crack region, thereby achieving consistent measuring accuracy.

In each plate specimen, two layers of reinforcing bars are arranged in orthogonal directions. The angle
between the test crack surface and the direction of reinforcement is a major parameter here. Outside
the test zone are anchoring zones with slits. Specifications and test conditions used are shown in
Tables 1 and 2.
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Table 1  Specimens
Concrete X-steel bar Y-steel bar
Name | compressive Steel Angle | Reint. Steel Angle | Reinf.
strength | diameter ratio | diameter ratio
(MPa) (deg) | (%) (deg) | (%)
No.1 37.6 D10 90 1.1 D10 0 1.14
No.2 40.4 D10 45 1.1 D10 45 1.14
No.3 38.6 D10 30 1.1 D10 60 1.14
No4 39.2 D13 45 2.0 D10 45 1.14
No.5 24.5 D10 30 1.1 D10 60 1.14
No.6 26.2 D13 45 2.0 D10 45 1.14
Table 2 Mechanical Properties of Reinforcing Steel
No.1-4 No.5,6
D10 [ D13 | D10 [ D13
Yield stress (MPa) | 403 | 409 | 414 [ 429
Young modulus(GPa) | 183 | 197 | 192 | 200
Strength (MPa) 536 | 561 | 550 | 562
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(b) Loading and measuring method

Uniaxial reversed cyclic loads were applied to the specimen in the direction perpendicular to the
cracking direction (Fig.5). In the loading, stresses occurring in concrete near the crack as well as
in reinforcing steel were varied by using different angles of reinforcement in the specimen. Jacks on
independent hydraulic systems were installed on the tension side and the compression side, and the
hydraulic systems were switched during reversed cyclic loading according to the direction of loading.
The tournament method[12] adopted by Aoyagi and Yamada was used in tensile loading. Four jacks
were used in compressive loading, and the hydraulic pipes for the jacks were arranged serially so that
the jacks produced equal loads, thereby applying uniform in-plane stresses to the specimen.

Strain gauges were attached to all reinforcing bars encompassing the test cross section of the specimen
so that stresses in the reinforcing steel and concrete along the test cross section could be distributed
accurately (Fig.4). Slip displacement and opening displacement at the crack were measured with
noncontact-type precision displacement gauges installed on the test cross section of the specimen at
an interval of 50 mm (Fig.4). Measurements taken at three points each on both sides of the specimen
were averaged to obtain the relative displacement at the test cross section.

3.2 Steel strain-slip model for monotonic loading

(a) Reinforcement perpendicular to crack

Figure 6 illustrates the steel strain-slip relationship for Specimen No.1 before yielding of reinforcing
steel. The figure also shows Shima’s model for purposes of comparison. It shows that the slip of
reinforcing steel in Specimen No.l is considerably greater than the slip value corresponding to the
same strain value based on the Shima’s model.

When reinforcing steel passes through a crack surface in reinforced concrete, bond deterioration near
the crack surface is inevitable[13]. It is therefore necessary to consider its influence in modeling the
strain-slip relationship for reinforcing steel. Shin defined bond deterioration zones as 5D zones from
the crack surface and assumed that bond distribution in these zones is linear. Shin’s model is actually
an expansion of the Shima’s model. The Shin model agrees well with test results for Specimen No.1.
It can be considered that under the test conditions employed here, the lengths of bond deterioration
zones remain constant regardless of strains in reinforcement. The model used for monotonic loading

is shown in Fig.7.
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Niwa et al. pointed out that a steel strain-slip model for the monotonic compressive loading of
reinforcing steel should differ from a steel strain-slip model for tensile loading[14]. Factors affecting
this are thought to include the relationship between the bleeding direction and the reinforcement
axis direction, settlement of concrete, and Poisson’s ratio for reinforcing steel in compression. In cases
where compression is fully transferred through a surface of concrete, reinforcing steel at a discrete crack
in a reinforced concrete member is rarely loaded monotonically. For the purpose of simplification
of the model, therefore, it was assumed that bond characteristics under monotonic loading on the

compression side and the tension side are identical, and similar steel strain-slip models were used for
positive and negative loading.

