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SYNOPSIS

The constitutive law for a RC panel element has been developed by combining the
existing constitutive laws for cracked concrete and the new constitutive law for
yielded steel in RC, all of which have been obtained by uniaxial loading tests
of RC elements. In this study, the constitutive law for yielded steel has been
introduced on the assumption that a stress distribution of yielded steel between
cracks is represented by a cosine function. Further, the proposed constitutive
law for the RC pahel element has been verified through the experiments of the RC
panel element conducted by Collins & Vecchio and Aoyagi & Yamada. It has been
confirmed that the proposed model for the RC panel element can accurately
describe the behavior of the RC panel element subjected to in-plane stresses and
be applicable to FEM.
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NOTATION
The followihg symbols are used in this paper

{ o <} :stress vector of concrete relating to the local coordinate system

{ ¢ 'c}:stress vector of concrete relating to the global coordinate system

{0 s} :stress vector of steel relating to the local coordinate system

{ ¢ 's}:stress vector of steel relating to the global coordinate system

{ & o} :strain vector of concrete relating to the local coordinate system

{ & s} :strain vector of steel relating to the local coordinate system

{ &} :strain vector of the RC panel relatlng to the global coordinate system
[De] :stiffness matrix of concrete

{D=] :stiffness matrix of steel.

[Dre] :stiffness matrix of the RC panel element

Es :stiffness of steel

Een :strain hardening ratio

Eo :initial tangential modulus of uncracked concrete

Ec :Young's modulus of concrete

Ecr :compressive stiffness of cracked concrete

Ger .shear stiffness of cracked concrete.

Go .shear stiffness of uncracked concrete

G1 .shear stiffness of cracked concrete given by G1=36/ € ¢
Px :steel ratio in x-direction

Py :steel ratio in y-direction

o 1, 0 z:principal stress of concrete (o 120 2)

o + .tensile stress of concrete in the direction perpendicular to the cracked
face

:compressive stress in the direction perpendicular to the cracked face
:steel stress at the cracked face

:mean stress of steel

-normal stress of the RC panel element which acts on the plane; BC
“:normal stress of the RC panel element which acts on the plane; AC
.shear stress of the RC panel element which acts on the plane; AC, BC
.shear stress which acts along the cracked face '

=x :Steel stress in x'-direction (refer to Fig.1-1)

sy :steel stress in y'-direction (refer to Fig.1-1)

:tensile strength of concrete under uniaxial stress

:tensile strength of concrete under biaxial stresses

:cylinder strength of concrete.

£ or :tensile strain at cracking

£ :plastic strain given by the Maekawa model

£+ :tensile strain in the direction perpendicular to the cracked face

£ = :mean strain of steel

£ sn :strain when strain hardening starts

£ so :mean strain of steel at the former load step

f, :yield strength of steel.
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fu :tensile strength of steel

K.,Kz :coefficient given by Appendix I

Kc :fracture parameter of cracked concrete (=w K)
K .fracture parameter of uncracked concrete

Asx .cross-sectional area of steel in x'-direction
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:cross-sectional area of steel in y'-direction

:stress amplitude of steel -

:stress amplitude of steel at the former load step

:angle created by the cracked face and the global coordinate system’
:angle created by the steel axle and the global coordinate systen
:Poisson's ratio of concrete.

:parameter which express bond characteristics.

:panel thickness"
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1. INTRODUCTION

Finite Element Method (FEM) has been used in analyzing relnforced concrete (RC)
structures. This is not only due to the advancement of computer technology but
due to the advantage of treating complex loading and complicated boundary
conditions with the integrated analytical method. There are' three schools in
applying FEM to RC from micro-level to macro- level[l]. In the school of
micro-level, phenomena such as the bond mechanism, the shear transfer mechanism
at the cracking interface and the cracking progress; are accurately developed
into a model to understand the true behavior of RC. On the other hand, the
macro-level - school analyzes the behavior of full-scale structures and this
school attempts to use the analytical results directly for structural design.

There is an another school between these two schools, which pursues the
relationship between load and displacement on RC members ' subjected to in-plane
stresses such as shear walls. In these RC members, usually, a number of steel
bars are placed and also smeared cracks shall appear. Taking advantage of these
characteristics, the behavior of RC members subjected to in-plane stresses can
be traced with an efficient accuracy by using the smeared crack model. When an
analytical model for RC members and/or structures subjected to in-plane stresses
is developed and efficient for wide range application, data necessary for design
may be obtained through calculations without performing experiments Such as
studies[2][3][4][5]1[6] follow this school.

