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DEFORMATIONAL COMPATIBILITY OF AGGREGATE PHASE FOR
TAPERING FLOW OF DENSE LIQUID-SOLID MATERIAL

By Anura NANAYAKKARA*, Kazumasa OZAWA** and Koichi MAEKAWA***

The aim of this research is to clarify the deformational compatibility for dense aggre-
gate phase of concrete in tapered portions of pipe lines used for concrete pumping. The
deformational compatibility, which describes the relationship between the strain rate of
aggregate phase (particle assembly) developing over a reference section and sectional
mean flow speed of the particle assembly, is indispensable for self consistent one-dimen-
sional computation of dense liquid-solid flow, Visual test and image processing on model
concrete under simplified flowing conditions were carried out for development of the
mathematical description for deformational compatibility of aggregate phase, in which
the second invariant of aggregate phase strain was adopted as a main parameter associ-
ated with stress generation due to particle-to-particle interactions. In relating sectional
averaged invariant of strains to the mean flow speed of solid phase, dimensions and
shape of the pipe, the authors proposed a simplified compatibility, reduced to one-
dimensional condition, applicable to dense liquid-solid flow in straight and tapered see-
tions of pipe lines.

Keywords © liguid-solid flow, tapered . section, deformational compatibility, concrete

pumping, visual lest

1. INTRODUCTION

The concrete pumping has become a popular way of transporting concrete due to its efficiency and
reduction in labor cost. The popularity of concrete pumping has stimulated engineers to develop not only
concrete pumps and pipe line networks” but also mix design concept of concrete from a view point of
pumpability?.

For evaluation of pumpability of fresh concrete in a pipe line, the authors have adopted the multiphase
concept? ¥ which can treat transient segregation and flow resistance simultaneously, Authors discussed
the sectional averaged one-dimensional analytical approach® with self-consistency as shown in Fig. 1.
Here, momentum transfer and mass-balancing equations for aggregate assembly and mortar phase are
specified according to Newton’s law of motion and incompressibility conditions respectively.

Concrete consists of large amount of particles with different dimensions and shapes. Generally, the
particle interaction governs the global behavior of concrete flow, The phase-to-phase interaction (force
transfer between coarse aggregate and mortar constituent particles) is considered in terms of the drag
force or so-called “segregation resistance force” in Fig.1. The particle-to-particle interaction in each
phase is evaluated in terms of the phase-developing stresses, for example, pore pressure is the
phase-developing stress of liquid. The authors conducted numerical simulation® and verified by
computational results that the phase-developing stress of aggregate phase and the phase-to-phase drag
force are sensitive to overall kinematics of dense liquid-solid flow similar to fresh concrete,

Previous multiphase researches?-* have been mainly concerned to slurry flow including small amount of
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Fig.1 Two-phase model for fresh concrete.

Fig.3 Aggregate interaction stress g, and sectional
averaged flow speed <IJ).

solid particles (<30 % by volume) where solid to solid interaction is negligible. So, in this paper, a
liquid-solid flow which contains solid of concentration greater than 30 % by volume is referred to as a
dense liquid-solid flow, \

In order to compute the phase-developing stress of aggregate phase over a flow section, firstly we need
the deformational compatibility which gives us the strain rate over a flow section from the flow rate of
aggregate, and secondly the constitutive law is needed for computing particle-to-particle stress of
aggregate’-? as a function of the strain rate in Eulerian expression?.

The aim of this paper is to establish the deformational compatibility condition for one-dimensional
analysis of pipe flow of dense liquid-solid materials. For this purpose, the deformational mode of
aggregate phase related to re-arrangement of aggregate particles must be clarified. But the motion of
constituent particles in real concrete cannot be probed just with naked eyes, Then, the visual test
method”® was adopted to obtain the deformation of aggregate phase in pipe flow of a liquid-solid. A
particle processing technique” based on Eulerian expression was used to clarify dense aggregate phase
deformation under various boundary conditions, Special attention has been paid to tapering flow because
the strain field in a straight portion of pipe is nearly zero due to plug flow without re-arrangement of
particles in case of dense liquid-solid materials,

