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SYNOPSIS

The finite element analysis is developed in order to estimate the hysteretic
behavior of prestressed concrete structures in partially bonded condition under
cyclic loading considering non-linear stress-strain relation of concrete and
steel. The method is applied to the bonded and unbonded prestressed concrete
beams and rigid framed structures composed of precast concrete members and
connected by prestressing steel, and the deformations and the angle of rotation
observed in the experiment are compared with the calculated values. The
mathematical model to express the rotation at jointed corner and the effects of
initial prestress and bonded condition to the hysteretic behavior under cyclic
loading are discussed.
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1. INTRODUCTION

Recently, unbonded prestressed concrete structures have been built increasingly
with the development of prestressing steel which has improved resistance to
corrosion thus reducing the grouting work and shortening the process of
construction. Furthermore, the use of precast members connected by unbonded
tendons to form a rigid frame has been tried increasingly.

The monotonic and hysteretic behavior of prestressed concrete structures of this
type is far different from the one with concrete and prestressing steel in
bonded condition. In addition to it, the prestressed concrete member is usually
considered to be in the fully bonded condition, when cement milk is grouted in
sheaths. However, it is often in partially bonded condition and its behavior is
between the ones with bonded and unbonded condition. If this is the case, it
may be said that their dynamic characteristics are not yet fully clarified and
their theoretical investigations are rather scarce.

The analysis of the prestressed concrete members partially bonded was made by
the authors for elastic condition [1]. In this study, the method is developed to
include more general cases with material non-linearity.

The method is applied to estimate the hysteretic behavior of prestressed
concrete beams and a rigid framed structure under cyclic loading and the results
are compared with the experimental results to verify its accuracy.

In the case of the rigid framed structures composed of precast concrete members
connected by prestressing steel, the rotation at jointed corner affects the
behavior under cyclic loading. Hence, the modeling of jointed corner is tried
as well to make clear these behavior.

2. THEORETICAL CONSIDERATION

2.1 Modeling of The Stress Strain Relations for Concrete and Tendon under Cyclic
Loading

The stress strain relations for concrete and tendon under cyclic loading as
shown in Fig. 1 are used for the analysis of the prestressed concrete members
partially bonded. The stress-strain curve for tendon is assumed to be bilinear.
The stress-strain curve for concrete is assumed to be quadratic before the
strain reaches 2000X10°° and the stress decreases as strain increases from
20001070 to 10000X10°°. For reversed loading, when the maximum experienced
compressive strain is less than 300X10™° corresponding to the stress about
f.'/3, unloading path is assumed to be linear to zero stress. When it is from
300X]0_6 to 2000X10-6, unloading path follows the line which connect the maximum
experienced strain point and the point which coordinate is (1+1/6) of the
maximum experienced strain and a half of the maximum experienced stress, and
after that decreases linearly to the residual strain which is equal to 1/6 of
the maximum experienced strain. When it is more than 2000X107°, unloading path
is exactly same as the line which unloading path of the maximum experienced
strain equal to 2000X107° follows, except that the maximum experienced strain is
different and the unloading point is different. Tensile strength of concrete is
ignored. When the signs change from tension to compression under reversal
loading, the compressive stress occurs after the strain exceeds the maximum
residual strain in each subdivided element, and increases linearly to the point
which has the maximum experienced strain. The tangential modulus is taken for
the tangential slope of the stress-strain curve at the strain occurring in the
subdivided element under cyclic loading.
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2.2 Strain Energy Equation of A Beam Element in A Prestressed Concrete Member
under Partially Bonded Condition

Two more basic assumptions in addition to the stress strain relation mentioned
before are made when deriving a strain energy equation'of a beam element in a
prestressed concrete member under partially bonded condition.

(a) Plane concrete sections before bending remain plane after bending.

(b) A shear deformation is zero.

The incremental potential energy equation in partially bonded condition of
concrete and prestressing steel is expressed as

An=AU+AU+AV+ AU, n
Each term of Eq.(1) is derived from the following equations.

(1) AU, is written as the summation of an increment of strain energy at each
loading step as shown in the following equation of concrete in a system which
comprises of several members. When a tendon exists in a member, the member is
defined as a beam portion which length is exactly same as a tendon length.