(b) Reinforcement diagonal to crack

As mentioned earlier, when orthogonal reinforcement is considered, the influence of bond deterioration
near the crack surface cannot be ignored. In the case of diagonal reinforcement, too, local failure is
likely to occur in concrete near the crack surface. Figure 8 is a plot of the relationship between the
normalized steel slip s (= §/D - Kj,) for the reinforcing steel in each specimen obtainable from the
steel slip S, which can be calculated from Eq.(7), and the steel strain €, at the crack within the
steel’s elastic range. The relationship was plotted in order to evaluate the influence of the angle of
reinforcement 8 and the relative displacement &, in the direction perpendicular to the reinforcement on
the steel strain-slip relationship. As shown, the plot roughly follows Shin’s model for perpendicular
reinforcement though there are some variations among the reinforcing bars. These data show no
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significant influence of # or 65 on slip characteristics. The fact that Fig.8 includes data on the low-
strength specimens (No.5 and 6) indicates that the influence of concrete strength can be evaluated by
means of K. . Figure 8 shows the relationship between the normalized steel slip and the steel strain
at and after yielding of reinforcing steel. Like the relationship before yielding of reinforcing steel, the
relationship shown here agrees well with the Shin’s model for all reinforcing bars considered.

From the above, it can be concluded that under the test conditions employed here the bond deterio-
ration zones can be defined as the 5D zones along the reinforcing steel, regardless of the angle of steel
and the relative displacement at the crack surface.

3.3 Reversed cyclic model of reinforcement before yielding

Figure 9 shows the steel strain-slip relationship for Specimen No.1 before yielding of reinforcing steel.
Calculated values shown in the figure were obtained from the model proposed by Shin[3]. As shown,
the calculated relationship before yielding of reinforcing steel agrees well with Shin’s model. Hence,
the model is used here without modification. The cyclic model is shown in Fig.10.

3.4 Cyclic model of reinforcement after yielding

Figure 11 shows the steel strain-slip relationship after yielding of reinforcement. Note that strain in the
reinforcing steel subjected to a tensile deformation of up to about 30,000 ¢ (when all reinforcing bars
are thought to be in the strain hardening range) recovers to about 5,000 2 after compressive loading.
This means that the reinforcing bars do act as compression members during compressive loading.
This is therefore an important check item in modeling the steel strain-slip relationship after yielding
of reinforcement. Shin uses the same cyclic model for both preyielding and postyielding behavior.
Although the behavior during unloading on reinforcing steel that has undergone high plasticity is
expressed consistently by the Shin’s model, the model leaves room for improvement in ranges in which
”slip back” predominates. In this section, this highly plastic region is highlighted, and an attempt
will be made to expand the applicability of the Shin’s model so as to construct a generalized discrete
crack model.

(a) Modeling concept

As shown in Fig.12, the distribution of steel strain after yielding of reinforcing steel is thought to be
discontinuous at the boundary of the steel yield region and the elastic region (yield boundary point).
This suggests that in order to define the relationship between steel strain and steel slip after yielding
of reinforcement, it is more reasonable to model the relationship in the steel yield region and the
elastic region separately. Here steel strain in the cracking section, strain on the yield region side of the
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yield boundary point, and strain on the elastic region side are defined as €5, €55 and 5., Tespectively.
Similarly, steel stresses are defined as 04, 05p and o, .

It is assumed that the normalized steel slip s can be expressed as the sum of the slip sp; in the yield
region and the slip s, in the elastic region.

