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SYNOPSIS

The purpose of this study is to theoretically clarify the ultimate shear strength
and the deformation of reinforced concrete beams with web reinforcement, subjected
to combined bending moment and shear. To achieve this, an ultimate equilibrium
method based on the energy principle is employed. The proposed equations, which are
derived from the equilibrium condition of force and moment for the failure surface
at the ultimate state, are compared with test results and good agreement is noted.
Compatibility condition of strains on the shear element is also considered to
predict the failure mode of beams. In addition, an interaction between bending
moment and shear is proposed.
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1. INTRODUCTION

Shear failure, together with bending failure, is the representative failure mode
of RC beams. However, the shear failure mechanism is still not clear despite many
intensive studies because it is influenced by many factors other than the bending
failure mechanism.

Theoretical approaches to explain the shear capacity of RC beams have been
employed, and many experimental formulae, semi-experimental formulae and analytical
models have been proposed since the truss analogy was proposed by Ritter and Mdrsch
in 1899.

Mechanical models may be divided into two groups: one group of models utilizes
geometrical modeling such as the truss analogy [1] or the arch theory [2],[3], and
the other employs theoretical approaches such as the ultimate strength theory [4]
or the plastic theory. Until the 1960s, mechanical models based on experimental
studies were predominant [5]. But, in the early 1970s, Nielsen’s plastic theory [6]
and Collins’ compression field theory [7] were proposed resulting in rapid
development of studies on the shear capacity of RC members. The former type of
study estimates the shear capacity by applying upper and lower bound theorem to
plastic material. In the latter type of study the shear capacity is estimated by
considering the equilibrium condition of the stresses and the compatibility
condition of the strains. Limit analysis based on the plastic theory is thought to
be an advantageous method because of the rationality of its assumptions and the
simplicity of mechanical modeling or analysis.

On the other hand, micro model approaches [8], such as the nonlinear finite
element method, have been employed since the end of the 1960s. Although some useful
‘mechanical models have been proposed, the micro model has not been applied to
design formulae because of some unsolved problems such as the modeling of crack and
bond properties between steel and concrete, and so on.

The purpose of this study is to theoretically clarify the ultimate shear strengths
and the inclination of diagonal cracks of RC beams with web reinforcement,
subjected to combined bending moment and shear force. In this study, the ultimate
equilibrium method of the upper bound theorem of the plastic theory is used in
addition to the equilibrium condition of forces and the compatibility condition of
strains. Moreover, an equation representing the interaction relationship between
shear and bending moment is proposed. To make comparisons between calculated
values by the proposed equation and experimental data, we employ our test data, as
well as that of Frantz and Regan.

2. QUESTIONS REGARDING STATE OF THE ART

There are two approaches to estimate the shear capacity and the deformation of
RC beams subjected to combined bending moment and shear by the plastic theory. One
is the static approach by which the inner stress state that equilibrates with the
external load under the condition of the yield of material is determined. The other
is the kinematic approach by which the deformation state is determined considering
the internal and external energies, regardless of yield criteria for material.
Furthermore, the kinematic approach can also be divided into two methods. The first
method is a work method based on the minimum potential energy principle which
states that the crack propagates in the direction in which the internal energy
becomes minimum [9]},[10}. The second method is the equilibrium method, which is
based on the theorem that the failure of the member occurs in the direction in
which the internal resistance becomes minimum.
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It is very important to estimate the direction of the diagonal crack analytically
in order to evaluate the number of web reinforcements crossing the crack. Past
studies on the shear capacity and the inclination of the diagonal crack on the
basis of the work method or the ultimate equilibrium method, are reviewed as
follows.