ELM 1 )
AU~ 5 [ Ec(p) dctdv (2)

where, ELM : number of element within a system
Ec(p) : tangential modulus of concrete at each loading increment
p : stress path

(2) AU_ is defined as an increment of strain energy of tendons, and varies
according to the extent of bondage of concrete and tendon. If the condition is
perfectly bonded and there is no sliding between concrete and tendon, the strain
increment of tendon should be equal to the strain increment of concrete at the
same place. However, in the unbonded condition, a strain increment of tendon
Aes, of any place of a member is same as shown in Fig. 2. Hence, Aeg, is given
as

1 L
Aesa=1£ Aecsdl’ . (3)
where, L denotes length of tendon

In general cases, the bonded condition may exist between two described cases and
a strain increment of tendon Ae is written in the following equation.
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dec=K, (] [ Aecstdn—Aces) + dees (4)

where, K_ is defined as the sliding coefficient and constant value of K, from O
to 1 1nd1cates the extent of bondage of a partially bonded prestressed concrete
member. When K_ =0, Eq. (4) corresponds to the fully bonded condition and when
K.=1, Eq.(4) corresponds to the unbonded condition.

Using Eq.(4), AUg is rewritten as follows,

MEMNCA ] (Lsx 1 Lix z (5)
= = - cadX~— Aecs |+ Aecs | dx
L [ B Aon [ K (1 [ Becidz— o) + A

where, MEM : number of members within a system
NCA : number of tendons within a member
Es(p) : Young's modulus of tendon at each loading increment
p : stress path
Ag: t area of j tendon in k member
ij : length of j tendon in k member

(3) AV is defined as increment of external energy due to each loading increment.

INT
AV= _E (AP (uy—u)+ AF, (v— v1)

LM i ;
+AM¢(021_011)]*§[ qu(vu—vu)dx (6)

where, JNT : number of joints
APi ¢ increment of axial load at i node
AF. : increment of load perpendicular to the member axis at i node
AMi : increment of moment at i node
q; ¢ increment of distributed load at i element
increment of deflection along x axis at i node in j loading step

U
V}i increment of deflection along y axis at i node in j loading step
03i increment of rotation at i node in j loading step

(4) AU is defined as an increment of energy dissipated by sliding friction
between concrete and tendon. The displacements of concrete and tendon at x
. x X
from the edge of a member are given as ~/ Aecsdx and _/ Aesdx
0 0

The relative displacement caused by sliding friction is written as
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Ax= f *(Bes—Aeed) drx

—f[ Lf Aecsdx— Afcs)j,dx (7)

When F_(x) is defined as a friction force working at x, AU is expressed as

MEMNCA Lix
AU,{:"ZUZ.; A A.r,kF,(x)dx (8)
It is possible to assume Fr(x) =eAx and deal with AU; in the same way as AU
However, a depends on the type of structure and the shape of tendon, etc. As the
behavior of prestressed concrete structures after prestressing is mainly
discussed in this study, AUf principally concerned with the prestressing may be
ignored.

2.2 DERIVATION OF STIFFNESS MATRIX

Displacement increments are expressed using displacement function [N,] and [N]
as

Aut=[N,]]Ad}}
(9)
Ave=[N,]iAd ¢}

where, aAu® and Av® are displacement increments in a beam element and Ad®° and Ad°
are displacement increments at a node along x and y axis, respectively, as shown
in Fig.3.

Strain increment along x axis in a beam element is written as,

e

Aes=Au"—yAv
) L |Ade (10)
Z[Nuv_va Adﬁ

Substituting Eq.(10) into Eq.(2) yields,

AU. mlf Ec(p)(Au®—yAvTYdV

ELM l

(12

(11)

f E.(0)AdITIGIG. T.Ad AV

Fig. 3 Sign convention for a beam element
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where, G,=[N,, —yN}]
T, : transformation matrix

Ad:

sar-|
Ad;

Ad,
Adz”—" , Ad{=T,Ad,

Ad,l,

)

