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SYNOPSIS

Analytical studies on the mechanical behavior of reinforced concrete linear members subjected to
torsion have been carried out. The characteristics of the analytical method are to assume an original
solid section of members to be equivalent to a hollow one and to convert the applied torsion into the
uniform shear flow. Concerning stress-strain relationships of cracked concrete, softening, tension
stiffening, and shear transfer along cracks have been incorporated into the analysis. The effect of
local yielding of reinforcement is also considered in the analysis. From the verification with
experimental results, it has been confirmed that the ultimate strength and the overall deformation
behavior of reinforced concrete linear members subjected to torsion can be predicted reasonably by
the proposed analytical method.
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1. INTRODUCTION

Torsion problems on reinforced concrete members have been the research subject for long years.
Traditionally, the theory of elasticity or plasticity for continuum was the basis of torsional analysis
for reinforced concrete. The analysis for shear stresses due to torsion by using Prandtl's
membrane analogy or Nadai's sand heap analogy is very famous. However, because of the
nonlinearity pertaining to reinforced concrete members, such as crack initiation and compression
failure under multi-axial stresses, or yielding of reinforcement, the mechanical behavior of
reinforced concrete members cannot be explained accurately by only the theory of elasticity or
plasticity. According to elasto-plastic behavior of concrete subjected to tension, neither the theory
of elasticity nor plasticity can predict the torsional cracking moment itself accurately [1].

In subsequent researches, therefore, the characteristics of reinforced concrete were considered.
Main efforts of researches were laid on the macroscopic modeling of resisting mechanism. For
example, the skew bending theory that predicts the ultimate torsional strength on the analogy of the
bending failure and the space truss theory that was extended from the plane truss theory applicable
for shear problems are very famous. The greatest advantage in these macroscopic models is that
they can predict the ultimate torsional strength by relatively simple calculations. For the
examination of the ultimate limit state, these macroscopic models are actually very useful.
Particularly, the space truss theory has been adopted in CEB-FIP Model Code 1978 and JSCE
Standard Specification for Design of Concrete Structures, because of its practical usefulness.

Although these macroscopic models are effective, such a modeling that torsional failure can be
considered as a type of bending failures or resisting mechanism like as a space truss can be built up
in a member is not the fact but the assumption. These models can predict the ultimate torsional
strength easily; however, it is quite difficult for them to predict the overall mechanical behavior,
that is, stress states and deformation of a member corresponding to arbitrary loading conditions.
Practical usefulness of these models cannot be ignored; however, the establishment of more
general and comprehensive analytical method is being desired for an elaborate design.

In such a trend, remarkable researches have been performed by Collins et al. They state that what
exists in a member is not a truss mechanism, such as struts and ties, but a reinforced concrete
element, and that the clear understanding for mechanical behavior of reinforced concrete elements
with cracks is the fundamental of all analyses. Okamura et al. have also been carrying forward
their researches from the same viewpoint, and have proposed the constitutive laws including the
effect of cyclic loadings [2].

The common concept in these researches is that if the mechanical behavior of cracked reinforced
concrete elements can be estimated accurately, problems on shear and torsion will be treated
analytically based on obtained elements as like as flexural problems. From this viewpoint, Collins
et al. have formulated both the softening behavior of cracked concrete and the tension stiffening by
using experimental results obtained from the test of reinforced concrete plates subjected to in-plane
forces [3], and have tried to apply the formulas into torsional analysis. Hsu et al. have also been
performing torsional analysis considering the softening of cracked concrete [4]. In Japan,
Okamoto et al. [5] and the authors [6] have proceeded the research on torsion in this way.

According to this kind of approach, not only the ultimate strength of a member but also the load-
deformation relationship can be predicted continuously. Although calculation procedures required
become more complicated than macroscopic models, except for this point such an approach
mentioned in this paper surpasses macroscopic models in all other aspects. In this paper, the
analytical method for reinforced concrete linear members subjected to torsion is described. The
method has been formulated based on constitutive models for a reinforced concrete plate element.
The applicability of the method is examined by comparing obtained analytical results with
experimental data.



2. TORSIONAL ANALYSIS USING REINFORCED CONCRETE PLATE ELEMENT
2.1 line

The analytical method for torsion presented here comprises of the part peculiar to linear members
subjected to torsion and the other part pertaining to reinforced concrete plates subjected to in-plane
forces. In the beginning, the analytical procedure for reinforced concrete plates is outlined, and

afterward the analytical procedure for torsion is summarized.