Kupfer [11] postulated that the inclination (a) of concrete strut varies with the
amount of web reinforcement(A,) and that the ratio of the width of the compression
zone of concrete to that of web (b/by) varies on the basis of the truss analogy.
Furthermore, he hypothesized that the inclination of concrete strut could be found
by differentiating the sum of strain energy along the length of the beam with
respect to the inclination of the concrete strut. On the basis of this concept, the
inclination of the diagonal crack is found from 35° to 40°. This theory is useful
for designing web reinforcement against shear failure, but not for evaluating shear
capacity. However, use of this theory involves problems, basically questions of the
truss analogy: the shear transfer of concrete of the compression zone is
disregarded and the increase of the shear capacity can not be expressed as the
shear span depth ratio decreases.

Collins [7] assumed that shear failure occurs due to the failure of the inclined
compressive strut. He used the tension field theory proposed for metal material by
Wagner [12], and he developed a new theory based on the assumption that the
inclination of the compressive strut is equal to that of the principal compressive
strain. According to this theory, the inclination necessary to minimize the strain
energy is obtained by differentiating the shear strain (y4) of the element per unit
length with respect to the inclination of the diagonal crack («).

cota "
(e1+eq)cota

>
L’ (e ted)cotta

Fig.1l Shear strain on the element in the truss analogy

Namely, the shear strain on the element in the truss analogy is given as follows,
as shown in Fig.l.

y=(e+ed cot a+(e,+edtana (1)

where ¢; denotes tensile strain in the longitudinal reinforcement, e, denotes
tensile strain in the transverse reinforcement, and ¢; denotes the compressive
strain in the compressive strut.

Differentiating the shear strain with respect to the inclination of the principal
compressive strain («), the following equation is obtained.

dy _ i
qa =0 (2)

The compatibility condition of the strains is written as follows:
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tan’ a=-—"" (3)

In this theory, the inclination of principal compressive stress («), which
satisfies the equilibrium condition of forces and the compatibility condition of
strains for any shear stress (r), can be calculated. When the stress of the
inclined compressive strut (f;) reaches critical stress (fy,), the member fails. But
this theory also has demerits in that the accuracy of estimation is low when the
shear span depth ratio is small or the amount of web reinforcement is small.

Nielsen [6] proposed an exact solution of the shear capacity of the RC member,
namely, that the upper bound solution is equal to the lower bound solution on the
basis of the plastic theory. According to this theory, the upper bound solution is
given by differentiating the internal dissipating energy with respect to the
inclination of the diagonal crack at which the internal energy becomes minimum by
applying the yield line theory based on the virtual work theory.

P-u=0.5 fexb(l—cota)h-u/sina +p, f,ybh cota-u (4)

where p, denotes the web reinforcement ratio, f,, denotes the yield strength of the
web reinforcement, and u denotes virtual displacement.

The first term of Eq.(4) is the dissipation energy in the concrete along the yield
line, and the second term is the dissipation energy in the web reinforcement
crossing the yield line. Namely,

d(P'u)_0
da (5)

We expressed Eq.(5) by rearranging it as follows:
tan a=2v90—¢)/1—-2¢ (6)
where, ¢=p,f,,/f

The shear capacity is expressed as follows:

Vu=bhfex /1= ) (7

When a/h is smaller than tana, namely,

<ww+m—m
SjaTE

The shear capacity is written as follows:

Vuzbhfck](o-sV1+(a/h)2—a/h)+¢'a/h} (8)
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Fig.2 Shear failure mechanism in Nielsen’s theory
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In this theory, T-type beams and rectangular beams are dealt with in the same
category. It is known that the estimation accuracy is comparatively good when a/d
is larger than 3 for T-type beams, but the accuracy is not conservative for
rectangular beams ([13]. Furthermore, this theory has unsolved problems. For
example, the determination of the so-called effectiveness factor (v), and the
underestimation of shear capacity when a/d is small in case of application of the
theory to design.

Regan [14] also proposed the inclination of the diagonal crack at which the strain
energy due to the web reinforcement and aggregate interlocking becomes minimum.