Substituting Eq.(10) into Eq.(5) yields,

MEMNCA (] — K ()2 ELM 1k
AUs= Z 2—2— A.ukg;[ Es (p) (Au”— Yousxdv) dx

k=tJ=1

+%EZ§: Asix (Ei’f “JkEs (p) dl‘) [%["’k(Au"'—yomAu"’) d.r]z

k=1J7=1 i1

MEMNCA KS(I—KS) ELM [lix ELM /1
L L A [,§ | Es(p)(Au”~ goundv®) dx] [Z} (AU — Yo v® )dx}
— 2 173 2
=MEMNCA(1 KS) AslkaZM Y Es(p) Ad‘ TH‘T‘Ad dx +Zﬁ Kz Auk<i: “ME (P dx)
k=1J=1 2 i=1Jo k=1 =12L5k
MEMNCA Ks ELM rlijx
AdISIS,Ad, 4 535 25— )Am<2 ["E.(p) AdITIHIdx) S,0d, (12)

where, g =[N\, youxVi]

ELM lisk

szg A H[T[dx
Yoijk * distance from neutral axis to jth tendon at i element in k member

The increment of external energy corresponding to Eq.(6) is rewritten as,

JINT ELM iy
— S AFT.Ad,— z:f AQN.T.Ad dx
i=1 i=1J0

=~ 2 AdITIAFT- 3. [ Aq.AdITINdz (1)
where,AFi : vector of force increment at i node
AP,
AF,={AF,
AM,

Aq; : vector of distributed load increment at i element
N=[N,, N,J]

Using minimum potential energy theory, Eq.(1) is rewritten as,

9Ax _9AU.  dAUs  2AV
oAd,  0Ad, ' 24d,  o4d,

ELM ’ ) MEMNCA ELM ik )
=2 [ Ec0) TIGIGT.AdGY + 55, 0~ KJ Awrds | Es(p) TIHIHTiAd
t=1JvoL K=1J=1 =10

MEMNCA |2 ELM [lix ; " MEMNCA 2K(1—KJ) R
SIS K (B[ Bt dx) sisiad, + B AR (B[ E )
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INT ELM U
:'Il{dx) S,4d, —gT[AF{-E[ AqTINIdx =g (14)

Therefore, finally stiffness matrix is expressed as,

[KJ+[Kal+ (Kol lAd4=[F] (15)
where, -
[Kd=23 | Ec(p) TIGIG.T.dV
B (16-a)
MEMN EL Lok
[Ksl] ZZ(I_KS ASIKZ: Es( ) T[’I;T[I[Tidx
(16-b)
MEMNCA |2 ELM [lux
(Kal=2 215 Ao (5 [ Eolp)dz) TS,
k=151
MEMNCA 2 K ]—Ks ELM [lijx
+ Zﬁ%Asm( ' Es(;D) T{[l{dl’) S, (16-¢c)
k=1Jj=1 Jk i
(FI=5TIAFI+Y [“AaTINIdx (16-d)

When the tensile strain exceeds the limit of cracking strain at any place in a
element, the crack opens at that place. As the stress intensity varies within a
element, tangential modulus also varies within a element. Hence, each element is
subdivided into M times N subelements in x direction and in y direction
respectively as shown in Fig. 4, and the stress-strain relationship is applied
at each subdivided element. Therefore, Eq.(16-a) is rewritten as the summation
of stiffness of each subdivided element.

(KJ=3}b33 53 Eei, J, k. p) TIGIGLT, .

For example, stiffness of one element [Kcll] is expressed as, for the case that
Ti is a unit matrix,

ELM
Ken= Z‘: lz E.(p)dV
i=1JvoL

E!

i=

=

M

™
[_V]z

z
i

Jﬁ‘- gxr— @ bil(ry— 1) Ec(i, J, k, p) (18)

o~

k

W

where, bk : width of element

<

4

_Ed“*'

T
S
?
[T

Iy
IVES

M

Fig. 4 A subdivided element

—121—



|Se( initial strains given by prestressl

<

Stress-strain curve
concrete and tendon

Calculate Compute tangential modulus corresponding
strains at to strain at subdivided element
subdivided

elements IAssemble stiffness matrix and load vec(or]

[Solve for displacementsl

Convergence of
displacements

[calculate strains at subdivided elemen:EJ

Increase displacements at the locations
where loads are applied

Fig. 5 Flow chart for iterative processes

Prestress effect is considered treating e shown in the following equation in
a beam element as initial strain.

