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SYNOPSIS

The finite displacement theory considering the effect of shear deformation is formulated. In
this study, a computer program using the stiffness equation of reinforced concrete structures
has been developed for the ultimate deformation analysis under cyclic loadings. Cyclic loading
test of reinforced concrete columns under axial force was carried out and the applicability of
this theory was investigated. The experimental values obtained from the specimens in which
axial force, web reinforcement ratio and shear span and beam depth ratio were changed are
compared with the calculated values. It is found possible to pretfict flexure or shear failure
theoretically, when instability of structures is considered.
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1. Introduction

Seismic design of RC structures considers it essential that the seismic energy be absorbed by
ductility after yielding of longitudinal reinforcement in structures. Therefore, prediction of the
ultimate failure point and of the ultimate deformation capacity should be as accurate as pos-
sible. Many cyclic loading tests were carried out to predict the ultimate deformation capacity
as well as the restoring force.[1][2] Several evaluation methods of the ductility are proposed on
the basis of the results of experiments of the reinforced concrete members in Japan.[1][3] The
methods to evaluate the ductility correctly, however, have not ever been established, since the
ultimate behavior of reinforced concrete structures can be divided into a number of ways and
it involves many factors in regard to material nonlinearities besides the factors of structural
dimensions. The proposed methods based on experimental results are almost obtained from
a small number of data and they do not have wide application for reinforced concrete structures.

To obtain results applicable for all RC structures, it is necessary to evaluate its complicated
ultimate deformation behavior analytically. However, since analytical study in the past was
almost based on the moment-curvature relation in a cross section, structural mechanism after
yielding and effects on the ultimate deformation of many factors are not investigated in detail.
Furthermore, these studies do not include the finite displacement effect by large axial force
in which reinforced concrete structures lose their load carrying capacity due to t%\e instability
caused not only from softening of member stiffness but also from the finite displacement effect
at the ultimate deformed state, and also do not include the structural instability and bifurca-
tion problem, which may be important factors to predict the ultimate failure point.

The aim of this paper is to clarify analytically the behavior of reinforced concrete structures up
to the ultimate deformed state. With these reasons, the finite displacement analysis has been
performed, in which a layered beam element which includes shear deformations, is developed.
The analytical results are compared with the cyclic loading tests of RC columns at Saitama
University[14] and Nagoya University. Finally, it will be shown that the prediction of the ulti-
mate failure point may be possible considering the instability of structures analytically.

2. Theoretical Consideration

(1) The Equation of Virtual Work for A Beam Element with Finite Displacements[4][5]

We confine our study within reinforced con- %
crete columns which are comprised of beam-
column elements. For the purpose of formu-
lation based on finite element method, the
following assumptions were made.

1) Variation of strain over the depth of an
element is linear.

2) Bond slip between concrete and reinforce-
ment can be neglected. Fig.1 Beam Element

reference state (n step)

Fig.1 shows the deformation of a beam element subjected to axial force, shear force and bending
moment at the end. To consider shear deformation, the displacement functions for z, y direction
are expressed as

W(z,y) = w— yuly (1)
V(z,y) = v+ v,

where w is incremental axial deformation of deformed state, and v, and v, are incremental
deformations of flexure and shear, respectively. The prime mark denotes the differentiation
with respect to z direction. The axial and shear strains, €, and 7., , are related to the

displacement functions for z,y direction for large displacement fields as shown in Eq(2).
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Yoy = V1,2
In Eq.(2), the term w/* is neglected since it is negligibly small compared with the other terms.

We obtain then the equation of virtual work in the incremental form for a finite displacement
problem as

/{Uxé(wl — yully) + Ty 601 }du + /{O’I(S(’Ulb + v (v + vi?)/2}dv

+ / {0©8(ury + v1,)?/2}dv + / (fubus + f,8u,)ds = §W, (3)

W, = [(f5u, + [O6u)ds — [{oD6(wr — yome) + rDsu1,}do
- / {08 + 0O vty + v1,) 2} dv (4)

where the terms with superscript (0) denote values in an arbitrary state of equilibrium in the
reference state, and the others denote incremental values due to an additional load increment
from the reference state. The higher order term, o,6(v#, + v/,)?, has been neglected.