2 Analytical Pr for Reinfor: ner late Elemen i In-Plane F
(a) Strain Compatibility Condition

Consider a rectangular and hollow cross section subjected to torsion, T. Even though an actual
cross section concerned is solid, it may be assumed to be an imaginary hollow one. According to
the theory of elasticity, shear stresses on solid cross section due to torsion become zero at the
centroid of section. As the location where stresses are applied is approaching to the perimeter of
cross section, the magnitude of shear stresses is becoming large. Resisting moment for torsion
becomes large in proportion to the distance from the centroid of section. Therefore, neglecting the
influence of center part of cross section is not an unrealistic assumption.

According to Bredt's torsional theory on thin-walled closed cross section, a uniform shear flow, ¢q,
is applied to every side wall forming the member (Fig. 1). Fig. 2 shows a free-body diagram of a
reinforced concrete element taken out from an arbitrary side wall. The shear stress on a reinforced
concrete plate, 7, can be obtained by dividing g by the thickness of a plate, £. Applied shear
stress,t, is resisted by normal and shear stresses of concrete and tensile stresses of torsional
reinforcement in longitudinal (x) and transverse (y) directions.

With the increase in applied shear stress, cracks start initiating in reinforced concrete plates. In the
case of pure torsion, the stress state of reinforced concrete plates is equivalent to pure shear.
Therefore, reinforced concrete plates are subjected to biaxial principal tensile and compressive
stresses (o7 = -03). Traditionally, the assumption that cracks occur perpendicular to principal
tensile stress was made for this kind of problem [7]. In this research, the same assumption has
been utilized.

The directions parallel and perpendicular to cracks are designated as c- and ¢-axes, respectively.
For the case of pure torsion, the angle B between x- and t-axes becomes 45 degrees. Generally, ¢-t
axes do not coincide with the principal strain axes of reinforced concrete plates because shear
stresses should be transferred along crack surfaces. The principal strain axes are designated as 1-2
axes in a reinforced concrete plate (Fig. 2). The angle between the principal tensile strain axis (I-
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axis) and x-axis is defined as «. Before the
initiation of cracks, the angle o is equal to the
angle 8. However, once cracks occur, « is not
coincident with 8 because of the existence of
shear stresses along crack surfaces.

The Mohr's strain circle of Fig. 3 exhibits the
relationship of strains. The strains in Fig. 3 are
averaged strain in the direction of plate thickness
(z-axis). According to graphical relationships
exhibited in Fig. 3, the following equations are
obtained for these strains:

& & = (€ + €02 + L(eyy - £,0)—C0s20
2 cos2(B-a) (1)

Yoy = (€t - €o0)—SN20 Fig. 3 Mohr's Strain Circle for Averaged
cos2(f3-c)) 2) Strains
Yect = (€t = &cc) tan2(a-P) 3)

In this paper, the notation that tension is positive, and compression is negative, is always used.

(b) Equilibrium Condition
When stresses of both concrete and reinforcement have been obtained from strains by using stress-
strain relationships that will be described in Chapter 3, the average stresses of concrete in the ¢-t

directions can be converted into the following average stresses in the x-y directions by coordinate
transformation.

Ocx = Ot COS2B+ Ope 5inP - To sin2f 4)
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angle 8. However, once cracks occur, o is not
coincident with § because of the existence of
shear stresses along crack surfaces.

The Mohr's strain circle of Fig. 3 exhibits the
relationship of strains. The strains in Fig. 3 are
averaged strain in the direction of plate thickness
(z-axis). According to graphical relationships
exhibited in Fig. 3, the following equations are
obtained for these strains:
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In this paper, the notation that tension is positive, and compression is negative, is always used.

(b) Equilibrium Condition
When stresses of both concrete and reinforcement have been obtained from strains by using stress-
strain relationships that will be described in Chapter 3, the average stresses of concrete in the c-z

directions can be converted into the following average stresses in the x-y directions by coordinate
transformation.

Ocx = Ot COS2P+ O Sin?P - Toey sin2 )



Ocy = Oct Sin?B + O cos?2P + Toce sin23 (5)
1cxy = (OC[' Gcc) Sinﬁ COSB + cht COSZﬁ (6)

The average stresses of reinforcement are o, and oyy. For the case of pure torsion, applied normal
stresses in x-y axes are zero. After all, the following equilibrium equations are obtained.