This study also follows the third school. The purpose of this study is to
develop the constitutive law for '‘a RC panel element subjected to in-plane
stresses. In the authors' laboratory, the constitutive laws for cracked
concrete[3][51[6] have been intensively studied while making contacts with Dr.
Aoyagi and Dr. Yamada. Further, based on these studies, the authors have
developed the constitutive law for the RC panel elements subjected to in-plane
stresses by combining the existing constitutive law for cracked concrete and for
steel. However, the proposed constitutive law has been derived from the
experiment results under uniaxial stress condition. Therefore, the' application
of each constitutive law should be evaluated through a comparison with the test
results of the RC panels element under biaxial stress condition. Further the
proposed constitutive law for the RC panel element should be also verified.

2. DEVELOPMENT METHOD OF THE CONSTITUTIVE LAW FOR THE RC PANEL ELEMENT

2.1 Premise Conditions
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Methods for handling cracks in the analysis may be categorized into a discrete
crack model and a smeared crack model. The first method installs so-called the
1ink element which represents the discontinuity of concrete between cracks. The
cracking direction cannot be obtained directly through this method, though it is
effective for analyzing RC members like beams and/or columns, in which one crack
affects the behavior of RC members. The latter method treats cracked concrete as
a continuous body. In this method, the development or the progress of cracks are
not as important as the general behavior of cracked RC members at a microscopic
view. Therefore, this method is effective for analyzing RC members like shear
walls or membrane RC members. As a RC panel element subjected to in-plane
stresses are analyzing objects, the smeared crack model has been adopted in this
study. Therefore, the stresses and the strains on the RC panel element mean the
average stresses and the average strains respectively.

The constitutive law for the RC panel element has been made up of the existing
constitutive laws for cracked concrete and steel under uniaxial stress
condition. As there are existing constitutive laws obtained from the
experiments, the constitutive law for the RC panel element is easier to be
constructed when these existing constitutive laws are combined. The tension
stiffening model, the compressive stiffness model of cracked concrete and steel
model after yielding developed in the authors' laboratory and the shear
stiffness model of cracked concrete proposed by Aoyagi and Yamada have been
introduced to the constitutive law for the RC panel element.

In developing the constitutive law for the RC panel element, monotonic
proportional loading and non-proportional loading have been taken into
consideration. However, the proposed constitutive law can not be applied to the
RC panel element subjected to cyclic loading. The authors are planning to extend
the constitutive law presented in this study to the constitutive law that can
apply to any loading hysteresis.

2. 2 Formulation of the Constitutive Law for the RC Panel Element

The stresses of the RC panel element can be represented by superposition of the
stresses of cracked concrete and the stresses of steel. The stresses of concrete
and steel are respectively expressed by;

{o c}=[Dc]{ £ o} . (1)
{c =}=[Ds]{ £ s} (2)

In this study, the engineering shear strain is used for the shear strain. The
stiffness matrix of concrete after cracking is orthogonal anisotropy matrix. The
coordinate system prepared for stiffness matrix are different between concrete
and steel. The stiffness matrix of concrete is taken with respect to the local
coordinate system composed of the axis paralleling to the cracked face and the
axis crossing the cracked face. On the other hand, the stiffness matrix of steel
is taken with respect to the local coordinate system coinciding with the steel
axes. By using the transformation matrix, the stresses and the strains related
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to the local coordinate system can be respectively transformed to the stresses
and the strains related to the global coordinate system. Therefore, eq.(1) and
€q.(2) can be changed to eq.(3) and eq.(4).

{o "c}=IT( 6 )I®[DIIT(6 )I{e} (3)
{o 's}=[T(a)]*[Ds][T(a )]1{e} (4)

[T( 6 )] indicates the transformation matrix and is expressed by;

cos® @ sin® @ cos 8 siné
[T(6)]= sin? 6 cosZ @ -cos 6 siné (5)
~2cos 8 sin 6 2cos @ sin@ cosZ6 -sin®@

The stresses of the RC panel element are expressed by summation of the stresses
of concrete and steel. -

{0 "re}={ 0 "c}+{ 0 's}=[Drcl{ ¢ } ’ ' (6)

where [Drc] indicates the stiffness matrix of the RC panel element and is
expressed by eq.(7).