__P_<L Yo )
“wEp \A LY (9
where, A, i area of cross section

¥, ¢ distance from neutral axis to tendon

I. : moment of inertia

P : load of tendon after prestressing

The analysis is carried out following the flow chart shown in Fig. 5. When a
displacement is forced at a node at i step, the stiffness matrix is constructed
first using tangential modulus at i-1 step, and the unknown displacement
increments at other nodes are calculated by Eq.(15). Strain increment at each
subdivided elements are calculated from the displacement increments, and
tangential modulus at the strain is obtained from the stress-strain relationship
shown in Fig. 1. Hence, the stiffness matrix is revised and the displacement
increment at each node is obtained again. Iteration is conducted until
displacement increment at i step becomes constant. In calculation, the total
error of displacement increment is less than 5 7 and the equivalent nodal force
[AF]n caused by the error is added to the load at i+] step as shown in the
following equation.

(Ko H [ Kalns H Ksdun lAd dnii =[F i +[AF ] (20)

3. COMPARISON OF THE ANALYSIS WITH TEST RESULTS OF PRESTRESSED CONCRETE BEAMS

The proposed method of analysis is applied to the test results of prestressed
concrete beams subjected to cyclic loading conducted by Okada et al [2]. The
experiment aims to compare the behavior of an unbonded beam to that of a bonded
beam when more than 90 % load of maximum capacity of a beam is applied
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cyclically. The specimens are simple beams with 100 cm length as shown in Fig.
6 and cyclic load is applied at two symmetrical points of the span. The cross
section of the test specimen has a 10 cm width and 15 cm depth, and 2 tendons
with 7.4 mm diameter (yield point=141 kg/mmz, tensile strength=150 kg/mm*) are
used. Compressive strength of concrete is 443 kg/cm® and initial prestress is
58 kg/cmz.

Figures 7 and 8 indicate the comparison of the experimental and the analytical
hysteresis loops of load-deflection curve in the case of bonded and unbonded
prestressed beam, respectively. In the analysis, displacement is controlled at
each loading step to obtain the hysteresis loop following the flow chart in Fig.
5. From the figures, it is evident that the unbonded beam shows the more
pronounced reversed S shape curve and larger deflection than that in bonded beam
in the experiments. The unbonded beam indicates as well that the ability of
energy absorption represented by the area surrounded by the loop is less. As
for the analytical load-deflection curves, the analytical results in both cases
of bonded(Ks=0.0) and unbonded(KS=1.0) beams indicate almost similar tendency to
experimental ones, although the area surrounded by the loop in the analysis are
a little less than that in the experiment. 1In the analysis it is also evident
that the hysteresis loop in the unbonded beam has more pronounced reversed §
shape than that in the bonded beam. Furthermore, the analysis indicates that
under first cycle of loading the maximum stress of concrete reaches about 90% of
the strength and tendons do not exceed yield point, and under second cycle, the
maximum stress of concrete reaches the strength and in the case of bonded beam
tendons exceed yield point, which are indeed the observed behavior by the
experiment. From these comparisons, the analytical method is said to be able to
follow the behavior of prestressed concrete beams under cyclic loading with
reasonable accuracy.
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3. THE HYSTERETIC BEHAVIOR OF A PRECAST PRESTRESSED RIGID FRAME

One of the characteristics in the behavior of a rigid framed structure composed
of precast concrete members connected by prestressing steels is that rotation
of the jointed corner is largely affected by the condition of bond and the
amount of prestress. This behavior is indicated for an important problem in the
seismic responce analysis of a composite framed structure [3]. Therefore, the
appropriate modeling of the jointed corner is developed to realize the behavior.

7 shaped specimens composed of a beam and two columns connected by two
prestressing bars with 22 mm diameter were tested as shown in Fig. 9 [3]. The
cross section of the beam is 20x40 cm and the length is 180 cm and the cross
section of the column is 20x30 cm and its length is 130 cm. Three specimens
tested are ungrouted and grouted ones with 50 kg/cm“ initial prestress, and
grouted one with 35 kg/cm® initial prestress. The specimens are set on two
roller supports and subjected to lateral load which is applied at the place 90
cm far from the jointed cornmer in the column. '

The rotation at the corner was measured using contact gages and wire strain
gages on concrete and tendons. Figure 10 shows the relationship between applied
moment and measured rotation. It indicates that at the same applied moment the
measured rotation at the corner in ungrouted specimen is almost twice as large
as that in grouted specimen. While, the rotation at failure in the specimen
with 35 kg/cm initial prestress is almost half of that in the specimen with 50
kg/cm® initial prestress.