§ = 8pl + Se. (23)
The slip s,; and s, are modeled separately below.
(b) Modeling the yield region

If the deformation of concrete is ignored, the steel slip can be defined as the steel strain integrated
along the reinforcement axis. If the distribution of strain in the yield region is assumed to be linear,
the normalized steel slip s, can be expressed as follows:

Es+e¢
Spl = _.2_”‘ -8y (Kg/D), (24)

where £, is the length of the yield region from the crack. It is assumed that the yield region expands
only when a new loading cycle begins, and it does not change during unloading or reloading.
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Ideguti et al. pointed out{15] that the strain ¢, at the yield boundary point during unloading and
reloading is almost univocally related with the strain ¢;, at the crack surface (Fig.13). In this study,
this relationship is considered and the following relationship between ¢, and €, is assumed:

Esp = Esh — ﬂ(emax - 53), (25)

where f is a parameter representing the gradient of the line shown in the figure, and 8 ~ 1.0 . Here,
this parameter is regarded as a material parameter. By substituting Eq.(25) into Eq.(24), we obtain

Spl = (1 +:B)€s +2Esh - ﬁemar . fy . (-Kfc/D) (26)

If Kato’s model[9] is applied to the steel stress-strain relationship in the yield boundary region, the
steel stress o5, can be calculated from the steel strain e,y (Fig.14). Thus, the steel stress can be given
as follows:

— 128—



500(»]
+ 4000 p
- g
'E: 3000 - | O .
o 2000~ (n
1000 -
B

mn=J
on=)h
an=1]
anzy

en=1|
on=]3

T ] 1 1
1000 2000 3000 4000 5000
esh-esp (u)

Fig.13  Relationship between ¢, and €5,

/y" —

Fi.g.14 Steel Strain-Slip Model (Kato’s model)

1) During unloading (@ in Fig.14)
Osp = 0y — Es(€sn — €sp)

2) During negative loading (®)

a(a —1)
—(’—”}f-)(ssp—esh+ey)+a—1 ’

Osp=—fy |a—

where Eg = —(E,/6) - logyo 10(¢,, — €y) , a = Es/(Es — Ep)

3) During re-unloading (@)
Osp = Opm + Es(€sp — €pm)s

where 0p,,, : minimum value of o, in the loading history
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€pm : minimum value of €,, in the loading history

4) During reloading (@)

a(a—1)
—(Ejf)(sy—esp+s,,m)+a—-1

Osp = Oy + Opm + fy [a - (30)

(c¢) Modeling the elastic region

It is assumed that a hysteresis obtained by simplifying Shima’s basic model[4], as shown in Fig.15, is
applicable to the relationship between the steel strain es. and the steel slip s, in the elastic region.
Since the elastic section of reinforcing steel is rather distant from the crack surface, it was assumed
that the influence of bond deterioration does not reach the elastic boundary point. Thus, the following
equations can be derived from the Shima’s model.

1) During unloading ()
Se = 3; - 085(53/ — 535)(2 + 3500(€y - 836))’ (31)

where s = £,(2 + 3500¢,)

2) During negative loading ((3)

*

S
se=0.155; + 1152 -, (32)
y

3) During re-unloading (@)

Se = Sem + 0.85(€c — £em)(2 + 3500(ce — £em)), (33)
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where s.,, : minimum value of s, in the loading history
Eem : minimum value of €, in the loading history

4) During reloading (®)

*
Sy~ Sep

Se = Sep + Eey (34)

€y
where S¢p = Sem — 0.85¢em (2 — 3500cem ) -

Generally, the steel stress-strain relationship after yielding of reinforcing steel shows discontinuity.
Hence the steel strain distribution may be discontinuous, but the steel stress distribution does not
become discontinuous. Therefore, considering the continuity of the steel stress, o5 = 0sp ,

Ese = Ospl Es. (35)

Thus, €, can be calculated from &y, using Eqs.(27) to (30). This means, considering Eq.(25) and
Eqs.(31) to (34), that the steel slip s has now been given as a function of the steel strain ¢, at the
crack surface.

(d)Length of the yield section

Now that the slips se and s for a given history of the steel strain ¢, have been formulated, it is
possible to calculate the steel slip s by totaling steel slips in the elastic region and the plastic region
using Eq.(23). Then, the length of the yield section £, can be obtained as follows. If the steel slip
immediately after the transition from loading to unloading is represented by s, , then, by assuming
€5 = Emar , We have,

Emaz T Esh

su =ty - (Kz/ D) 2

* (Smaz — s3) + 83 (36)

To achieve the continuity of the model, the steel slip immediately after the transition to unloading
must be equal to the steel slip before unloading. Hence, 8y = Smaz . Solving Eq.(36) for £, , we obtain

b, = 2" "% (D/K,). (37)