[Drcl=[T( 6 )I*[DcIIT( 6 )1+[T( @ )1*[Ds][T( @ )] (7)
Eq.(6) can also be changed into theb incremental form, as eq.(8).
{do 're}={do 'c}+{do '&}=[Drcl{d e} (8)

In this case, the stiffness matrix [Dec] indicates the tangential stiffness. The
constitutive law for the RC panel element can be formulated by the constitutive
laws for concrete and steel. It must be emphasized that the constitutive laws
for concrete and steel in RC are different from those for concrete and steel as
a simple material. The RC panel element is considered elastic until cracks
appear. Therefore, before cracking, the constitutive laws for concrete and steel
as a single material can be used for the constitutive law for the RC panel
element. As bond action and dowel action shall occur after cracking, these
phenomena must be considered in developing the constitutive law for the RC panel
element. For stiffness matrix of concrete, eq.(9) is used before cracking and
eq.(10) for after cracking.

Ec 1 Ve 0
[Dc]=+ Ve 1 0 : (9)
1-v 2] 0 0 (1-v c)/2
0o o0 o
[Dc]= 0 Eor O (10)
0 0 Ger

The stiffness matrix of the RC panel element is used to solve eq.(8) for the

—159—



given stress increment. The value of tensile stiffness becomes negative when
using the stiffness matrix in the incremental form. Therefore, in the analysis
of the RC panel element, convergence after cracking becomes very instable. In
order to obtain the stable solution, zero has been substituted for the negative
value of the tensile stiffness. The stiffness matrix of steel is expressed by
eq.(11). Assumed that steel only resists in the direction along the bars, the
shear stiffness of steel is quite smaller than the shear stiffness of concrete.

PxE= 0 0
[Dc] =10 pyEs 0 (11 )
0 0 0

After yielding, the stiffness of steel is given by the proposed constitutive law

presented in the chapter 4.

INPUT ldo‘ecl

2.3 Analytical Method

The analytical method follows the flow

chart (see Fig.1). The analysis is done by M,_ldmmdam‘

solving the eq.(6) for the given external

stresses of the RC panel element. The :

following is calculating procedure.

[Calculating Procedure] rldel—[Dm] ‘ldo nd

1) Give the incremental stresses {d¢ 'rc}
that act on the RC panel element.

2) Obtain total stress {o¢ 'wrc}.

3) Solve the eq.(8) to obtain the lec=[T(0)]} e}
. led =[T(a) el
incremental strains {de }. l

4) Obtain the total strains {e} by the
calculated incremental strain {sz}. . ""{“'”%3‘““

5) Obtain the strains {ec} and {es} in fosleu=(Ds] Il
the local coordinate system of concrete l
and steel by using the transformation {o'cleat=[T(8)] l actear
matrlx. ia ’cal'—[T(a)]“USINﬂ

6) Obtain the stresses {oclecar and l ’
{0 s}car through the constitutive law l—Ta‘wlcanzla’duwla’slm__]
for concrete and steel. i

7) Transform the obtained stresses {0 c}ca1 [ 1daqu.|:10‘.“:|c,..—{a‘.wu .
and {0 =}ca1r to the stresses relating to
the global coordinate system and obtain

the RC panel element stresses {o 'rc}eoal
8) Repeat the calculation till the
difference between the stresses YES
{0 'rc}car and the given external
stresses {0 'mc} 1s within the error [ next stEP |
variation range.
9) Repeat the loop of 3) to 8), if
convergence is not obtained. Fig.1 Flow chart
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2.4 Verification Method of the Proposed Constitutive Law

The proposed constitutive law for the RC panel element is composed of the
constitutive’ law for cracked concrete and steel. Each constitutive law is
developed by the experimental results of the RC elements under uniaxial stress
field. Therefore, the proposed constitutive law must be verified through the
experiments of the the RC panel element subjected to biaixal stresses. Okamura
and Maekawa[7] have already reported the sensibilities of each constitutive law
to the behavior of the RC panel element. Based on their study, the applications
of each constitutive law to the RC panel element are investigated. Each
constitutive law has been verified through the analysis of the test data which
are greatly effected by each constitutive law. The authors also have verified
the constitutive law for the RC panel element by the test data which are
effected by all of the constitutive laws. Further, the total evaluation of the
proposed constitutive law has been performed.