The first term in Eq.(3) is the variation of strain energy which corresponds to the linear dis-
placement theory, that is, it represents the virtual work of perturbed stress due to the additional
external force, and the second term represents the virtual work of additional stress with de-
formation, and the third term represents the virtual work of initial stress 0{®) as the reference
state, while Eq.(4) is the virtual work of unbalanced force since the equilibrium in the previous
load step is not satisfied strictly.

(2) Stiffness Equations
From the governing equation for bending, shear displacement of beam v, is obtained as follows.

dv, _ 1 dM
dc =~ GAdz
EI &y,

= TGAd %)

where GA is the shear stiffness of the effective cross section of reinforced concrete, and it de- -
pends on stress state or cracking.

By assuming a 31d order polynomial for v, and a linear equation for v, and w, displacement
function of each displacement increment can be obtained as
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where the coefficient k = (EI/GA) is the ratio of shear stiffness and flexural stiffness. When
shear stiffness is infinite, displacement function reduces to the well-known function of a beam
element.

The incremental displacement vectors {du},{dv} are shown by Eq.(7), respectively, where
wi(i = 1,2), v(i = 1,2) and 6u(i = 1,2) denotes vertical, lateral displacements and bending
rotation respectively.

{du}T = [wy, wo)
{dU}T = [[Ul, ebl,vz,gbz] (7)

Since shear rotations are dependent on bending rotations at the nodes of the element, the el-
ement has 6 degrees-of-freedoms i.e. axial, lateral displacements and bending rotations at the
ends of the element.

Finally, we arrive at the following stiffness equation from Eq.(6) using Eq.(3) and Eq.(4).
(K] + [Ko] + [K )™ P{ad) ™+ = {AF}+D + {F,}™ (8)

where K denotes the stiffness matrix, Ky denotes the initial strain matrix, K, denotes the
geometric matrix which correspond to the each term of Eq.(3) and F, is the unbalanced force
vector which corresponds to Eq.(4). In the present solution method, the deformed configura-
tions are accounted for by the coordinate transformations. Accordingly, matrix Ko does not
appear explicitly.[7]

(3) Stress-Strain Relation for Concrete under Cyclic Loadings

Stress-strain relation for concrete is shown in Fig.2(a). In zone of compression, stress-strain
relation is represented by a second degree parabola with a linear falling branch. The slope for
the falling branch, whicK is influenced by stirrup ratio and compressive strength of concrete,
is determined by the Kent and Park model.[8] The stress-strain relation under cyclic loading
is defined as follows. When the last maximum compressive strain £.,4, is smaller than the
axial strain corresponding to compressive strength eco, stress is proportional to strain with
a constant proportionality of Ego = 2f!/eco. And when €., is greater than eco , stress is
proportional with a constant proportionality of 20,4, /€maz- In zone of tension, stress increases
linearly with a constant proportionality of Ego to tensile axial strength. And after that, it
decreases linearly to the strain 10f;/Ecq.

Under cyclic loading, when stress varies from compression to tension crossing the ¢ = 0 axis,
stress varies linearly towards to the tensile strength.[9] On the other hand, when stress varies
from tension to compression, stress is equal to zero up to the strain at which stress has changed
to tension from compression.

(4) Stress-Strain Relation for Reinforcement under Cyclic Loadings

Stress-strain relation for reinforcement is shown in Fig.2(b). Under monotonous loading, stress
is proportional to strain with a constant proportionality of E, to the yielding point, and in-
creases linearly with a slope E, /100 after that in both tension and compression zone.

Under cyclic loading, stress decreases linearly with a constant of E, to the point o, = 0 and
with Ep;(= —E,logio(ei — €,/6)) (i denotes the cyclic number of times)[10] at reloading state
until it will intersect the yielding curve.

(5) Slip of Longitudinal Reinforcement within a Footing



Lateral displacement caused by the slip of the longitudinal reinforcement of footing is not small
compared to the total measured displacement. The slip of the longitudinal reinforcement is
calculated by following procedure.