Emaz = €sh

Since the Shin’s model gives smax as a function of €pqz , the length £, of the yield section can be
calculated from émq; . By substituting Eq.(37) in Eq.(26), the steel slip s, can be given as follows:

8

= (1 +ﬂ)53 + Esh — ﬁemuz

P Emazr + Esh

(Smaz = 55)- (38)

Although 3 takes a value of about 1.0 as mentioned earlier, it has been found that it is a preferable
way to treat 8 as a function of stress history if a better agreement with the results of the reinforced
concrete plate test described in 3.1 is to be achieved. In this study, § is calculated using the following
equation:

B= Umaz/oyy (39)

where 0ynqz is the maximum stress in reinforcement steel under tensile loads.

—131—



Reinforcing bar

P
-

| |
? |
Adjacent crack | Main crack | Adjacent crack

-

0

Fig.16  Uniaxial Reinforced Concrete Member in Tension

3.5 Model of interference of adjacent cracks

If the state of stress around a discrete crack surface is close to uniform and distances from adjacent
cracks are small, then the influence of adjacent cracks cannot be ignored. In this section, interference
of adjacent cracks is investigated through parameter analysis using the steel strain-slip-bond stress
relationship[4] proposed by Shima et al.

If the distance between a main crack and an adjacent crack is defined as 2¢,, assuming a case where
the tensile load P (in the elastic range) is applied on a crack surface, as shown ih Fig.16, the following
boundary conditions for bond hold:

s = 0 at z=10 (40)
£s P/(A;E,) at z={,, (41)

where A, : sectional area of reinforcing steel
E, : elastic modulus of reinforcing steel.

The steel strain-slip relationship under monotonic loading in cases where there is a second crack near
a main. crack can be determined analytically by solving the basic equations for the bond under the
above conditions using the steel strain-slip-bond stress relationship of Shima et al. as the constitutive
law for the bond of reinforcement. Monotonic loading before and during yielding of reinforcement
was analyzed using the steel diameter D and the crack interval 2{.. as parameters, and the result
of the analysis was compared with a model corresponding to the case where anchorage is sufficiently
long, that is, the Shin’s model. The comparison revealed that the influence of adjacent cracks can
be approximately expressed by introducing a reduction factor a(£..) that does not depend on steel
strain (Fig.17). Then, the steel slip s, under monotonic loading that reflects the influence of adjacent
cracks can be expressed as follows:

ser=a-s=a-(S/D) Ky, (42)

where a = 1 — exp(—(0.0065¢,/D + 0.5)3) and « < 0.087£,./D .

The crack interval £,-(8) in the case where reinforcing steel and the cracks cross diagonally is equal to
a distance obtainable by converting the crack interval £, for the direction of reinforcing steel. That
is,
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£(8) = £,/ sin . (43)

In analyses based on discrete crack models, the locations of discrete cracks are determined prior to
discretization. In this study, therefore, £, is treated as a given condition. Prediction of the crack
interval is important in discrete crack models are to be used more reasonably. This is a problem yet
to be addressed.

3.6 Comparison with experiments

Figure 11 compares the proposed model with test results for a plate specimen (No.1) with orthogonal
reinforcement. Although even this model shows some difference from the test results, comparison with
the Shin’s model reveals that the proposed model is more accurate than the Shin’s model in expressing
strain-slip relationship during compression after yielding of reinforcing steel. Figure 18 shows the steel
strain-stress relationship for the same specimen. As shown, test results and calculated values agree
well throughout the loading process, indicating that the above-mentioned difference in steel strain can
be ignored.

Figure 19 shows the relationships between opening displacement and steel stress in the case where
reinforcing steel passes a crack surface diagonally (Specimen No.2). Test results and calculated values
show good agreement, indicating that the proposed model is accurate enough to be applied to diagonal
reinforcement. The compatibility condition for deformation, that is, Eq.(7), is used to calculate steel
stresses from opening displacement. This means that Eq.(7) can be applied to the loading history
considered here. In the above verification, it is assumed that the width of a crack as measured on the
surface between reference points 50 mm apart is equal to the average width of the crack along the
crack section.