Tablé 1 Test Specimen

Specimen Load®’. px. py a £y f'c £12’ 2™ fez
px (dgree)(MPa)(MPa) (MPa) (MPa) f.i

PV3 PS 0.48 1.00 O 662 26.6 2.39 1.68 0.70
PV4 PS 1.06 1.00 0 242 26.6 2.39 1.68 0.80
PV9 PS 1.79 1.00 0 455 11.6 1.37 1.91 1.39
PViO PS 1.79 0.56 0 276 14.5 1.60 1.29 0.81
PVi1 PS 1.79 0.73 0 235 15.6 1.68 1.60 0.95
PVi2 PS 1.79 0.25 O 469 16.0 1.71 1.67 1.00
PV16 PS 0.74 1.00 0 255 21.7 2.09 1.71 0.94
pPvis PS 1.79 0.18 0 431 19.5 1.95 1.96 1.00
Collins-  PV19 PS 1.79 0.40 0 x:458 19.0 1.91 1.95 1.08 average
Vecchio : y:299 1.11
Test PV20 PS 1.79 0.50 0 =x:460 19.6 1.95 2.07 1.14
y:297 coefficient
- PV21 PS- 1.79 0.73 0 x:458 19.5 1.95 2.54 1.30 of variation
. y:302 20.9%
pPv22 PS 1.79 0.85 0 x:458 19.6 1.95 2.54 1.30
’ y:420
PV23 SBC 1.79 1.00 O 518 20.5 2.01 2.81 1.40
PV25 SBC 1.79 1.00 © 466 19.2 1.93 2.70 1.40
PV27 PS 1.79 1.00 0 442 20.5 2.01 2.81 1.40
pPvas SBT 1.79 1.00 0 483 19.0 1.91 2.29 1.20
PV29 - SBC -1.79 0.57 0 x:441 21.7 2.09 2.09 1.00
y:324
No.7 UT 0.71 1.00 22.5 371 23.4 2.21 1.76 0.80 average
Aoyagi - No.11 Ur 0.71 1.00 12.5 371 20.3 2.00 1.44 0.72 0.77
Yamada No.13 UT 0.71 1.00 22.5 371 21.1 2.05 1.71 0.83 coefficient
Test No.23 CT 1.18 1.00 22.5 371 19.8 1.97 1.60 0.81 of variation
No.24 UT 1.18 0.50 22.5 371 21.3 2.07 1.45 0.70 7.5%

1) PS:Pure Shear, SBT:Shear and Biaxial Tension, SBC:Shear and Biaxial Compression,
) UT:Uniaxial Tension, CT:Principal Compression and Principal Tension

2) f41=0.583f'.%"

3) Tensile strength coincided with the test results
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The test data conducted by Collins & Vecchio[2] and Aoyagi & Yamada[8] have been
used to verify the proposed constitutive model. As uniform stress fields are
formed in these experiments, the test data may be easily analyzed through one
element. The specimens with a failure at the end of the RC panel element, the
specimens with pre-set cracks and the specimens that break right after the
appearance of cracks, have been removed from the Collins-Vecchio experiments.
The specimens that generate cracks along the steel bars and the specimens with
pre-set cracks also have been removed from the Aoyagi-Yamada experiments. Table
1 shows the conditions of the specimens.

3. CRITERIA OF CRACKING AND ANGLE OF CRACKING

3.1 Criteria of Cracking

Cracks occur when principal tensile strain reaches the tensile limit strain of
concrete. It is assumed that the tensile stress shall be kept constant from the
point where the principal tensile stress reaches the tensile strength to the
point where cracks occur. The value from 0.01% to 0.03% is usually used for the
tensile limit strain. The tensile 1limit strain is generally larger than the
strain reaching the tensile strength of concrete. This is because concrete is
considered to be kept plastic from the strain at reaching the tensile strength
to the tensile limit strain. Considering the flexural strength of concrete being
roughly double the value of tensile strength, the doubled value of tensile
strain corresponding to the tensile strength is adopted for the value of the
tensile limit strain (see Fig.2).
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Fig.2 The relationship between tensile Fig.3 Tension failure criteria of
strength and tensile limit strain concrete under biaxial stresses