1) Strain distribution of a longitudinal reinforcement in the footing, which is illustrated in
Fig.3, is assumed before and after yielding. Here, [, denotes the length of region where elastic
strain is induced before yielding of a bar, while ., denotes the length of the elastic region after
yielding of a bar and [, denotes the region where plastic strain is induced after yielding of a bar.

2) Bond stress in post-yield range is not much larger than that in elastic range and it de-
creases suddenly with yielding of reinforcement[12]. Bond stress and strain relation is shown
in Fig.4, in which the curve is determined considering the experimental results[11][12].

3) The length where tensile stress occurs is determined so as to satisfy the equilibrium condition
between bond stress along the reinforcement in the footing and the stress of reinforcement at
the top of the footing. Here, the bond stress in the area of [, is balanced with the elastic stress
of reinforcement and in the area of /,, and it is balanced with the stress increment after yielding.

4) Slip of a longitudinal reinforcement(A) can be represented by integration of strain dis-

tribution, which is obtained from the equilibrium condition, along the reinforcement. The
displacement influenced by the slip at the top of the column is calculated from Eq.(9) and

Eq.(10).
8=A/z (9)
8= h = hA/s | (10)

where, = denotes the distance from neutral axis to a longitudinal reinforcement in a cross sec-
tion at the bottom of column and h denotes the length of the column.
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It is considered that the slip of reinforcement, in general, contributes to the geometric non-
linearities of the structure. However, in this paper the displacement due to slip is not included
in the consideration of secondary effect of geometrical nonlinearity.

(6) Calculation Method

A computer program is developed according to the previous discussion. Since the stress and
Young’s modulus vary with the depth of the element, an element is subdivided into a number of
layers(Fig.5). Integration in each term of Eq.(8) can be represented by the sum of the amount
in each subdivided element in which material nonlinearlity is assumed[13]. Young’s modulus
used in stress-strain relation for each layer is the tangent modulus. Material nonlinearlity and
cracking of concrete are thus considered accurately.

Representative expression of a stiffness term is given using a component K5; which contains
the contribution of shear displacement.

ELM m EI(])

Ky = Z_; ;Le—(lm{(36L?+l44ki)(rj+l_rj)

12521 ~ 1) + 4803 — 1)} (11)
BIG) = 3 Bl i Bk(ati — o) (12)
T(j) = 12k(j)/L? (13)
K0) = 3 gy PO 6D (e = /3 + v = )+ o — )} (1)

where /o is the distance from neutral axis to central axis in the cross section.

Young’s modulus in each layers are obtained considering the strain distribution in the cross
section, and flexural stiffness is calculated to multiply them by the geometrical moment of
inertia for the central axis. This procedure is repeated for all subdivided layers, and their
summation represents the accurate flexural stiffness E1(j) at each cross section as given in
Eq(12). The component of stiffness matrix in an element can be obtained by summing up the
flexural stiffness at each cross section to the z direction(Eq(11)). Here, shear stiffness GA(j)
is determined at each cross section.

As the configuration changes for large displacement, the neutral axis moves within the rein-
forced concrete members. So, it is necessary to satisfy the condition that the axis line coincides
with z direction. For the purpose, the geometrical moment of inertia is calculated around the
central axis in the cross section and the change of the neutral axis is considered by change of
geometrical moment of area. '

In the analysis, stiffness equations are solved iteratively to compute displacement increments
with Newton-Raphson Method. The analysis was performed by updating stiffness matrix at
every load step within each step until the norm of unbalanced forces relative to applied force
becomes stationary. In every step, the eigenvalues and the eigen modes of updated effective
stiffness matrix are searched for. Structural instability is investigated by the occurrence neg-
ative eigenvalues and the numerically obtained displacement vector is compared with eigen
modes of updated effective stiffness matrix in each step.