2. REDUCED DEFORMATIONAL COMPATIBILITY IN ONE-DIMENSIONAL
ANALYSIS

To obtain the exact expression of particle assembly motion, we need discrete mechanics having degrees
of freedom concerned with all processed particles?~"_ This approach is very similar to discrete crack
model” for cracked reinforced concrete mechanics. Otherwise, the multiphase mechanics makes it
possible to express the motion of particle assembly continuously with spatially averaged flow vector. The
latter approach which the authors adopted is quite similar to the so-called smeared crack mode! for FE
analysis of RC, Here, we define a spatially averaged flow vectors V of aggregate at the location
expressed by 7 (=(x, y, z)) as
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where 77 is incremental position vector defined in the integral volume with the origin denoted by 7 where 7

.............. cereeeneennneneseeeenene (1)

=0, 7 ('r-’r?‘ ) is the velocity vector defined on the particles and p( r—i—r ) is equal to unity when position
vector (7417 is included in a solid particle, otherwise, o ( F+7)is zero as shown in Fig, 2. The integral
volume p, is sometimes named as control volume since it includes several particles and the location is
denoted by 7 as shown in Fig. 2.

The general compatibility in three-dimensional flowing field is defined as

au; 8u,

= (ax,+ ax,) ................................................................................................... (2)
in which we have strain rates ¢,, defined at any location and phase developing stress by using a constitutive
relationship. In one-dimensional piping problems, the sectional force dependent on particle-to-particle
interaction or sectional averaged stress g, of aggregate phase in the direction of pipe axis is needed. We
must be informed with strain rates necessary to calculate stress over a cross section with sectional area A
as expressed by Eq. (3) and Fig. 3.

as=—lg_£a'(eu(_f))dx4 ................................................................................................ (3)

where function ¢ means the constitutive law for axial stress evaluation due to particle-to-particle
interaction and 7 is defined on a pipe section,

In the self consistent system of one-dimensional analysis, however, we have no degree of freedom
regarding flow distribution over a cross-section, but have just the sectional averaged flow rate (U in the
longitudinal axial direction as defined in Eq. (4) and illustrated in Fig.3.

<U>=%_/;_V.(7r')°_§dA .............................................................................................. (4)

where § is the unit vector oriented to the axial direction of pipe. Eq. (2) cannot be directly utilized
because of reduced degrees of freedom from three-dimension to one-dimension for computing sectional
value in Eq. (3). .

In classical beam theory we have the same strategy to get continuous one-dimensional mechanics (see
Fig.4). The flexural moment M in beam theory corresponds to sectional averaged stress g, of particles
which is needed in the equation of motion (equilibrium). To compute the flexural moment, we need the
strain distribution over a section, but the only available information for computing strain is the member
deflection & at the centroid of the section, Since there is no deformational degree of freedom along a
section of the beam, the beam deflection & is considered to be corresponding to mean flow rate <UJ) in pipe
flow (Eq.(4)).

Here, we have a well-known reduced compatibility based on Euler-Kirchoff hypothesis assuming that the
plane section remains plane, that is, normal strain in a section is proportional to the second order
differentiation of beam deflection. In other words, this compatibility relates the strain field developing
over a section to the characteristic value concerning beam deflection. This is mere empirical formulation
with limit of application, but makes it possible to conduct simple one-dimensional beam analysis with
reasonable accuracy. In a similar way, deformational compatibility oriented to the sectional stress
evaluation is indispensable to establish one-dimensional flow analysis of dense liquid-solid materials
including fresh concrete.

The deformation mode or strain rate tensors which are associated with stress generation of aggregate
phase must be targeted. In the case of beam theory we refer to a strain component normal to the section
only, because other tensorial components have nothing to do with occurrence of flexural moment.
Generally, there exist three modes of deformation expressed by strain rate tensors in Eq. (2), that is,
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Fig.4 Deformation of a beam in bending and aggregate Fig.5 Pumping apparatus for the visual test.
phase in tapering pipe flow,

shear mode denoted by ‘J’, volumetric mode denoted by ‘I’ and spin mode expressed by . In case of
two-dimensional particulate kinematics, we have?

I=ﬁ’%§£ ............................................................................................................. (5)
J= (iﬂ%ﬂ)ﬂf e;y .............................................................................................. (6)
wz(%l‘f_%) ...................................................................................................... (7)

The invariant ‘J"™ which is independent on the coordinate transformation has close correlation with solid
phase stress” since the phase stress is generated from the particle-to-particle collision and friction'
related to shear mode. Therefore, special attention will be made to ‘J’ over a section as a function of mean
flow speed <U).

3. DEFORMATION OF SOLID PHASE IN DENSE LIQUID-SOLID FLOW IN PIPES

(1) Visual test

Since the motion of aggregate in real fresh concrete cannot be observed, the authors utilized model
concrete developed by Hashimoto et al.?. We can see aggregate by replacing mortar with the transparent
viscous matrix.