Px Osx+ 0cx =0 Q)
Dy Osy+ 0y =0 8)

where, py and p, are reinforcement ratio in the direction of x-y axes, respectively.

2.3 Outline of Torsional Analysis of Reinforced Concrete Linear Members

(a) Deformation State of Reinforced Concrete Plate Elements

The Mohr's strain circle of Fig. 3 exhibits the relationship of averaged strains in the direction of
plate thickness. Actually, each side wall forming a hollow cross section of a member deforms with
two reverse curvatures such as a saddle (Fig. 4). Therefore, the strain distribution in the direction
of plate thickness is not uniform, and the average stress cannot be calculated directly from the
average strain in the direction of plate thickness. This is a peculiar aspect of torsional problem.

If a displacement in the direction of plate thickness (z-direction) at an arbitrary point, A(x,y),

within a reinforced concrete plate element is designated as w, the displacement w can be
represented by using the angle of twist per unit length, 6.

w=0xy (10)
Since the directions parallel and perpendicular to cracks have been designated as c-f axes,

respectively, the relationships of x = ¢ sinf and y = ¢ cosj3 are obtained as shown in Fig. 4. The
curvature in c¢-direction, ¢, can be determined as follows:
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Fig. 4 Deformation of Reinforced Concrete Plate Subjected to Torsion



dx/dc = sin B, dy/dc = cos B

dw _dwdx  wdy _g. o

p axdc+aydc @y sinf + 6x cosp
= d®w__ 0 dwydx_ 3 dw\D _ g4
o= ax(dc) 3y ‘dc e~ 0 sin2p 1)

The curvature in the z-direction, ¢y, can be determined in the same way. ¢ becomes -¢..

The strain & is not a principal strain. However, the curvature ¢, becomes the maximum value
according to Eq. (11), because of the assumption that §is 45 degrees for pure torsion. This means
that the directions of principal curvatures and principal strains do not coincide. The reason why
these directions are not coincident with each other is that g has been assumed to be constant
throughout the plate thickness. As a result of calculations, the influence of this discreparicy was
admitted to be slight. Therefore, it was decided to use Eq. (11) without any modification in the
following analysis.

The normal strain distribution on each cross section perpendicular to c- and #- directions was
assumed as Fig. 5. The average normal strains on each cross section are &, and &, respectively.
The strains & and e.. are shown in Fig. 3. For the elastic stage before cracking, the surface
strains of a plate are considered to have the relationship of e.; = —&; as shown in Fig. 5(a).
However, for both the inelastic stage before cracking and the stage after cracking, the tensile strain
increases very rapidly with the decrease in the tension stiffening of concrete, and thus the strain
distribution in the ¢- and ¢- directions are no more symmetric each other. The strain distributions
are considered to become such a state as shown in Fig. 5(b).

The effective depth of a plate for torsional analysis, ¢4, was assumed to be equal to the distance
between the surface of a plate and the location where compressive strain on a cross section
becomes zero. According to this assumption, the surface strain in a compression side, e,
becomes 2¢, and the strain in a tension side changes linearly from &, t0 g+£.. The surface
strain e, can be obtained from Eq. (12).

Es=2€c= @ tg=-1405in2J (12)

compressive tensile compressive  tensile
strain strain strain strain
Es=2Ec Es=2&; Eos =2 & &s = &t - Ecc
ld la
(a) Elastic Stage (b) Inelastic Stage

Fig. 5 Strain Distribution of Reinforced Concrete Plate in the Direction of
Plate Thickness
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Fig. 6 Longitudinal Displacement of Closed Cross Section Subjected to Torsion

(b) Relationship between Shear Strain and Angle of Twist

The relationship between the shear strain of a reinforced concrete plate, %y, and the angle of twist
per unit length, 6, can be obtained by utilizing the assumption that the difference of longitudinal
displacement should not occur for a closed cross section. In a hollow cross section as shown in
Fig. 6, we consider an infinitesimal rectangular element along an imaginary cut surface. The
longitudinal displacement due to the angle of twist, duy, can be obtained as follows:

duy=-r6dy
The longitudinal displacement due to the shear strain, du, can be obtained as follows:

dup = Yy dy
The integrated value for infinitesimal displacements with respect of the perimeter of a whole cross
section should be zero because the difference of longitudinal displacement cannot exist for a closed

cross section. According to this condition, the relationship between the shear strain and the angle
of twist per unit length can be derived as Eq. (13).