3. Experimental Verification



(1) Cyclic Loading Test of Nagoya University

A cyclic loading test of reinforced concrete slender columns under constant axial force was
carried out in order to investigate instability effects by large axial force.
(a) Specimen YT
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(b) Loading

The loading apparatus is shown in Fig.6. A specimen was subjected to shear force at the top
by a horizontal jack with constant axial load(4000N). The condition that axial load must be
perpendicular to the ground is satisfied by moving a jack, which is moved using a roller in the
same distance as the lateral displacement occurred at the top of the column.

The loading is carried out by controlling lateral displacement with graduation of 0.005, 0.01,
0.015, 0.03, 0.06, and 0.09 for rotational angle of a member in every cycle.

(c) Test Results and Discussion

The experimental lateral load versus lateral displacement relations are shown by a solid line in
Fig.9. A large displacement which is accompanied by cracking and yielding of reinforcement
defined as the ratio of lateral displacement (6) to the length of the member (L) is observed
to exceed the value of 0.1. The ultimate state is achieved by buckling of reinforcement. The
analytical result is shown with a broken line in Fig.9. A good agreement between experimental
and computed values can be seen up until the final state for which /L is about 0.1.

Fig.10 shows skeleton curve of experimental and computed values under monotonous load-
ing. The solid line corresponds to the results of finite displacement theory while the broken
line corresponds to the results of linear displacement theory. The RC members, which have
large displacement and significant axial force, showed notable influence of P — A effect. This
experimental value can be represented accurately by finite displacement theory while linear



displacement theory can not.

The point D in Fig.10 corresponds to a point that gives rise to the second negative eigen
value of tangent stiffness matrix of structures. After that point, structures become unstable
and the loading capacity falls rapidly. It is considered that axial force can not be sustained
after the point D.

(2) Cyclic Loading Test of Saitama University[14]

The specimens used in a cyclic loading test of Saitama University, which is shown in Fig.11,
have a cross section(20 x 15(cm)) size of practical use. Therefore, the applicability of the
analysis was also investigated to the test results of Saitama University in which axial force,
web reinforcement ratio and shear span and beam depth ratio were changed. The analysis is
performed under monotonous loading and computed value is compared with the skeleton curve
of experimental value.

The material properties used in the analysis are given in Table-2. The loading was carried
out with the same incremental displacement steps of %6, (displacement corresponding to the

yielding load), +26,, £36,, - - -, to failure in ten cycles. -

(a) Effect of Axial Force(oy)

It seems that the axial stress is one of the most influential factors for ductility of reinforced
concrete columns. The solid lines in Fig.12 show the skeleton curve of experimental values with
axial stress(ﬁao) of 0 and 200(N/cm?). The computed values are shown in Fig.12 with broken
lines. The difference between experimental and computed values increases after the maximum
load carrying capacity. The reason why computed value over estimates the experimental values
is explained later. However, the applicability of the analysis to predict effect of axial force
seems reasonable since the difference between the two is not significant.
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(b) Effect of Web Reinforcement Ratio(p,,)

The lateral load-lateral displacement relation affected by web reinforcement ratio are shown in
Fig.13 with solid lines. The web reinforcement ratio were 0.077, 0.12, 0.23(%). The results of
analysis are illustrated in Fig.13 with the broken lines for each ratio.

The effect of web reinforcement ratio is taken into consideration by varying the slope of a
falling branch for concrete using Kent and Park model. The restrainting eftect of web rein-
forcement mainly cause the maximum compressive strength of concrete to increase and the
slope of a falling branch to be flatten. In the analysis, the latter effect only is considered.
Hence, the lateral load at the yielding is different from the values of experiment and the ana-
lytical result is the same until the concrete stress moves into a falling branch. In either case
the analytical results, however, show a good agreement with experimental results for effect of
web reinforcement ratio to the ultimate deformed state.

Table-2. Material Properties
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(c) Effect of Shear Span and Beam Depth Ratio(a/d)

The effect of length of column was investigated with zero axial stress and the constant web
reinforcement ratio of 0.12(%). The three cases (a/d = 3.0,4.0,5.0) were investigated. Fig.14
shows the skeleton curves of experimental and the computed values. The solid line and the
broken line corresponds to the result of experiment and analysis, respectively. Load carrying
capacity tends to be larger and ductility tends to be smaller with decreasing the shear span
and beam depth ratio in experiments. The analytical results represent this ef?ect accurately.