4 VERIFICATION USING RC PLATES WITH SINGLE CRACK

In this chapter, the discrete crack model will be verified using the No.3 and 4 specimens.

4.1 Relationship between normal stress and crack opening

Figures 20 and Figure 21 compare the relationship between normal stress and crack opening deter-
mined through calculation with corresponding test results. Note here that crack opening was measured
along the surface. The loading, unloading and reloading curves for each specimen obtained through
analysis and testing agreed well, indicating that the proposed analytical model has sufficient accuracy.

Both the test results and the analysis showed that during compressive loading stiffness tended to
increase under the influence of recontact of the crack surfaces. It depends greatly on the accuracy
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of Bujadham’s stress transfer model[7]. It is to be noted, however, that the displacement at which
recontact begins as obtained from the analysis differs slightly from the one based on the test results.
In order to improve accuracy further, it is necessary to improve the accuracy of the model in dealing
with the path-dependent recontact of crack surfaces.

4.2 Relationship between crack opening and shear slip

Figure 22 illustrates the relationship between crack opening and shear slip. As shown, little shear
slip occurred in Specimen No.3 even after yielding of reinforcing steel. Except when the crack sur-
faces are in recontact, concrete stresses are much smaller than steel stresses. This indicates that the
behavior of Specimen No.3 is governed largely by the slip characteristics of reinforcing steel. There-
fore, close agreement between the measured values and the calculated values shows the validity of the
reinforcement model when applied to cyclic loading.

In Specimen No.4, by contrast, a shear slip roughly corresponding to crack opening occurred after
yielding of reinforcing steel, and concrete stresses due to shear transfer occurred. The fact that the
results of calculation for Specimen No.4 agree well with the results of the reversed cyclic loading test
validates the concrete stress transfer model, too. Displacement at the crack surface after yielding of
Y-steel is almost perpendicular to X-steel. Equation (7) suggests that little slip of X-steel occurred
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after yielding of Y-steel.
4.3 Steel stress

Figures 23 and 24 show stresses in X-steel and Y-steel in Specimen No.4. X-steel did not yield because
the displacement at the crack surface after yielding of Y-steel was almost perpendicular to X-steel, as
mentioned in the preceding section. As shown, the analysis closely follows the test results, including
this phenomenon.

4.4 Concrete stress transferred along crack surface

In reinforced concrete with anisotropic reinforcement, concrete stress occurs after the opening of a
crack by the mechanism of stress transfer along the crack surfaces. Figure 256 compares the calculated
and measured concrete stresses in Specimen No.4. The fact that small differences in crack opening are
reflected in the calculated stresses indicates that the measured values and the calculated values agree
well though the hysteresis curves are slightly different. Judging from the ratios of stresses transferred
in concrete to stresses occurring along the crack surfaces, it can be concluded that the model has
sufficient accuracy.

This verification depends largely on the steel slip model as part of the discrete crack model, and the
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concrete stress transfer model is not a major contributor to nonlinearity. It is therefore necessary to
further evaluate applicability to discrete cracks involving the occurrence of high stresses along crack
surfaces. This will be discussed in the next section.

5 VERIFICATION FOR SHEAR STRENGTH

In this section, the applicability of each model and strength prediction under high shear deformation
will be considered through comparison with the results of a single shear test on reinforced concrete
members.

5.1 Orthogonal reinforcement

A total of 59 specimens were chosen from the specimens, which have reinforcement perpendicular to the
shear plane, based on the test data presented by Mattock and Hawkins[16] and Yamada and Aoyagi[17]
These specimens were analyzed and their maximum shear strengths were compared. Results of the
analysis are shown in Table 3. Figure 26 is a plot of the results, where the axis of abscissas represents
the measured value and the axis of ordinates represents the calculated value. As a result, the ratio
of the calculated value to the measured value of the maximum shear strength averaged 1.26, and the
coefficient of variation, 13.7% . The difference between the calculated values and the measured values
tended to increase with the increase in shear strength. This is due to the analytical model’s inability
to characterize the shear failure mode accurately for large reinforcement ratio.