9=7xypo

24, ; (13)
where, A, is the area enclosed by the center line of effective thickness, and p, is the length of
perimeter of the center line. In the case of a rectangular cross section having the width b and the
height A, A, and p, can be calculated by Egs. (14) and (15).

Ap=(b-13)(h-13) ~ (14)
Po=2(b+h-214) (15)
(c) Compatibility Condition of Deformation

By arranging the above relationships, the compatibility equation of deformation for torsional



analysis can be derived. By substituting the shear strain of Eq. (2) into Eq. (13), Eq. (16) can be
obtained.

e— po (sct Ecc)_ﬂnla—_
cos 2(f-a) (16)

Next, 8of Eq. (16) is substituted into Eq. (11).

sin2o sin2
cos2(B-0) 17

¢c = ZPX = &c )
0

By substituting ¢. of Eq. (17) into Eq. (12) and arranging it, finally the following equation can be
obtained.

Do tq sin2o sin2f3 Ny
- t
Do 4 sin20 sin2f3 - 4 A, cos2(f-0) (18)

Ec =

Eq. (18) is the compatibility equation of deformation for torsional analysis. When the average
strain of a reinforced concrete plate, &, perpendicular to cracks is given, the average stram, £ccs
parallel to cracks can be determined uniquely based on the assumed a and #; values.

For the elastic stage of concrete, the compatibility equation becomes simple. As exhibited in Fig.
5(a), e is equal to -, and thus %, becomes -2¢... Considering the assumption that gis 45
degrees, 14 becomes —2¢../6 from Eq. (12). By using the relationship of Eq. (13) for 6, t; becomes

2A,/p,. For arectangular cross section, ¢4 is equal to (b+h- y b2-bh+h?) /3 because A, and p, are
represented by Egs. (14) and (15).

THE CAL RA T AND THE ATION OF STRE
RESULTANTS

1 _Average Tensil ss of Concret

Concrete stresses of a reinforced concrete plate are considered in the direction parallel and
perpendicular to cracks, and then they are converted into stresses in x-y directions by coordinate
transformation. Since stresses are not uniform within effective thickness, the average value has to
be determined. Most analytical methods previously proposed assumed that the location of stress
resultants coincides with the half of effective thickness. Strictly speaking, it is obviously wrong.
To determine the location of stress resultants rigorously for both tension and compression stresses
is one of the characteristics of this analysis.

As for the estimation of tensile stress of concrete in the direction perpendicular to cracks, the stress-

strain relationship considering the tension stiffening, that was proposed by Okamura et al. [8], has
been adopted.

0<g<e, = o=E. g<f;
&< = o=fi(&/E)f

where, &, = 0.002, and ¢ = 0.4. Young's modulus of concrete has been determined by the



following equation.

E. = 40000 £,"3(kgf/cm?2)

As for the tensile strength of concrete, experimental values reported were generally used. When
experimental data was not available, it has been predicted by using the following equation.

fr =0.583 £, 2B(kgflcm?)

When the surface strain in tensile side does not exceed f; /E,, concrete is judged to be in the elastic
stage. Whenever the surface strain surpasses f; /E,, the compatibility condition of Eq. (18) should
be applied.

The average tensile stress of concrete within the plate thickness can be calculated from Eq. (19).

ta
Oy =lj o dz
la

0 ' (19)

The location of stress resultant, z;, can be obtained by Eq. (20).

7]
zt=f C}ZdZ/(O'Cgtd) .
0 (20)

where, the origin of z-axis is the location of depth #; from the surface.

3.2 Average Compressive Stress of Concrete

As for the estimation of compressive stress of concrete in the direction parallel to cracks, the stress-
strain relationship considering the softening of concrete, that was proposed by Collins et al. [9],
has been applied.

e AN fc_z]
o "ﬁPQ)Q) @1
where, 1=1/[0.8-0.34 (&/&,)1<1, and ¢, = -0.002. The case that £, reaches —0.0035 was
defined as the ultimate state. ~

The ultimate state, in other words, the failure of reinforced concrete is considered to be governed
by the failure of concrete unless reinforcement is broken. This is a general principle, and is not
restricted to only torsion. In this research, we have assumed that when &, reaches -0.0035 is the
ultimate state. Although it is quite clear.that the magnitude of ultimate strength is greatly dependent
on the amount of reinforcement provided, we do not consider that the yield of reinforcement
directly means the failure of reinforced concrete.