For developing the compatibility of particulate flow distributed in liquid, all particles must be processed
so as to quantify the strain field of dense aggregate phase, Actually, the flow of concrete in a pipe is in an
axisymmetric three-dimensional condition, in which it is impossible to detect the motion of all particles in
the model concrete, Then, the apparatus as shown in Fig, 5 was used to reproduce two-dimensional plane
flow in straight and tapered portions made of transparent acrylic panel so as to process the motion of all
particles”, Although two-dimensional boundary condition of experiment is different from the three-
dimensional actual one, it is expected to have the similar macroscopic pattern of deformation field in a
section. Two-dimensional observations must be comprehensive for us to understand three-dimensional flow
pattern,

(2) Image data processing

Based on the visual image data of the model concrete, the spatial averaging method of particle assembly
motion was proposed based on Eulerian expression'™, The integration of velocity in Eq. (1) was
numerically carried out for creating continuous velocity field as shown in Fig. 6 and followed by the strain
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field®. The size of the control volume p, was specified to be two times the maximum size of aggregate. If
v is less than maximum size of aggregate size or greater than several times the aggregate size, it does not
represent the microscopic behavior of aggregate deformation, Therefore it is appropriate to consider two
times the maximum size of aggregate as the control volume Ve.

Furthermore, flow rate, strain and its invariants in each location were averaged in time domain as

— 1 ’+Al £+A!1 aul au.’ ...........................................................

G”‘E/ eud Atf (ax, axt)dt (8)

—_ l+d[

J= At_[ ...................................................................................................... (g)
t

<U>=ALt QU @f +veevreesesesereesasasemms e tee s 10)

“___" indicates the time averaged value and “¢ )" indicates the sectional averaged value of any
parameter, The time averaging interval At used in the image analysis varies from (. 65 sec. to 2.0 sec.
depending on the speed of pumping.

Even though the flow would be stable, there exists some fluctuation of flow and deformation of aggregate
phase in time domain. In the case of single phase liquid flow, the fluctuation of flow and associated
momentum transfer expressed by Reinolds stress is prominent for liquid stress compared with the
molecular shearing resistance. On the other hand, the time averaged distortion of dense solid flow
described by strainrate in Eq. (8), (9) is considered to be greatly associated with the stress generation,
compared with the momentum transfer by the flow fluctuation. Achieving the aim of this paper, firstly the
authors investigate the macroscopic behavior of dense liquid-solid flow as an idealized model of concrete.
The following strain measurements are based on the time averaging procedure,

a) Two-dimensional flow pattern

Time averaged velocity distribution of selected sections for tapered pipe are shown in Fig. 7, where the
dense solid concentration of 35 % by volume and high viscosity (‘P’ funnel time is 3 mts,) liquid were
selected as model concrete. In this paper, “dense” liquid-solid is defined as the two-phase material with
higher volume concentration of solid phase, whose contact and resulting interaction stress are not
negligible. Since the volume fraction used is approximately 70 % of the maximum volume fraction (i. e.
G/Grax=709%), the adopted liquid-solid is entirely “dense” two-phase material. Previous multiphase
researches have been mainly oriented to slurry flow including small amount of solid particles (<30 %) and
the solid plays minor role to increase momentum transfer due to turbulence and the shear rate of liquid
between particles without particle-to-particle interaction effect. The velocity distribution of aggregate
phase is close to plug flow in straight portions of the pipe and low tapered portions. But if the tapered angle
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is large, the plug flow no longer exists and velocity distribution of particles becomes parabolic as shown in
Fig.7(b). The tapered pipes used in actual concrete pumping have very small tapered angles
(§=1.5deg.) and high coarse aggregate concentration is utilized (approximately 30 %~45% by
volume). Then, the axial flow is expected to be fairly uniform.

b) Two-dimensional deformation field denoted by strains

The distribution of time averaged strains of €5;, €5, and €, for selected cross sections are shown in
Fig.8. It can be seen that in the straight portion E,; and €y are very small, but that T and &, are
increasing with the mean velocity at the section as tapered cross section decreases, Here, it can be noted
that ., is positive and €,y is negative at any location, The shear strain g, is getting positive and negative
signs and becomes zero at the center of the pipe due to symmetrical flow pattern as shown in Fig. 7.