In Fig.26, specimens whose reinforcement yielded in the analysis (steel yield failure mode) and those
whose reinforcement did not yield even when the shear slip reached 3 mm (shear slip failure mode) are
plotted separately. As shown, the analysis tends to give slightly higher values of shear strength even
in the steel yield failure mode. Particularly, the calculated values based on the test data provided
by Mattock and Hawkins are substantially greater than the observed values. Since the specimens
Mattock and Hawkins used were smaller than those Yamada and Aoyagi used, weaker anchorage
might be the cause of this tendency. Details were not known, however, it was assumed in the analysis
that all reinforcing bars were anchored perfectly. Agreement with the test data provided by Yamada
and Aoyagi was fairly good, except in the shear slip failure mode. The ratio of the calculated value to
the measured value for the steel yield failure mode specimens of Yamada and Aoyagi averaged 1.09,
and the coefficient of variation, 9.2% .

From the above, it has been confirmed that the model is accurate in the steel yield failure mode and
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Table 3  Results of Shear Strength Analysis of Orthogonally Reinforced Specimen

Steel Reif. | Normal Steel Anal. Test
fle yield | ratio | stress | diameter | result result | r a/r e | failure*
No. Name stress P o Ta Te mode
(MPa) | (MPa) | (%) | (MPa) (mm) (MPa) | (MPa)

1 41.6 339.5 1.267 0 19 8.95 7.88 1.14 Y
2 41.6 368.2 1.267 0 13 9.39 9.20 1.02 Y
3 21.5 368.2 1.267 0 13 8.40 6.20 1.35 Y
4 41.1 339.5 | 2.534 0 19 12.76 10.83 1.18 Y
5 41.1 368.2 2.534 0 13 13.38 11.56 1.16 Y
6 21.5 368.2 | 2.534 0 13 11.17 8.60 1.30 S
7 43.4 339.5 3.801 0 19 14.74 13.15 1.12 S
8 434 368.2 | 3.801 0 13 15.55 13.65 1.14 S
9 Yamada 24.9 368.2 3.801 0 13 12.72 9.57 1.33 S
10 and 43.5 368.2 | 5.068 0 13 16.21 14.30 1.13 S
11 Aoyagi 43.5 339.5 5.068 0 19 15.44 13.12 1.18 S
12 39.9 3714 | 0.317 0 6 4.56 4.64 0.98 Y
13 (a = 0) 41.7 3714 0.950 0 6 8.14 9.06 0.90 Y
14 39.6 3714 1.584 0 6 10.54 11.25 0.94 Y