If the stress distribution within the effective thickness is obtained, the average compressive stress
o, and the location of stress resultant z. can be calculated in the same way as Egs. (19) and (20).



3.3 Shear Stress of Concrete

For the estimation of the average shear stiffness after cracking, the method proposed Izumo et al.
[7] has been adopted. In this method, the average shear stiffness is estimated as a series of shear
stiffness on crack surfaces and elastic shear stiffness between cracks. As for the estimation of the

shear stiffness on crack surfaces, Aoyagi-Yamada's equation has been applied. Therefore, the
average shear stiffness after cracking, G4y, can be calculated by Eq. (22).

A1 -1, 1
Gav Gc Gcr (22)

where, G, is the elastic shear modulus, and it can be obtained from Young's modulus and
Poisson's ratio. G, is the shear stiffness on crack surfaces that is given by Aoyagi-Yamada's
equation [Eq. (23)].

Ger=36/ € (23)
Eventually, the average shear stress after cracking, 7., can be obtained as follows:

Tect = Yect Gav
The location of stress resultants was assumed to be z; = 24 /2.’
The shear stress of concrete in the x-y direction, 7.y, is obtained from Eq. (6). Considering the

equilibrium of moments with respect to x axis, the location of stress resultant for 7y, can be
obtained as follows:

zg= [(O'C, 2t - O 2¢) Sinf cosP + Tee 2 cos2,3] [ Texy (24)

For a rectangular cross section, the area enclosed by the location of stress resultant, 4 ;, becomes
(b-2z4)(h-2z,). The torsional moment, T, is calculated by using A;.

T=2A) Texy t4 25)

3.4 Tensile Stress of Reinforcement

In principle, the tensile stresses of reinforcement, oy, and oy, are obtained by multiplying strains
in the x- and y-directions by Young's modulus of reinforcement. However, once reinforcing bars
yield locally at the location of cracks, it is known that the average stiffness of reinforcement
decreases less than the stiffness of a reinforcing bar itself. To deal with this phenomenon, the
judgment on local yielding of reinforcement has been performed by using local stresses of
reinforcement at the location of cracks. The local stresses are calculated from Eq. (26). ‘

Osxcr = (T + Tier ) tanP / px :

Osyer = (T = Teter ) cotf / Dy 26)
where, 7 is the applied shear stress, and 7., is the shear stress carried by concrete on crack
surfaces, that can be obtained as 7cer = Gor %o Whenever the local yielding is recognized, the

average stress-average strain relationship of reinforcement proposed by Okamura et al. [11] has
been utilized.



4. ANALYTICAL PROCEDURES AND CAL ATED EXAMPLES

4.1 Analytical Procedu nd Flow Chart

Analytical procedures are as follows:

(1) Input the properties of materials, and
the dimensions and details of cross
section. :

(2) Consider a reinforced concrete plate
element taken out from an imaginary
hollow cross section. Assign the
average tensile strain, &, of the plate
in the direction perpendicular to
cracks.

(3) Assume the angle o between the
directions of the principal tensile
strain and the x axis.

(4) Assume the effective thickness #; of
the plate.

(5) Calculate the area enclosed by the
center line of effective thickness, Ao,
the length of perimeter of the center
line, p,, and the reinforcement ratios
in the x- and y- directions, px and py.

(6) By using the equation of compatibility
condition [Eq. (18)], calculate the
average compressive strain, g, of
the plate in the direction parallel to
cracks.

(7) Calculate the strains, &, &, %y, and
Yeet from Egs. (1) ~ (3).

(8) Calculate the average tensile,
compressive, and shear stresses of
concrete ( ocp, Oce, and 7eer ), the
location of stress resultants ( zy, z¢,
and z; ), and the tensile stresses of
reinforcement (oyx and oy ).

(9) By using Egs. (4) ~ (6), convert the
average concrete stresses into the
stresses in the x- and y- directions.