The developed method was applied to the structural system of this experiment
assuming a special corner element shown by the shaded area in Fig. 11. The
assumption of the special corner element is closely related to the assumption
that a plane section remains plane after bending, which is used in a beam
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element. At the corner, this plane section assumption is not appropriate as
large strain concentration in compressive zone will violate the assumption. The
area with softer rigidity and limited width where the assumption do not consist
may be expressed as a special element. Roughly, the rate of contribution to
rotation of this portion may be expressed as some constant values of the
rotation E/§ from Eq.(21) using similarlity to a spring constant.
A _ e _ 1M1 M5 (21)
S M MJdb EI™" M EI EI
where, S : spring constant
g : rotation
I : average moment of inertia of the area
8 ¢ the width of the area

Hence, the appropriate values for & and E are investigated. Figure 12 shows the
relationship between calculated rotation and applied moment in the unbonded
specimen. When concrete stiffness is used at the corner element, the result
shows that while the maximum moment is almost the same as that in tested
specimen, the rotation at the jointed corner is much less than measured one. It
means that the corner element with smaller stiffness is needed. The analytical
results using the elements with §=2 cm, E=50000 kg/cm®,§=4 cm, E=100000 kg/cmz,
and §=6 cm, E=150000 kg/cm”“ indicate the similar behavior to that of tested
specimens. In these three cases, E/§ is equal to 25000 kg/cm>. In other words,
the area which do not follow the plane section assumption may be simulated by
the spring of which spring constant is 25000xI kg cm.

Figures 13 and 14 show the analytical results in the bonded specimens with 50
kg/cm“ and 35 kg/cm” initial prestress using three models, respectively. 1In
both cases, the analytical results indicate that similar values to the
experimental data are obtained. It should be noted here that when sliding
coefficient Ky is equal to 0.7, best agreement is obtained. It means that at
the tested specimens, grouted motar filled in the sheath was not strong enough
to assure the full bondage. It is also considered that the diameter of tendon
is 22 mm and bond failure in the specimen with this tendon occurs more easily
than in that with smaller tendon such as 7.4 mm, because in the case of the
grouted beam with 7.4 mm tendon, analytical values obtained using K =0 are
nearly equal to experimental ones as mentioned before.

Comparin%Zthe moment-rotation curves of the grouted and ungrouted specimens with
50 kg/cm® initial prestress shown in Figs. 12 and 13, it is noticed that the
analyses using the special element model with E/$§=25000 kg/cm3 are able to
estimate the behavior of tested specimens. In the case of the specimens with 35
kg/cm“ initial prestress, the analytical results using the same element again
show similar curves to the ex%erimental results. From these results, the corner
element with E/§=25000 kg/cm” may be expected to give reasonable estimation of
the rotation at the jointed corner regardless of the values of the initial
prestress and bonded condition. However, this conclusion came from the limited
data and obiously more experiments is necessary. Meanwhile, in this research
the model with E/§=25000 kg/cm3 is applied to the rigid framed structure as
mentioned in the next chapter.

5. LOAD DEFLECTION HYSTERESIS CURVE IN PRESTRESSED CONCRETE RIGID FRAME

The proposed analysis is applied to the rigid framed specimen tested by Koike et
al [4], which is a 1/4-scale model of the pier of Arakawa-Higashi Elevated
Bridge, composed of precast concrete members connected by grouted prestressing
steels. The specimen is subjected to a lateral cyclic load, and the analyzed
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behavior of the specimen under cyclic loading is compared with the tested data.

Figure 15 indicates the dimension of rigid framed specimen. Firstly the upper
beam with box section is prestressed until the stress in concrete is 10 kg/cm?,
and then 10 kg/cm“ prestress is applied to the column with a box section in
order to connect the beam and the column. In this test, the mortar joint is
used for the connection between them. The diameter of tendon is 10 mm (yield
point is 110 kg/mm“, and tensile strength is 125 kg/mm*), and compressive
strength of concrete is 400 kg/cmz.