4. Characteristic Point for Ductility of RC Column

Ducltility ratio is defined by Machida et al.[1] as shown in Eq.(15) based on the experimental
result.

B = 580ma:/5y (15)

where 8goma. 15 the lateral displacement corresponding to the load of 80% of the maximum load
carrying capacity and 4, is the lateral displacement when longitudinal reinforcement yields in
member. His definition is considered to be based on the fact that the restoring force often de-
crease rapidly at the lateral displacement corresponding to the load of 80% in cyclic loadings.
This is confirmed that the lateral loads decrease rapidly at those point in Fig.12, Fig.13 and
Fig.14.

However, in this analysis the characteristic point to define ductility is identified as the maxi-
mum moment point of the analytical results. The maximum moment is the sum of the moment
from the lateral load and the moment introduced by the P — A effect. The maximum mo-
ment point obtained by analysis is shown by the mark ”e”, and the characteristic points in
experiment are shown by the mark ”A” in Fig.12, Fig.13 and Fig.14. It is seen from these
figures that the points coincide with the characteristic points in experiment for every factors.
Table-3 shows the results for each case. Hence, it may be reasonable to define the ductility
of RC members by Eq.(16). In other words, ductility should be defined by the ratio of the
ultimate displacement corresponding to the maximum moment point (§M,,,,) and the lateral

displacement corresponding to the yielding (6,).
p = 6Mmas/5, (16)

When the cyclic loading is carried out after the yielding of reinforcement, there is a specific dis-
placement point beyond which the restoring force decreases with repeated loadings. This is the
special character of the failure of the cyclic loadings, which is different from the monotonous
loadings. The characteristic point corresponds to the point that the load carrying capacity
decreases rapidly and before the characteristic point the decrease of restoring force is small in

Table-3. Results of Analysis

pu a/d | o Sy | Syc|8y/Syc|[S61/8yc| Qr | Qre | Qy/Qye|[6u |Suc|Su/Sucid1/Suc
(%) (ca) | (cm) (KN) [ (KX} (ca) | (cm)
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0.12 15.0 0 0.8 0.9 0.83 0. 469 16.5111.0 0.97 As [ 1.09 0. 457

— 72—
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The effect of the shear deformation is investigated analytically to give some values of shear
stiffness(GA) for the specimen of Saitama University. Fig.15 shows the analytical results for
the effect of shear deformation. The shear stiffness are changed to three cases in a cycle of 36,
when the concrete of the bottom of column does not contribute to the stiffness, that is only
reinforcement at the bottom sustain the specimen. The solid line shows the results for the case
where GA is infinite and the broken line is the results when GA is EA/50 and the dash line
corresponds to the result when GA is EA/100. As shear stiffness is applied to small values,
the effect of shear deformation increases and the load carrying capacity at any displacement
tends to be small relatively. It will be expected that the lateral load decreases gradually with
the broken line and the dashed line in cycle of 46,.

5. Ductility and Instability for RC Column

It can be considered that the instability characteristic is effective to define the failure of the
structure. An equilibrium state is called stable if response to a vanishingly small disturbance
also remains vanishingly small{15].

The condition for the state of stable equilibrium under load is stated that the determinant
of updated effective stiffness matrix is positive,

det(K.) > 0 (17)

where K, = K 4+ Ko+ K, is the effective stiffness matrix for structures. For the critical state
of neutral equilibrium

det(K,) = 0 | (18)

Eq(18) implies that at least one eigenvalue is zero. Accordingly, unstable structural behavior
is defined by existence of negative eigenvalues. The definition in which the structure is either
stable or unstable can be easily determined by using the eigenvalue analysis. It should be noted,
however, that there exist two possible interpretations for the state for which the negative eigen-
values emerged. One is the state which continues after the limit point, and the other is the state
which continues after the bifurcation point. Analytical example of the limit point, in which
the load becomes stationary, is the maximum load point in the load-displacement relation. We
are able to get one equilibrium path beyond the limit point analytically, if the displacement is
controlled. After the emergence of the bifurcation point, however, there exist alternative equi-
librium states which can be reached with some kinematically admissible displacement vector.
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This fact implies that it is important to know the equilibrium path which is followed by the
structure.