(10) Verify the equilibrium condition in x
direction [Eq. (7)]. If it is not
satisfied, return to the step (4).
Assume 14 again and repeat the
procedure. If z; converges to a certain
value and the equilibrium condition is
satisfied, go to the step (11).

(11) Verify the equilibrium condition in y
direction [Eq. (8)]. If it is not
satisfied, return to the step (3).
Assume o again and repeat the

START

Input material properties,
and details of cross section

l Assign & %:

rCalculater sPos»Px>» &ILJ

Calculate &

[Calculateex s &, Yy, & ')/CCLJ
Y

Calculate ‘
Ots Oces Tects 21> Zcr & Zs

¥

Calculate
Ocxs Ocys Texys Osxs & oy

Modifyo - €
relationship

Fig. 7 The Flow Chart for Analytical Procedures



procedure. If a converges to a certain value and the equilibrium condition is satisfied, go to the
step (12).

(12) Judge as to whether or not the reinforcement yields locally. If obtained status of
reinforcement is different from previously assumed one, return to the step (3). Modify the
stress-strain relationship of reinforcement, and repeat the procedure. If obtained status
coincides with the assumed one, go to the step (13).

(13) Calculate the torsional moment, T, from Eq. (25) and the angle of twist per unit length, 6,
from Eq. (13).

(14) Unless the surface strain of concrete in the compression side of the plate reaches the ultimate
strain, return to the step (2). Assign & again and repeat the procedure. If the surface strain
exceeds the ultimate strain, stop the calculation.

The flow chart of Fig. 7 exhibits this procedure.

4.2 Calculated Examples for 1 imen
(a) Comparison with the solution of the theory of elasticity

Before cracks occur due to torsion, reinforced concrete exhibits the behavior as an elastic body.
Elastic analysis for torsion, after all, comes to find a stress function, ¥, that satisfies Poisson's
differential equation and also the boundary condition that the function has to be zero on the
perimeter of cross section.

When the axis of a member is designated as z axis, and x-y axes are assigned on the cross section,
the stress function for torsion, ¥, has to satisfy the following Poisson's equation [Eq. (27)] and
the boundary condition [Eq. (28)].

2 2

a_lP. + _a_'f_ =-2G86

ox2 9dy? @n

¥="¥(x,y)=0 (onthe perimeter of the cross section) (28)
If the stress function, ¥, can be obtained, the T(f-m)
torsional moment, T, will be calculated from Eq. 07 |-
e e Elastic theory

T=2 J f Y dx dy (29) 06 - Proposed analytical method

05

The stress function for circular or elliptic cross
section can be presented easily by using a simple 0.4
quadratic function. However, a theoretical stress )
function cannot be obtained for rectangular cross

section because it is difficult to represent an analytical 03
boundary condition. Generally, Fourier's series has
been utilized to give the stress function for 02
rectangular cross section, and in practice, such an
approximate equation as Eq. (30) is often used. 0.1
T=Bb*hG 6 (30) ' 1 0.2
0 0. 0 (deg }r)rs
where, b and & are the length of the short and long Fig. 8 Comparison of T-8 Relationship
sides of a rectangular, respectively. Bis the in Elastic Region



coefficient depending on the ratio of
h/b. The torsional stiffness of
rectangular cross section changes
remarkably with the ratio of the length
of sides.

In Fig. 8, the T-0 relationships
obtained from Eq. (30) are shown by
broken lines. In this example, b was
fixed to 10 ¢cm and the ratio of h/b
was changed from I to 5. Obtained
torsional stiffness (T/6) is designated
as K,. As for the shear modulus of
concrete, G, = 70000 kgficm? was
used.

The T-0 relationships obtained from

the analytical method proposed are

also shown in Fig. 8 by solid lines. The
relationships exhibit the elastic behavior
of reinforced concrete before cracking.
In this region, the effect of reinforcement
seems to be negligible. The torsional
stiffness obtained from the analysis is
called as K. The compressive strength

of concrete used was 300 kgf/cm?2.

Since calculated torsional stiffness in the
elastic region is influenced greatly by the
magnitude of shear modulus employed,
broken and solid lines in Fig. 8 are not
necessarily coincident with each other as
shown in the figure. Table 1 shows the
magnitude of torsional stiffness, K, and
K3, and the change of torsional stiffness

with the increase in the ratio of h/b.