Studies to evaluate the capacity of members by the equilibrium method have been
carried out for the members subjected to torsion moment rather than shear force.
Although studies to estimate the shear capacity have been rarely carried out, a
semi-theoretical equation based on experimental data has been proposed by the RC
Central Institute of the USSR [15]. In this equation, the shear capacity (V,) is
given as the sum of the shear strength provided by concrete (V.) and the shear
strength provided by web reinforcement (V,).

Vu= Vet V=2 bd* fi/ ¢+ Av* fuar ¢/'s (9)

where £, denotes tensile strehgth of concrete, f,,; is yield strength of web
reinforcement, A, represents area of web reinforcement, and s denotes spacing of
web reinforcement.

According to this theory, the shear capacity is found by differentiating the shear
resistance with respect to the length of the longitudinal projection of the
diagonal crack (c), namely

av.
dc 0 (10)

c=42 bd*f15/ Aufoa (11)

The shear capacity is given by

V=242 bd*Avfoaft/ s (12)

As mentioned above, the approaches based on the energy method have been carried out
by many investigators. However, each approach has merits and demerits, and the
deformation mechanism of RC beams subjected to combined bending moment and shear
does not seem to be sufficiently understood.

In this study, the shear capacity and the inclination of diagonal cracks in RC
beams subjected to combined bending moment and shear are analytically examined on
the basis of the ultimate equilibrium method. Furthermore, a method of estimating
the failure mode is proposed based on considerations of the compatibility of
strains in the failure surface.

3. ANALYSIS OF SHEAR CAPACITY BY THE ULTIMATE EQUILIBRIUM METHOD

3.1 OQutline

The ultimate equilibrium method has been proposed by a research group in the USSR
[15] for the RC member subjected to torsion. Deformation corresponding to the
minimum resistance of the RC member subjected to combined flexure and torsion or
torsion, flexure and shear, is determined by this theory, which is a kinematic
approach based on the upper bound theorem. In this theory, an examination of the
deformation mechanism and capacity of members in the ultimate state is attempted
by taking into consideration the equilibrium conditions of forces and moments.
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3.2 Assumption

_In this study, the failure modes in which stress redistribution does not develop,
such as diagonal tension failure, are not taken into consideration. The subject of
this study is RC beams with web reinforcement, and its analysis is based on the
following assumptions.

a) As shown in Fig.3(a), the diagonal crack propagates linearly at an inclination
of o, until (h-d,), namely, the distance from tension reinforcement to the neutral
axis at the uncracked state. Thereafter, the crack propagates at an inclination of
a, due to internal stress redistribution [16], and the member reaches the ultimate
state. In this study the diagonal crack is modeled by a bilinear line.

b) This study assumes that the initial crack develops due to the extreme tension
fiber, that tension reinforcement and web reinforcement subsequently yield, and
that the concrete of the compression zone finally reaches the compressive strength
of concrete resulting in beam failure.

c) On the basis of the concept that shear failure is basically equal to bending
failure when web reinforcement is arranged sufficiently along the member [17],
[18), the depth of the compression zone is assumed to be the same as that for pure
bending.

d) The failure surface is composed of both the surface of the diagonal crack and
that of the compression zone. The spacing of web reinforcement is constant.

e) The influences of the dowel action of reinforcement and the tensile strength of
concrete are neglected.

f) Upper longitudinal bars of the compression zone are ignored.

g) The direction of the principal tensile strain is perpendicular to the direction
of the diagonal crack .
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Fig.3 Crack propagation and equilibrium conditions of the forces
at the ultimate state
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Ultimate shear resistance is determined by the equilibrium condition between the
internal and external forces at the failure surface on the basis of the above
assumptions.