The sectional distribution of time averaged invariants T and J are shown in Fig. 9. The first invariant [
represents the divergence rate of particles”. Very small value of T observed over the test domain means
steady state flow without segregation which the authors intended to produce. If we would use lower viscous
liquid, we have unsteady flow with segregation accompanied with the increase of volume concentration in
the tapered portion®. Since this unsteady state is not suitable for time averaging procedure, we avoid
segregation process for the purpose of compatibility establishment, Then, the particle deformation in pure
shear without volumetric strain rate is given by J.

On the other hand, the larger shear rate intensity represented by the second invariant of J is generated
around the larger tapered portions and at sections with higher rate of flow. This means greater stress
intensity generated due to particle-to-particle interaction with shear. The value of J has a slight
non-linear distribution over a cross section with the maximum at the center of the outlet section of the pipe.

(3) Sectional averaging of shear intensity

The one-dimensional reduced compatibility will be combined with the constitutive model for particle
assembly to compute sectional force Ao, derived from the aggregate interaction. Accordingly, what the
reduced compatibility describes under the mean flow speed of (U should be necessary and sufficient for
strain tensors or deformation modes which the constitutive model requires. As mentioned above,
particulate flow is generally governed by the particle collision and friction mainly excited by the shear mode
deformation, and experimentally obtained flow of model concrete was in pure shear where the mean strain
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rate T is zero. Then, the authors select the value of J as a specified value for shear intensity to be
predicted by the compatibility in one-dimensional condition,
The distribution of the invariant J is described over a cross section of pipe as"

m—_-(—(ij)_*_‘]'(x, By Z)reeer e (11)
J (x)>_—_% '/A‘J (x, v, z) dydz ..................................................................................... (12)

where ¢J (x)) is the sectional averaged invariant related to particulate shear intensity, and the co-ordinate

x is defined paralled to the axis of pipe S.

Since the sectional deviation J” is not so large compared with the mean value of (J) in the normal tapered
pipe angle, the mere sectional average <J (x)> will be referred to in this research, If the particulate stress
would be proportional to the shear rate intensity, the deviator J’ might be meaningless for computing
sectional mean stress g, in Eq. (3) or force developing over a section. In case of the slow particulate
shear flow, it may hold.

The typical sectional averaged (J) is shown in Fig. 10 with sectional averaged value of <I>. We have the

" increasing intensity of shear mode approaching to the outlet. In the straight inlet portion, the invariant {J)
is minimum, After passing through the exit into the straight outlet pipe, shear intensity (J> gradually
decreases, This is considered to be a transient or tranquilized zone in which the momentum may be
transferred by the particulate interaction, The observed flow is exactly in pure shear because of the
negligibly small value of (I) along the pipe axis,

It can be noted from Fig, 11 that the averaged (J) is greatly reduced over the test domain for low pumping
speed. Furthermore, it is understood in comparison with the results in Fig, 10 that the steeper angle of
tapering excites larger shear mode intensity even though the flow speed is constant as 4.2 cm/s.

In case of the deformation around the bifurcating area of pipes, the authors experimentally clarified the
effect of viscosity on the spatial distribution of J?. However, it seems that the liquid viscosity is less
effective on the distribution of ¢(J) as shown in Fig, 12 when the tapered angle is small (§=9.5 deg.). In
the case of large tapered angle, which is not realistic indeed in actual pump transfer, there is an effect of
viscosity on ¢J). As shown in Fig. 13, viscosity is less effective on transition length, but increase of
viscosity reduces the peak value of (J) at the outlet of tapered pipe with taper angle of 21 deg.

4. A PROPOSAL OF REDUCED COMPATIBILITY FOR TWO-DIMENSIONAL PIPE
FLOW

The aim of this chapter is to formulate the relation of the sectional averaged value of (J) obtained in
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Chapter 3 versus the mean flow rate of (U>. As discussed above, the tapering angle and dimension of pipes
must be included in the reduced compatibility, Exact two-dimensional compatibility gives us the following
expression by substituting Eq. (6) and Eq. (9) into Eq. (12) as

J(x =7 fJ (x, y, 2) dydz

= [ ( (S o) +e§y)dtdA

t+4t
=_AAt A ﬁ|€xx_”,/1+¢2 AEQA <oveevrrevrmrrererenierersriniienniineen, Veevearerrasesanias (13)
— er ----------------------------------------------------------------------------------------
where ¢= P (14)