According to Table 1, although K, and
K are not necessarily coincident, it can
be admitted that the change of torsional
stiffness is very similar in both methods.
Proposed analytical method cannot
provide the same torsional stiffness as the
elastic theory; however, it can predict the
change of torsional stiffness with the
increase in the ratio of 4/b reasonably.

(b) Overall behavior

Fig. 9 shows the T-9 relationship for the
same rectangular cross section having
different amount of reinforcement. The
details on this example are represented in

Table 1 Comparison of Torsional Stiffness in
Elastic Region

NoJb |h |Asx Ayls| Ka |Kai| Kp Kui.
cmicm | cm?| em?® (€7 f -m¥deg| Ka1 | 1f -m¥deg| Kb1

1010{1.510.38{10] 0.172 {1.00{ 0.159 |1.00

10)20}3.0|0.50|10{ 0.560 |3.26] 0.531 |3.34

10]30(4.510.56 (10| 0.968 |5.63| 0.933 |5.87

10(40}6.0/0.60|10| 1.373 [7.98| 1.300 |8.18

s W] —

10|50/7.510.63]10| 1.778 {10.3| 1.658 |10.4

*K , is the torsional stiffness according to the elastic
theory (=T/6)
** Kp is the torsional stiffness from the proposed
analysis
wkk f' =300 kgf fem?2, G, = 70000 kgf /cm?

T (f-m)

20 -

] No4
1.5 No.5 No.3

No.2
10 |-

N
05 b 0.1

] | | |
0 1 2 3 4

6 (deg /m)
Fig. 9 T-0 relationship for rectangular cross section

Table 2 Details of Section and Material
Properties for Calculated Examples
No b [B [Asc[Asy s | Ty fyy | £
‘lemfem| om2 | g2 oM kef Jem® kef Jem® kgf/cm2
20|20|2.56{ 0.4 {10{ 3500 | 3500 | 300
20{20(5.12} 0.8 {10} 3500 | 3500 | 300
7.68(1.2 10| 3500 | 3500 | 300
20{20|10.2{ 1.6 [10{ 3500 | 3500 | 300
20[20(12.8] 2.0 {10| 3500 | 3500 | 300

(T RN IVSE NN
[%)
o
)
o




Table 2. In Table 2, Ax and Ay mean the total cross-sectional area of longitudinal reinforcement
and the cross-sectional area of one transverse reinforcement, respectively, and s means the spacing
of transverse reinforcement. According to Fig. 9, the following aspects are observed.

(1) When reinforcement ratio is low, the resisting moment for torsion decreases rapidly after
cracking and then it recovers gradually with the increase in torsional deformation.

(2) With the increase in reinforcement ratio, the tendency that the resisting moment decreases
rapidly after cracking has disappeared.

(3) Once the resisting moment reaches the maximum value, the moment is being kept nearly
constant. : ‘

It is considered that the rapid decrease
in the resisting moment after cracking T(tf-m)
is due to the fact that the analysis has —Cal ,
been performed by displacement - alculation
control. The characteristics of the
tension stiffening adopted also affects
this tendency.

5. COMPARISON___WITH
REVI EXPERIMENTAL

RE T

=N W R N

To verify the accuracy of the
analytical method, previous
experimental data for pure torsion 0
[12]~[17] have been collected. The
summary of experimental data are

0 (deg Im)
shown in Table 3. Fig. 10 Comparison of Experimental and Analytical
T-© Relationships (Hsu B Series [12])

Fig. 10 shows the comparison of

Table 3 Summary of Experimental Data and Calculated Results

Number| b px* | py* | fiy fyy fe' Ter Ter.cal TyTucal
Researcher| ¢ i | cm | ™ | ‘% | % kgf lem?|kef fem?|kgf Jem? Av. & C.V. Av. &C.V.
Hsu 15241 |0.40 |0.45 | 3160 |3250 | 146 |0.64 | 0.97 [0.83 | 1.02