We investigated the instability behavior for two cases. The first case considers only flexural
deformation and the second case considers the flexural and shear deformations for RC column.
The RC column analyzed is a test specimen of Saitama University with the axial stress(go) of

200(N/cm?), web reinforcement ratio(py,) of 0.12(%) and the shear span of 4.

For the first case in which shear stiffness (GA) is infinite, the relation between lateral load
and lateral displacement under monotonous loading is shown in Fig.16. The eigenvalues and
the eigen modes of tangential stiffness matrix for each load level, which correspond to 1-5 in
Fig.16, are shown in Fig.17. The analytical result yields a negative value for the lowest eigen-
va% e when the load level is 2. But the eigen modes are almost the same in comparison with the
previous step. It is considered that this point corresponds to the limit point. As expected, the
load carrying capacity decreases accordingly as lateral displacement increases after this point
as shown in Fig.16. The structure is in a state of unstable equilibrium if the lateral load is
controlled. In such. a case, since structures can still support an axial force, structures do not
necessarily collapse. Moreover, this eigen mode is kept unchanged until the second negative
eigenvalue is initiated. When load level is 5, second eigenvalue becomes negative and lateral
load decreases rapidly and the lowest eigen mode differs from the one of previous load step.
This point corresponds to the bifurcation point. In this mode, the rotation angle at the bot-



tom and the axial deformations becomes very large. It is considered that structures can not
practically support axial force at that point.

Secondly, we investigated the case which considers both flexural and shear deformations. The
influence of shear deformation is considered with shear stiffness(GA) of a cross section which
varies with the variation of n

- pwjdwas
T dnp, + 1 (19)

where p,, ; stirrup ratio, jd ; the distance between compression stress and tensile stress, b
; width of the cross section, n = E,/E,, E, ; the Young’s modulus of stirrup, and E. is the
Young’s modulus of concrete which is averaged through the cross section. Eq(19) is the shear
stiffness which is obtained by Truss analogy. The results are shown in Fig.18. The eigenvalues
and eigen modes for each load level are shown in Fig.19. When the load level is the one denoted
by 9, which is almost equal in level to the maximum point, the second eigenvalue becomes neg-
ative and eigen mode changes suddenly. Emergence of the mode is much earlier than in the
previous case. Obviously, this is due to the shear deformation effect. If more suitable shear
stiffness is used, the prediction for shear failure may be possible using the analytical method.
Though the numerical solution corresponding to the lowest eigenvalue is considered to give
much lower horizontal resistance, the lateral load does not decrease rapidly as shown in Fig.18,
since the numerical procedure took the fundamental path.

6. Conclusion

To investigate the ultimate deformation capacity of RC structures, the finite displacement
formulation considering the shear deformation was carried out and the instability analysis is
combined. A computer program was developed, in which the cracking of concrete and the non-
linear stress-strain relation of material was considered accurately, for the ultimate deformation
analysis. And experiment using a RC slender column under axial and horizontal forces has been
performed for large displacements having rotation angle of the column of over 0.1. Comparison
with the experimental result of cyclic loading test with the analysis shows applicability of the
analysis method. Moreover, it was shown that the effects on the ductility for the reinforced
concrete column of axial force, web reinforcement ratio and shear span can be represented rea-
sonably in this analysis using the results of cyclic loading test of Saitama University. Then, it
was shown that the maximum moment point is an reasonable characteristic point to define the
ductility in the analysis.

Instability analysis combined with the large displacement analysis indicated that the ultimate
deformed state is closely defined by the emergence of the bifurcation point in the structural
stiffness matrix for which the finite displacement is taken account of. Moreover, in the analysis
, it is suggested that the shear failure is also predictable by the instability anajysis.
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