3.3 Derivation of the shear capacity equation

As shown in Fig.3(a), RC beam with vertical web reinforcements which is loaded with
two equal concentrated loads is taken into consideration in this analysis. Section
I-I, which is the starting point of the diagonal crack, and section II-II, which
is 1located at the loading point, are considered.The stress of the tensile
reinforcement is experimentally larger than that calculated by the traditional
bending theory when the diagonal cracks exist in the member due to shear force
[11],[19],[20]. Therefore, the moment (M,.) due to the external force must be
equilibrated in the summation of the moment (M,) caused by bending force and moment
due to shear force.

Mexn= M+ Vu(h—de)COtal+ Vu(de—dp)COtaz . (13)

The direction of the principal compressive stress at an arbitrary point of the
member in the elastic state is expressed as follows by Mohr’s theory.

2t
P (14)

tan2 a=—

where, 7 is shear stress, o, is normal stress in the longitudinal direction, and
oy is normal stress in the transverse direction.

The direction of principal compressive stress, namely, the direction of the crack,
is 45° on the neutral axis. It is known that the direction of the crack propagates
linearly to the neutral axis near which the stress redistribution occurs internally
{21] due to the brittleness of concrete. Applying this assumption to past
experimental data [22], the results are as shown in Table 1.

Table 1 Angle of the diagonal crack in past experimental data

number of test specimens | average(® ) | coefficient of variation (%)

54 4.5 12.2

In this analysis, the angle of the first crack (e;) is assumed to be 45°. But when
the distance from the loading point to the bearing point is shorter than d/2, the
condition ¢; =45° can not be applied to this model. The distance from the extreme
compression fiber to the neutral axis in the elastic state (d,) is expressed as
follows:

_ 05 bR+ (n—1)Ad+(n—1Aid
de= bh+{n—1A,+(n—1)A: (15)

where n is the ratio of Young’s modulus of steel to concrete, A; is the area of the
lower longitudinal bars, A;’ is the area of the upper longitudinal bars, and 4’ is
the concrete cover of the upper longitudinal bars.

The internal resistance moment (M;,.) is expressed as a sum of the three components
at the neutral axis on the failure surface: the resistance moment due to tension
reinforcement (M,;), the resistance moment due to web reinforcement (M,,) and the
resistance moment due the to concrete of the compression zone (M,).
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" Minn=Mut+ Myt Muc (16)

The terms on the right side of Eq.(16) may be written as follows.
Mu1=Alfly(d—dp)

(17)

(de_dp)z 2
Mu.,=——23—cot az* vfw +Avay(h de)i d,, COta, +0. 5(h d I/S (18)
Muc=k|'fck'b'dlz.7/2 (19)

where d  is the depth of the neutral axis at the ultimate state, A, is the area of
the web reinforcement, f,, is the yield strength of the web reinforcement, s is the
spacing of the web reinforcement, k; is the coefficient related to the average
stress of the concrete, and k; is the coefficient related to the depth of the
compression zone.

From the equilibrium condition between the external and internal moments, the
following equation can be written.

Mext=Mint (20 )

From Egs.(13) and (16), the following equation results.

Mo+ Vlh=d o+ Vilde—d,) cot ar=k, forbd?/2 F Afld —do)+ Aufor —

WR=LY (h—dJ)

(de—-d,)cot a,+ (21)

The stress-strain relationship of the concrete of the compression zone is described
in Fig.3(d),(e).The stress-strain relationship is expressed as follows by
Hognestad’s theory.

ee=tful2(3)=(2)] (22)

Assuming the stress distribution of concrete is rectangular, it is expressed as
follows:

kfr;x'—f oc* dx/(d /k!) (23)
Horizontal force equilibrium requires the following equation.
ki ferbdo— Aifry=0 ‘ (24)

The depth of neutral axis is expressed as follows:

Aifiy

&= Joxb (25)

Substituting Eq.(25) into the right side of Eq.(21), the following equation is
derived.