15 41.3 368.2 | 1.126 0 13 8.81 8.02 1.10 Y
16 39.3 368.2 | 1.689 0 13 10.82 9.40 1.15 Y
17 40.2 368.2 | 2.534 0 19 13.14 10.46 1.26 S
18 34.8 339.5 2.250 0 13 11.75 10.23 1.15 Y
19 39.5 368.2 1.267 0 19 9.24 7.88 1.17 Y
20 39.5 368.2 2.535 0 19 13.07 10.23 1.28 S
21 40.4 339.5 | 1.267 0.28 19 8.58 8.16 1.05 Y
22 39.8 339.5 | 1.267 0.80 19 7.94 7.52 1.06 Y
23 | Yamada 40.9 339.5 | 1.267 1.53 19 7.01 6.62 1.06 Y
24 and 40.9 339.5 | 1.267 2.14 19 6.04 5.34 1.13 Y
25 Aoyagi 39.6 339.5 | 1.267 1.09 19 7.57 7.06 1.07 Y
26 37.6 339.5 | 1.267 1.74 19 6.56 6.10 1.07 Y
27 | (e>0) 39.2 339.5 | 1.267 2.37 19 5.57 5.86 0.95 Y
28 39.2 339.5 | 1.267 2.66 19 5.07 4.38 1.16 Y
29 39.8 339.5 | 1.267 2.62 19 5.16 4.43 1.17 Y
30 21.4 349.9 0.442 0 9.5 4.74 4.07 1.17 Y
31 21.4 349.9 | 0.884 0 9.5 6.80 4.68 1.45 Y
32 27.0 349.9 | 1.326 0 9.5 8.77 5.79 1.51 Y
33 27.0 349.9 1.768 0 9.5 10.17 6.89 1.48 Y
34 28.8 349.9 2.210 0 9.5 11.48 8.97 1.28 Y
35 28.8 349.9 2.670 0 9.5 12.59 9.56 1.32 Y
36 27.8 345.0 0.100 0 3.2 2.49 1.66 1.50 Y
37 27.6 392.0 0.139 0 6.4 4.96 3.59 1.38 Y
38 214 349.9 0.884 0 9.5 6.80 4.68 1.45 Y
39 | Mattock | 27.8 3254 | 1.570 0 12.7 9.24 7.09 1.30 Y
40 and 27.8 292.0 | 2.460 0 15.9 10.95 7.95 1.38 Y
41 | Hawkins 28.0 455.7 | 0.442 0 9.5 5.65 4.85 1.17 Y
42 28.0 455.7 | 0.884 0 9.5 8.12 6.75 1.20 Y
43 (e=0) 29.9 455.7 | 1.326 0 9.5 10.18 8.13 1.25 Y
44 29.9 455.7 1.768 0 9.5 11.75 9.65 1.22 Y
45 23.4 455.7 | 2.210 0 9.5 11.76 9.09 1.29 S
46 16.9 349.9 0.442 0 9.5 4.55 3.52 1.29 Y
47 18.0 349.9 | 0.884 0 9.5 6.62 4.82 1.37 Y
48 16.5 349.9 | 1.326 0 9.5 8.07 5.59 144 Y
49 17.8 349.9 1.768 0 9.5 9.49 5.48 1.73 Y
50 18.0 349.9 | 2.210 0 9.5 10.57 6.96 1.52 Y
51 26.5 355.3 | 1.080 0 9.5 7.90 6.05 1.31 Y
52 28.9 343.7 1.570 0 9.5 9.58 6.78 1.41 Y
53 28.9 357.4 | 1.080 0.69 9.5 7.48 6.37 1.17 Y
54 Mattock 271 361.5 1.080 1.12 9.5 6.64 4.90 1.36 Y
55 and 26.2 346.4 1.080 1.37 9.5 6.03 4.62 1.31 Y
56 | Hawkins 27.5 358.8 { 1.080 2.06 9.5 5.18 3.62 1.43 Y
57 27.3 349.2 | 1.080 2.74 9.5 4.13 2.53 1.63 Y
58 (e>0) 26.7 351.9 | 1.570 1.37 9.5 8.19 5.75 1.42 Y
59 28.5 354.7 1.570 2.74 9.5 6.62 5.52 1.20 Y