[12] Sl 1.95.4|~3.25|~3.16 ~3.76| ~3590| ~3680| ~467 |~1.31] 14.5% |~1.20] 7.87%

McMullen 13 (127 | 1.3 044 |0.64 12360 |2360 | 281 10.62 | 0.85 |0.81 | 1.04

[13] 25.4 ~1.79|~1.98| <3870 | ~3870| ~407 |~1.37| 322% |~1.22| 117%
Ernst 0.61 035 | 2830 069 | 073 074 | 0.83
na 71525 2 | lyg0|~1.24] Z3760] 3990 | 275 | 079 5.80% |~0.90| 5.84%
Victor s |8.03 (197 [132 [0.47 |2230 |2615 | 221 0.87 | 0.99
[15] ~8.18|~2.01|~2.01|~1.79| ~2351| ~3390| ~235 | — ~1.12| 8.07%
Okamoto 1.63 0.5 | 3560 |3360 | 185 081 | 094
)| 10 | 140|139 5|5 96| ~3700| ~4020| ~345 “121] 122%

Authors 5 150 |1 095 [1.14 13620 |3290 | 178 [1.03 | 1.23 [0.73 | 0.91

117 ~20.0 {~1.33|~2.65|~3.33| ~3800 | ~3860] ~368 |~1.32] 8.91% |~1.09| 15.4%
2(b+h)A Data 76 Data 91

% px =100 Asx /(b h), py=100—u—sL Ave. 095 Ave. 099

: b h-s CV. 208% CV. 11.1%



T.: experimental value (tf - m )

T.r: experimental value (tf - m)

10 - 5 -
8- /’0’ 41 //,
teo . K
6| N2 3+ N
o‘n’:. 9” :
4 % 2| : 7
ﬂe‘ ‘.2
& A
R ” Data 1k ; “Q Data 76
Ave. 0 & Ave. 095
f CV. 11 s C.V. 20.8%
% ! i | { " ! ! ! I
0 2 4 6 8 10 0 1 2 3 4 5

Ty: calculated value(tf - m )

Fig. 11 Comparison of Experimental

and Analytical Results
( Torsional Strength: T ,, )

Tcr: calculated value(ff - m)

Fig. 12 Comparison of Experimental

and Analytical Results
( Cracking Moment: Ter )

experimental T-6 relationships with analytical results. These data are obtained from Hsu's B series
[12]. As for the estimation of torsional cracking moment, the prediction can is valid. Overall
prediction for T-@relationship after the cracking up to the ultimate state is also reasonably accurate.

Fig. 11 shows the comparison of experimental ultimate strength with analytical result. For
previous ninety-one experimental data, the mean and coefficient of variance for the ratio of the
experimental value to the analytical one are 0.99 and 11.1%, respectively. The accuracy of the
estimation for the ultimate strength is quite well. As for the torsional cracking moment, however,
the mean and coefficient of variance are 0.95 and 20.8% (FIG. 12), and thus the accuracy of the
estimation is not satisfactory.

The effect of slight decrease in the tensile strength of concrete under pure shear, that is, biaxial
tension and compression stress state, has not been incorporated into the analysis. The uniaxial
tensile strength has been used as the tensile strength of concrete in this analysis. If the effect of
this slight decrease had been considered in the analysis, the accuracy of the estimation for cracking
moment would have been improved somewhat, and the mean would have approached to 1.0
slightly. '

N ING REMARK

The purpose of this paper was to present the analytical method for the prediction of the T-6
relationship of reinforced concrete linear members subjected to torsion. In the analysis of
reinforced concrete plates that is the basis of torsional analysis, the results of recent researches on
tension stiffening and softening of concrete, shear transfer on crack surfaces, and local yielding of
reinforcement have been utilized. As for the torsional analysis, based on the assumption that
effective thickness can be determined by the location where compressive strain becomes zero, the
equation of strain compatibility condition has been derived. Conclusions obtained from this
research are as follows:



(1) The torsional stiffness in the elastic region predicted by the analysis is not necessarily
coincident with the stiffness calculated from the elastic theory. However, the change of
torsional stiffness with the ratio of dimensions of a cross section can be predicted reasonably
by the analysis.

(2) Considering the large scatter between experimental and analytical values, the estimation of
torsional cracking moment is not sufficient.

(3) In case the estimation of the magnitude of torsional cracking moment has been accurate, the
following T-6 behavior until the ultimate state can be predicted accurately.

(4) The ultimate torsional strength itself can be estimated accurately regardless of the accuracy of
the prediction for torsional cracking moment. Although the magnitude of torsional cracking
moment has the substantial influence on the following deformation behavior, it hardly affects
the magnitude of the ultimate strength of the member.
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