M,+ Vu(h"'de)+ Vu(de_dp) cota;= 1fly(d dp/z) +Aufw( e p) cote, (de;dp) cot az

+Avfoy

(h— de)[ (h-—de)] (26)

dpc taz 2

It is clear that the relationship between the applied moment and the shear force
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at the ultimate state can be described as follows:

My=aV, (27)
where a is the length of shear span.
Then, the following equation is derived.

1 » (de— dp) (de_dp)
et h—d.+(d.—d,) cot ad [A!fw(d—dp/z) +Aufoy S cota, ) cota,

7]

V=

+ A, foy

[(de s cot e+ (28)
Moreover, in order to evaluate the inclination of the diagonal crack at which the
internal shear resistance becomes minimum, Eq.(28) is differentiated with respect
to a; (inclination of second diagonal crack) and rewritten as follows.

v

day 0 (29)
—o—htd. [raFR=de\' 2s(d—d 204w (h—dd [ . h—d,

cote=—g.-3, +\/( de=d, ) T (de—dAufo (de—df (“' 2 ) (30)

Eq.(30) is an equation to estimate the inclination of the diagonal crack at which
the shear resistance becomes minimum, and thus the shear capacity can be expressed
as follows.

d,
lfw d—_‘
\/(a+h 4 (d 28d—d/2)Afy —(h—d,)(a-l-h_zd') [ ( )

vay
Bl (o hta, +\/(a+h a4 2GS (04250
+Avfw(:_de)[ a— h+d¢+\/(a+h dJ + L 2sld- (f}/Z)Axfw (h—d,)(a-l-h—?;de) +(h.'-zd¢) ]
A [ fiarh-a e BTy (04 hde) ] - 1)

Also in this study, the modeling of only one diagonal crack is examined for
simplicity of calculation. Using the same method by which Egs.(30) and (31) were
derived, the diagonal crack can be described by the following equation.

tam a_ ( : 25{d—de/2) Ay
cote= (h—'dp)l h—d, ' (h—d,) Avfoy (32)

d d°-1~
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Fig.4 Modeling of the diagonal crack
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And the shear capacity can be expressed as follows.

Ve : [A‘f“’(d“%&) +i;—?l[2 a’—2 ax/a’+2 s(d—£> Aty

2 dp Al.fty 2 Avay
\/a +25(d—32) =

r2s(a=%)22)]

Avfw[ ,izs(d—'da/z)-‘lz 1y
= S a’- Avfw —-aJ

(33)

- Shear capacities (V,,) based on two diagonal cracks as shown in Fig.3 are compared
with those (V,;) based on only one diagonal crack as shown Fig.4 on the basis of
past experimental data (see Fig.5).

As a result, the average ratios of V, to V,, using Frantz’s [24) and Regan’s
experimental data [26], were 1.001 and 1.045, respectively. Thus, it can be seen
that it is practical to evaluate the shear capacity on the basis of a model of only
one diagonal crack.

VUl
(tf)
201
;: Vui: calculated value by Eq. (33)
101 :
@ : Frantze| Vuz: calculated value by Eq. (31)
A ; Regant$!
0T Ve

(tf)

Fig.5 Comparison of shear capacity

3.4 Compatibility condition of the strains

As described in Fig.6(a), each component of the strain at a certain shear element
A in the area of development of the diagonal crack is given as follows:

a=¢crsin’ a+e;c08% @ (34)
ey=¢crCOS ateasin’a (35)
y=2(ecrHedsinecosa (36)

where ¢; is the strain in the of longitudinal direction, e, is the strain in the
transverse direction, €4 is the strain in the direction perpendicular to the crack,
and 4 is the shear strain.

Eqs.(34),(35) and (36) are rewritten as follows because €y is small enough to be
ignored. )

c,=scfsin’a (37)
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ep=Ecr COS" @ (38)

y=¢,tanatecota ; (39)

diagonal crack

{ r/2}

N
S E2=€£¢ £
&=
Ecr \Ul Ecr
[+ 4

shear element

L4

(a) (b)

Fig.6 Strain component at the diagonal crack surface

Based on the minimum potential energy theory, the angle of crack «, at which the
shear strain at element A becomes minimum, may be found by differentiating the
expression for the shear strain with respect to «.