The discretization as shown in Fig. ]6 are used for analysis, and the corner

element with d=2 cm and E=50000 kg/cm“ are used at the jointed cornmer shown in
the shaded area. Figure 17 shows the measured and calculated load-deflection
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curves under monotonic lateral loading. Measured load-deflection curve indicates
that the specimen failed at 41 ton after that the deflection increased rapidly
at around 30 ton. Calculated load-deflection curve most closely fitted to the
measured one is obtained when the sliding coefficient Ky is equal to 0.3. As
mentioned before, the perfect bonded condition between concrete and tendon seems
not to be assured, as the diameter of tendon increases. In the case of the
diameter equal to 22 mm, K =0.7 was appropriate for the grouted structure, while
in the case of the diameter equal to 7.4 mm, K =0.0 was used. Hence, S—O 3 may
be reasonable because the diameter, 10 mm, in thlS test is between 7.4 mm and 22
mm. The calaulated load-deflection curve of the specimen without the corner
element at the jointed corner is also shown in Fig. 17 with K. =0.3. Comparing
three curves, it may be said that the effect of rotation at the jointed corner
becomes remarkable at the deflection around 5 mm by the experiment and the
behavior of this kind of rigid framed structure is well simulated by the
proposed method with corner elements.

Figure 18 shows the measured and calculated load-deflection hysteresis curves
under lateral cyclic load (the maximum load is 10 ton). Although the behavior of
the specimen under this load is almost elastic, the residual displacement
appears because of the rotation at the jointed corner. Calculated load-
deflection curve using K =0.3 and the corner element with =2 cm and E=50000
kg/cm2 at the jointed corner shows the good agreement to measured one, although
a reversed S shape curve is stressed more clearly than measured onme. From these
comparisons, the proposed analysis using the corner element at jointed corner
can be said to estimate the hysteretic behav1or of the rigid framed structure
under lateral cyclic loading.

To examine the effect of bond condition on the ultimate strength and deformation
characteristics of the frame, the numerical investigation is made. Three cases
in the partially bonded condition (K =0.0, 0.3, 1.0) are chosen as shown in Fig.
19. It is also recognized that the max1mum load decreases from 70 ton to 33 ton
according to the condition of the bondage. The load-deflection hysteresis
curves (maximum deflection is 5 mm) in these three specimens are compared.
Figure 20 shows the results and it is clear that the load-deflection curve in
the perfectly unbonded specimen shows pronounced reversed S shape curve and the
area surrounded by the loop is very small, which means the capacity of enrgy
absorption is very small compared with the bonded specimen.

Those analitically obtained hysteretic character will render substantial help to
analyze the seismic behavior of the structure composed by precast concrete
members and connected by prestressing.

Load(ton)
o

—— mesured
--—- calculated

05 1.0
Detiection (mm)

T
-10

Fig. 18 Load-deflection curves under reversed loading (10 ton)
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Fig. 19 Effect of the bond condition Fig. 20 Effect of the bond condition

on the ultimate strength on the hysteretic behavior
of a frame of a frame

6. CONCLUSION

From the foregoing study, the following conclusions are obtained.

(1) The proposed method using the finite element analysis can reasonably
estimate the hysteretic behavior of the prestressed concrete structures in any
bonded condition under cyclic loading considering non-linear stress-strain
relation of concrete and steel.

(2) The comparison of the analysis and the test data shows that the grouting of
cement milk around prestressing steel do not assure the full bondage between
steel and concrete. Often they are in the condition of partial bondage.
Therefore, the behavior of a precast concrete rigid frame where its beam columns
are connected by prestressing steel should be analysed considering the condition
of the bondage.

(3) The rotation at the jointed corner cannot be ignored to estimate the
behavior of the rigid framed structure under lateral cyclic loading. The corner
element with E/§=25000 kg/cm3 seems to be well for estimating the behavior of
the rigid frame. However, the research on developing the corner element may be
necessary for applying the method to wider range of prestressed concrete
structures with such a rigid corner.
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