We have a Taylor series with respect to parameter ¢ as

AAtfmf - I|<1+:¢__Jﬂ fs -)dtdA .............................................. (15)

hxgher order terms
The object of this paper is to empirically find the relation of (J> as Eq. (15) and the mean flow <U) as
Eq. (10). Here, let us focus our attention on the first order term in Eq. (15), because the higher order
terms with respect to ¢ may be small compared with the first linear term, In the steady state flow, there
exists the exact solution of the first order compatibility in one-dimension as

<7>=<7m>+ T (@) eeemrmmmmm et (16)
Tuo=sgz [ [lew—1I| dida
= I AT f”“f( aux)dtdA'—Z]Z‘t‘-/:Huj:IdtdA l ................ 17

where J, is the higher order term concerned with ¢ in Eq. (15). The differentiation of the first term with
respect to x is independent on time and the second term in Eq. (17), which corresponds to (I, can be
neglected since it is very small (see Fig.10). Then we have

e ar [k (fuan)ar) | = |42

where (U is the averaged flow rate in section and time domain. In steady state, we have the following

(had=
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mass-balance equation.

<m). A (x): Q (constant_ ) ........................................................................................ (19)

where Q is the mass flow rate. By differentiating the right and left terms in Eq. (19) with respect to x and
substituting into Eq. (18), we have

dAD | (2 1775 O
dx A -—<L tanﬁ)(U) 20)

(in case of two-dimensional duct as shown in Fig. 14)
If the higher order terms in Eq. (15) is negligible, the expression of (J,5> becomes the reduced
compatibility which this paper aims at, Let us check the applicability of the first linear term derived from

=

the exact solution.
As shown in Fig. 10, we have experimentally obtained shear rate intensity <J) and the mean flow rate in

each cross section. The discrepancy between the experimentally obtained (J> and <J,,,> obtained by Eq.
(20) with measured average flow (U means the higher order of J, (¢). Let g denote the ratio of the higher
order to the first term as
.—__—<j>___<7‘s'> = Ji(¢) .............................................................................................. 1)
Jise Jise?

The empirical relation of £ and (J1s> is shown in Fig, 15 which includes the experimental data of §
flowing tests with different tapered angles (9.5, 21, 45deg) and different flow speeds (2, 4.2 cm/s :
piston speed, See Fig.5). The higher intensity of shear rate corresponding to higher value of (J,.>

reduces the deviation factor # so much,
The authors reported the effect of liquid viscosity and volume concentration of aggregate on the

magnitude of ‘J’ in a non-symmetric flow around a bifurcation”?. However, in the case of this axisymmetric
flow in tapered pipe, effect of liquid viscosity and the volume fraction on g are hardly observed in Fig. 16
and Fig, 17, when a steady state of flow without segregation is produced, Therefore, we can expect {J,.>
as one of main factors to specify the higher rate of shear intensity, Here, we have

(7)—_~(7m>(1 +8 ((jm), OLheEr fACLOLS)) «+vr+rvveemrerermerrnerntce ettt (22)

Because of the data scattering and precision of visual processor, the magnitude of higher order denoted
by £ could not-be formulated quantitatively when <J,.> is less than 0.4 sec™!,

But, it is expected that the higher order term is negligible when (J,,, is greater than 0. 4 sec™'. Here, it
must be noted that the evaluation of the higher order term as shown in Fig. 15 is within the dense
liquid-solid flow in which the particle-to-particle interaction is prominent, The less particle interaction
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increases the value of ¢ over a cross section and greater value of g is followed.

Let us recall the compatibility of classical beam theory where the contribution of shear strain component
to the beam deflection is neglected compared with flexural action dependent on the normal strain along the
beam axis. This situation is quite similar to the proposed deformational compatibility condition for tapered
pipe. The omitting of the higher order terms represented by 8 corresponds to the zero value of 4, which
means ignorance of shear strain component normal to the strain along the main flow direction. This
idealized deformation corresponds to that illustrated in Fig, 14 where the distribution of flow speed is
uniform,

Once the deformation of the aggregate phase is decided, the stress can be calculated depending on the
stiffness of the aggregate assemblies. In actual concrete, total force acting on a pipe which can be
measured, gives the sectional averaged force. There should be a way of relating sectional averaged force
and sectional averaged deformation. From the experiment with actual concrete, it is possible to obtain
relationship between sectional averaged force and flow rate, By combining this with proposed
compatibility, it will be possible to obtain constitutive relation for deformation of aggregate assembly,

In the development of a model for aggregate stress due to deformation of aggregate phase in the tapered
section, combination of the deformational compatibility model and a model for aggregate stiffness
incorporating the properties of mortar can be used. By assuming the present model for deformation of
aggregate phase, a model for aggregate stiffness will be evaluated experimentally in the future,