The compatibility condition required to determine the internal deformation
mechanism at the diagonal crack surface is expressed by the following equation.

tan’ o=
& (41)

3.5 Failure mode

The equilibrium condition for the yielding of reinforcements which is needed to
determine whether web reinforcement or tension reinforcement yields first must be
considered. First, when both reinforcements yield at the same time, that is to say
when ¢, reaches ¢;, and ¢, reaches ¢,,, the compatibility condition of the strains
at that state may be written as follows.

&y

tan’a=e—w (42)
Eq. (33)
vnw /
Av: large
Av: small
the tension reinforcement yields first Av: small . ¢ yields first
~—| A large the web;exnf(lrcemen yie
Qs o- Ay
Avtvy

Fig.7 Failure mode
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Applying Eq.(32) and Eq.(42), the following equation results.

Alfty (h d) {euy, 2a iy_]
q Aufo 2sld— dn/2) L e (= d)VEw (43)

If we assume €1y/€vy=1' Eq.(43) is expressed as follows.

_ (h=d,f )
Q°_23(d—d,,/2){1 th— d,,)] (44)

When the ratio of force applied to tension reinforcement to that applied to web
reinforcement is smaller than that based on Eq.(44), tension reinforcement yields
first, followed by web reinforcement, and finally by compression zone failure. When
the ratio is larger than that based on Eq.(44), web reinforcement yields first,
followed by tension reinforcement, and finally by failure of the concrete in the
compression zone. This failure mode is described in Fig.7.

3.6 Interaction between shedr force and bending moment
Defining 2s(d-0.5d;)A;f, /A f,y=x, Eq.(33) is rewritten as follows.

Vu:Jal—[ ,f,y< —~) uf”Za Zamx—+x)] (45)
Bending moment (M;) subjected to pure bending is given as follows.

Mo=A.fi{d—d,/2) (46)
Therefore,

V=2 Mol (/aFx—a) (47)
Substituting a=M,/V, into the above equation and adjusting accordingly,

() +ei=t

(48)

The shear force (V,) at the pure shear is derived from the condition M, =0.
Inserting this into Eq.(48) and adjusting,

Vo

—

Vo &
1.0
-~ Ea. (49)

0.5~

0.0 0.5 1.0 :MJ
Mo

Fig.8 Interaction relationship between shear force and bending moment
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(‘fo)z*'(%:):l : (49)

The interaction relationship between shear force and bending moment at the ultimate
state is plotted in Fig.8.

4. CONSIDERATIONS ON THE PROPOSED EQUATION

4.1 Effect of factors on the shear capacity

It is well known that there are numerous factors influencing the shear failure. In
this section, the shear span-depth ratio (a/d), tension reinforcement ratio (p;)
and web reinforcement ratio (p,), which are thought to be the main factors, are
examined on the basis of the proposed equation. The following dimensionless factors
are used.

0=t/ fern $=0S1s/ fero ¢=pufosl fer» 1=0/d (50)

Application ranges of dimensionless factors are defined as follows, on the basis
of the JSCE model code. i

0.03<$=<0.7, 0.01=¢=0.3, 1<a/d=4 (51)

The relationships between the shear capacity and dimensionless factors are plotted
in Fig.9. :
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Fig.9 Relationship between the shear capacity and a/d, ¢, ¥
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According to the results, the larger the shear capacity, the smaller the ratio of
a/d, and the larger the area of web reinforcement, the larger the shear capacity
of the member. However, the tendency for the shear capacity to increase may not be
linear, because the shear capacity has an upper limit for the area of web
reinforcement. A comparison of shear capacity according to the proposed equation,
various published equations and several design codes are given in Fig.10.