* Analytical failure mode : S=Shear failure , Y=Steel yielding
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is less accurate in the shear slip failure mode for heavily reinforced concrete.

Less accurate prediction brought by the proposed model is attributed to the tensile capacity of rein-
forcement at the crack. It was reported that the axial mean stiffness and strength of reinforcement
deteriorate due to the local curvature at steel sections inside concrete, which is induced by the shear
slip along a crack[18]. The fact that the steel cannot fully work up to the pure uniaxial yield strength
may be associated with the lower shear strength of reinforced concrete cracks. The reduced axial
stiffness of embedded steel originates from the 3-dimensional aspect of reinforcement. Thus, there
exists some limit of applicability in terms of the 1-dimensional idealization of reinforcement adopted
in this model. Further improvement is now being undertaken by the authors.

5.2 Diagonal reinforcement

Figure 27 compares the results of one of the push-off tests[17] conducted by Yamada and Aoyagi, in
which the angle between the reinforcement and a crack surface was taken as the parameter, with the
results of analysis. Since the reinforcement ratio of the specimens used in the test is not very high
(p* = 1.27%), the results of the analysis agree relatively well with the test results.

When the angle between the reinforcement and the crack surface is small, as in the case of the specimen
with a reinforcement angle of 30 deg., differences from test results tend to be small. However, the
influence of reinforcement that meets a crack surface at angles smaller than 30 deg. on the mechanical
properties of the crack surface is small. It can be said, therefore, that when the reinforcement ratio is
low, as in this test, the model is accurate enough for engineering purposes, even when it is applied to
crack surfaces with diagonal reinforcement.

6 CONCLUSIONS

In this study, material models constituting the reinforced concrete discrete crack model have been
constructed by modeling slip characteristics of reinforcing steel at a crack surface and stress transfer
characteristics of concrete. The reinforcement model has been expanded into a cyclic model for
reversed cyclic loading on the basis of the results of the reinforced concrete plate test carried out in
this study. Thus, sufficient accuracy of the model when applied to compressive loading after yielding of
reinforcement has also been confirmed. A generalized concrete model applicable to any loading history
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has also been developed by integrating models of concrete before and after cracking. Furthermore,
verification of the discrete crack model as a whole has been conducted. Through the comparison
with RC plates and pure shear tests, it has been shown that the model can accurately estimate the
deformational behavior and strength of the RC crack plane.

The conclusions of this study are as follows:

(1)A model of the slip of reinforcing steel out of a crack surface and a model of stress transfer
in concrete have been formulated as material models constituting the proposed discrete crack
model.

(2) The steel strain-slip model proposed by Shima et al. has been expanded into a reversed cyclic
model that can express the influence of adjacent cracks, has enhanced accuracy when applied to
compressive loading after yielding of reinforcement, and is applicable to the slip of reinforcing
steel out of a crack surface in reinforced concrete.

(3)As for loads in the direction perpendicular to the crack surface, such as RC plate tests, shear
deformation under reversed cyclic loading and the behavior and strength under unloading and
reloading of reinforced concrete members having concrete compressive strengths of 18-40 MPa,
with angles of intersection with reinforcing steel of 30-150 degrees, reinforcement ratios of 2%
and orthogonal reinforcement in two directions can be estimated with an accuracy of about 10%.

(4) As for pure shear loads in the direction parallel to the crack surface, the the strength under
monotonic loading of reinforced concrete members with angles of intersection with reinforcing
steel of 30-150 deg., concrete compressive strengths of 17-41 MPa, reinforcement ratios of 2%,
and a failure mode in which reinforcing steel fails first can be estimated with an accuracy of
10%. The averages of calculated strength, however, are several percent greater than measured
strengths.

(5) Under the same conditions as those in (4) above except at reinforcement ratios exceeding 2% and
in a failure mode where reinforcing steel does ot fail first, deformation behavior can be estimated
accurately if shear stress is about 5 MPa or less. Calculated strengths, however, turned out to
be about 20-50% higher than test results.

The differences between calculated values and measured values are due to the analytical model’s
inability to explain actual phenomena. One of the possible reasons that the average strengths are
slightly greater than test results is the degree of anchoring of individual reinforcing bars. In real-
ity, the strength of identical specimens varies depending on the dimensions of specimens, anchorage
length of reinforcing steel, presence or absence of anchoring plates, and reinforcement detailing. The
results of the analyses conducted here (where infinite anchorage length was assumed) agree well with
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the results of tests in which the anchorage condition is considered to be good. Criteria for quanti-
fying reinforcement detailing and the degree of anchoring, which are not covered here, remain to be
established.

One of the possible causes of lower accuracy in estimating shear strength at higher reinforcement
ratios is an insufficient accuracy of the shear transfer model under high shear stresses. However, it
has been confirmed, through verification at material level, that deformation characteristics under high
restraint and high shear stress can be estimated accurately. Since high shear strengths exceeding 10
MPa can be estimated accurately in a failure mode in which reinforcing steel fails first, it is unlikely
that the above cause is a deciding factor.

In the case of highly reinforced concrete in which the crack opening is small for the shear slip, rein-
forcing steel is thought to be subjected to high local bending and shear deformation. These results
indicate that the axial restraining effect of reinforcing steel given by the model (perfect 1-dimensional
model) can be reduced by the non-1-dimensional behavior of reinforcing steel. This may be the length
to which the method of modeling reinforcing steel as a one-dimensional element can go. This point
will be further investigated in a future study.
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