5. EXTENSION TO THREE-DIMENSIONAL PIPE FLOW

The compatibility in Eq. (20) and the empirically obtained higher order term as shown in Fig.15 is
applicable to two-dimensional flow in a rectangular duct. However, piping used in the civil engineering
construction is in circular section in which flow of concrete is three-dimensional. Here, we can assume this
flow as axisymmetric with 2 degrees of freedom concerning displacement of particles similar to the case in
the experiments carried out in this paper. Then, the analogy is expected to be applied to three-dimensional
compatibility for flow around tapered pipes.

The intensity of shear deformation in three-dimensional axisymmetric flow can be represented by the

three-dimensional second invariant J;, as

IV {er—I) (eo—I) ‘
sz\/(e 5 + € 5 + e"z g2y e e e (23)
et
=S €0 et e (o0)
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where e, €r, €o are axial, radial, and hoop strains.
Within a circular pipe section, we can expect isotropic deformation due to symmetry around the pipe axis
as e,=¢c,. We have the similar expression as Eq. (15).

<J_m>=ﬁ[“dl£§ |€s~_1|(1+£_%‘ —"')dtdA ............................................. (25)

higher order terms

2 €rs

=\/3—(€s_1)
— 44t 3
<_]m.w>=ﬁ[ l_‘/z__ | =T | @BAA-wersmeereeeemeemire it 27)

Since the parameter ¥ and the first order of sectional averaged shear intensity in three-dimension is
proportional to those in two-dimension, the first order term is expected to represent the particle-to-

1 LR L T T R e R R R A R R LA AL LA (26)

particle interaction when we deal with dense liquid-solid with higher flow rate,
In the steady state flow with =0, Eq. (28) is formed similarly to Eq. (20) as

— V3 dAKD_V3 (2 —
<Jls"w>=—7-a§-%=7 (.ﬁ - tan 0) €T D R TP P PP PP PR PP PP PEPEPL PP (28)

(in case of circular pipe with radius R)

The characteristic value regarding the size of section is theoretically derived as the pipe radius R. As
the higher order term is concerned, the authors have no empirical information. However, it can be
expected that we have the similar trend as shown in Fig. 15. The greater the value of (J 1st.30> is obtained,
the less the higher order term may contribute, because the parameters ¢ and ¥, which are related to the
higher order of shear intensity, represent the same mechanical behavior of particles. These parameters,
¢ and ¥ in two and three-dimensional compatibility correspond the profile of particle speed over a section,
In case of the uniform profile compared with the axial normal strain rate as illustrated in Fig. 14, ¢ and ¥
become zero and make the higher order negligible, As shown in Fig.7, the profile of particle speed is
relatively flatter and then the first term of sectional averaged intensity of shear is larger for dense
liquid-solid flow,

Then, the first order assumption for reduced compatibility of tapering flow of dense liquid-solid
material is

CIO=CT 1D =F BN G+ (U werverveeseenersreses ettt 29)
where k=4/3 /R in case of circular pipe with radius R and k=2/L in case of rectangular duct with depth
L.

6. CONCLUSION

For dense liquid-solid flow and deformation like that in concrete, solid particle interaction due to
collision, friction and rolling must be evaluated in the momentum equations for multiphase model.

Based on the so-called visualized test, a one-dimensional compatibility for deformation, which relates
the mean speed of particles to the shear rate intensity of dense particle assembly denoted by the second
invariant of strain rate, was proposed in tapered section, By combining the compatibility proposed in this
research with the constitutive law for particle assembly, the authors expect to complete the multiphase
dynamic model for fresh concrete in the future. The followings were experimentally and analytically
clarified by the visualized technique for processing particles’ motion using model concrete.

(1) Inatwo-dimensional tapered pipe flow of dense liquid-solid, the sectional averaged intensity of
shear rate is dependent on the mean particle speed and tapered angle, but hardly dependent on the liquid
viscosity and volume concentration of solid distributed in liquid at high concentration, "

(2) The sectional averaged intensity of particles’ shear rate was represented by the second invariant
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of strain rate, which was analytically integrated over a section, The linear term of shear rate intensity was

experimentally found to be prominent in comparison with the higher order term when the absolute value of
the first term is large.
(3) The first linear term of deformational compatibility for particle assembly is theoretically derived

from the mean flow speed, tapered angle and pipe radius.
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