As the ACI formula, the JSCE formula, and the CEB-FIP Model code formula are
derived on the basis of the truss analogy, the shear capacity has a tendency to
increase in proportion to the web reinforcement. The calculated value by the
proposed equation has the same tendency as that of Arakawa’s equation [23] and
Thirlimann’s equation [19].

Moreover, the relationship between the inclination of the diagonal the crack (a)
and the web reinforcement ratio(p,) under the conditions of p;=27 and
fck=300kgf/cm , is described in Fig.1ll.

According to results, the greater the inclination of the diagonal crack, the larger
the ratio of a/d or the web reinforcement ratio. As it is thought that p, is less
than 1 to 1.57 in practical design, the inclination of the diagonal crack seems to
be less than 60°.

w=Ty/fex

0.31 1568

0 the proposed Bq. (a/d=1)

0.1F

a——Thirl irann
™ the proposed Eq. (a/d=3)

0.0 0.1 0.2 03
Y=pufvy/fex
Fig.10 gomparison of the proposed equation and the published experimental
ata
90(1 (deg)
801
nr 4 W

60

| /a/d=25/tm=l
of s a3/

30
20F P1=2%
10k e k=300kgt /ca?

0 0.5 10 L5 20 25
Py (x)
Fig.1l1l Angle of the diagonal crack
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In order to control cracking and to ensure the yiélding of both tension
reinforcement and web reinforcement, the CEB-FIP Model Code sets up the range of
the angle as follows.

3/5<tanas5/3 (52)

4.2 Comparison with the published experimental data

In order to evaluate the rationality of the proposed equation, comparisons of
analytical results with experimental data are carried out. The number of
experimental data to be used for comparison on purposes is 98, an outline of those
data being given in Table 2. The experimental data used for comparison are
restricted to RC beams with web reinforcement. Frantz carried out a test to study
the influence of compressive strength of concrete and the web reinforcement ratio,
Smith examined RC beams in which a/d is small, and Regan carried out a test to
study the influence of shear span depth ratio for RC members with a larger web
reinforcement ratio and a larger tension reinforcement ratio.

Table 2 Outline of the experimental data and comparison of the
experimental data and the calculated values

outline of the

experimenta] data Frantz?4’ Smith2s? Regan?®’ Kanj2™ Tohoku Uni.
e o ot 12 a7 18 55 6
b{(cm) 15.2 10. 16 15.24 15.47 ~ 15.70 20.00
d{cm) 29.8 21.9 25.4 27.2 ~ 28.3 36.0
a/d 3.6 1.09 ~ 2.27 3.36 ~ 5.05 2.16 ~5.98 3.50
o1(%) 3.36 2.15 ~ 2.67 0.98 ~ 4.16 2.54 ~ 2.64 0.8 ~ 1.94
ov (%) 0.12 ~ 0.38 0.88 ~ 1.25 1.30 ~ 5.20 0.60 ~ 1.00 0.36 ~ 0.53
fox (kef/cn?) 229 ~ 846 164 ~ 231 130 ~ 438 267 ~ 366 263 ~ 341
design formula |average | c.o.v. |average | c.o.v. |average | c.o.v. |average | c.o.v. |average | c.o0.V.
proposed Eq. (33) 1.05 11. 49 1.18 11. 90 1.04 17.31 0.98 21.43 1.26 4.80
JSCE¢ 1 1.29 9.16 1.89 32.10 0. 26 2122 0.53 40.56 0.52 4.65
ACIt2 1.33 8.59 1.64 31. 60 0.23 21.9 0.50 39.71 0.45 5.41
ALY 3.22 13.72 3.75 12.84 1.41 17. 46 1.71 28.03 1.55 8.46
ALJt® 1.11 11.57 1.32 7.95 0.30 18. 49 0.54 30.71 0.46 1.73
Thiir1imann‘s? .15 14.15 1.22 17.83 0.85 31. 60 0.96 22.59 1.36 6.72
Arakawa‘®’ 1.47 15.61 1.66 7.96 0. 85 12.15 0.89 26.57 0.76 10. 03
CEB1978¢™ 1.16 14.14 1.90 32.67 0.41 22.74 0.51 40.59 0.44 6.12
USSR!®? 0.76 10.56 1.06 25.31 0.22 11. 46 0.29 38.80 0.24 8.01
c.0.v. scoefficient of variance(¥)
(note)
(1) v.=o.‘9g/—rg—1fvmw;+"'sf".z (2) V=(0s04 T+ 0¥ )y 4 Axlmd -
(3) Va={afit Slov—0.002)| bjd () V=g [ JE) 18] - 2R bhst ficot 8-
(3) vm-tfe g [TV, TRAT (5 v PPt 7
Ved

(7) V=06 £,bd+0.9 p.foybd (8) v..=2,/z bd'—-—-—:"s 7""1,
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The average value and coefficients of variation of the ratio of the experimental
data to the calculated value based on the proposed equation and other design
formula are given in Table 2.

The ratios of the experimental values to the calculated values seem to be more than
1 for the RC member with a/d of 3 or less. But the ratio is less than 1 for Regan's
and Kani's data. Generally, a weakness of several design equations and published
equations is that they do not have a wide range of applications.

The average and the coefficient of variation of the ratios of experimental data to
calculated values based on the proposed equation vary from 0.98 to 1.26 and from
4.8 to 21.4Z, respectively. Moreover, the average and the coefficient of variation
of the ratio for all experimental data in Table 2 are 1.10 and 13.4Z, respectively.

The relationships between the value of V.,/V.,; and the shear span depth ratio, and
the dimensionless web reinforcement ratio (¢) are described in Fig.12. As mentioned
above,it is clear that the proposed equation has a wide range of applications and
estimates the shear capacity with acceptable accuracy.

Vexp/Veal
2.0
1.5F EB

e g °

IR AT
1-0 5! o. 20

. 8‘ a

0.5} ‘

1 1 L [ 1

0.0 1 2 3 4 5 6

(a) a/d
Vexp/Vcal
2.0
A:Frantz?®
1.5 [3:Smi th?®
1.0 2 : AiRegant®
' o0 ° O:Rani?"
0.5 F 8: Tohoku Unl.
1 1 1 1

0.0 0.2 0.4 0.6 0.8 10
(b) v

Fig.12 Relationships between V..,/V.,; and a/d, ¢

5. CONCLUSION

The purpose of this study was to theoretically evaluate the ultimate shear
strengths and the deformation mechanism, especially the inclination of the diagonal
crack, of RC beams with web reinforcement subjected to combined bending moment and
shear. Obtained results are as follows.

(1) An analytical model based on the equilibrium method of the upper bound theorem
is proposed. That is to say, on the assumption that the diagonal crack propagates
in the the direction necessary to minimize the internal resistance, the theoretical
equation of the shear capacity and inclination of the diagonal crack in the
ultimate state are proposed.
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(2) The diagonal crack is idealized as only one straight line.

(3) According to the results of the analysis, it is theoretically clear that the
smaller the a/d, the greater the shear capacity.

(4) It is theoretically clear that the larger the a/d and the larger the web
reinforcement ratio, the larger the inclination of the diagonal crack.

(5) The compatibility between the calculated value and experimental data is very
good. According to comparisons with results of other formulae, it is clear that the
proposed equation has a wide range of appllcatlons and estimates the shear capacity
with acceptable accuracy.

The experimental data used for comparison with the proposed equation are still
insufficient. This is attributed to the fact that there have been few studies on
the inclination of diagonal cracks. Therefore, comprehensive analysis is not
possible. In the near future, the authors plan to undertake further experimental
studies. This study ignores the influences of the tensile stress of concrete and
dowel action, and these factors must also be further examined.
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