Kupfer[9] studied the failure criteria of concrete under biaxial stresses. In
his study, the accuracy for compressive failure is high. However the accuracy
for tensile failure is not sufficient. Therefore, the formula presented by Niwa
et al. studying the compression-tension range of concrete[10] and the formula
presented by Yamada et al. studying the tension-tension range[8] will be used
for this study (see Fig.3). Maekawa clarified that the loading path does not
affect the failure criteria when it is a monotonic loading[11]. These formulas;
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eq.(12) can be used for the tensile failure of concrete regardless of the
loading path.

fen/fe=3V 1-(0 2/T'c) for 0 z<0 (Formula by Niwa et al.[10]) (12)
feu/fe=1-0.3(0 2/0 1)? for 0 z2>0 (Formula by Yamada et al.[8])

The tensile strength of concrete affects not only the criteria of cracking but
also tension stiffening. Therefore, the tensile strength must be estimated
accurately. When the cracking load is defined by the load when the stiffness of
the RC panel element rapidly changes in the load-displacement relationship, the
calculated principal tensile stresses at the cracking load are shown in Table 1.
Table 1 also shows the tensile stress ratio of the tensile strength obtained
from compressive strength to the calculated tensile stresses at the cracking
load. For the Collins-Vecchio experiments and the Aoyagi-Yamada experiments,
each average ratio is 1.11 and 0.77. and each coefficient of variation is 20.9%
and 7.5%. Dispersion for the Collins-Vecchio experiments is wide. This is the
reason that concrete mixtures and the curing condition of each specimen were
different. As the tensile strength affects the behavior of the RC panel element
after cracking, the tensile strength which gives the same cracking load with
test results are adopted to verify the proposed model.

3.2 Angle of Cracking

The angle of cracking affects the direction in which tension stiffening acts and
the shear stress transmitted through the cracked face. The authors assume that
the cracking direction is perpendicular to the direction in which the principal
tensile stress acts. On the other hand, Yamada et al.[8] have expressed the
cracking angle with a linear function of principal tensile stress ratio for the
tension-tension range of concrete from their experimental results. Although, the
cracking angle in the tension-tension range is affected by a shape of a specimen
and placement of steel bars. For example, in case of the cylindrical container
subjected to internal forces[12], cracks occurred in arbitrary radial directions
at the upper circular slab. It is difficult to define the cracking direction for
the tension-tension range of concrete. This is because cracks generate in every
possible directions. Therefore, the cracking angle is always set perpendicular
to the direction along the principal tensile stress acts. In this study,
reversed cyclic loading is not considered. Cracks are considered to generate in
one direction and does not change the direction even if the direction of the
principal stress changes.

4. CONSTITUTIVE MODEL FOR TENSION STIFFENING

4.1 Tension Stiffening Model

The bond action exists between steel and concrete even after cracking.
Therefore, concrete bears the tensile stress between cracks and in consequence
the stiffness of the RC panel element is higher than that of steel itself. There
are two method to treat this phenomenon. The first method is to modifying the
stiffness of steel. The second one is to give the tensile stress to concrete
even after cracking. A study by Gilbert & Warner[13] is related to the first
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method. Studies relating to the second method are CEB-FIP model code[14], Morita
& Kaku[15], Yoshikawa & Tanabe[16], Gilbert & Warner[13] and Milford &
Schonbrich[17]. In CEB-FIP model code, the mean stress-mean strain relationship
of cracked concrete which is a function of steel stress is used. Yoshikawa
expresses tension stiffening in terms of a reinforcement ratio function. Morita
.Kaku model, Gilbert-Warner model and Milford-Schnobrich model are characterized
by having no relationship with steel and being expressed by the unique mean
stress-mean strain relationship. These models are useful because they can give
the tensile stress .of concrete in any direction regardless of the steel axis.
The authors will adopt Okamura-Maekawa model for tension stiffening{7], which is
given by the eq.(13). The parameter c is introduced in the eq.(13) so-as to be
taken the bond effect into consideration.

o o/fa=( 5 ox/ & +)° | o asy

The tensile stress of concrete is given by eq.(13) in the direction orthogonal
to the cracked face. Generally, the direction, in which tensile stress of
concrete is given, is different from the direction of steel bars under biaxial
stress condition. Further, Okamura-Maekawa model provides the tensile stress of
concrete indifferent to a reinforcement ratio. Therefore, it is necessary to
verify this presented model with the RC panel tests under in-plane stresses
condition. ‘
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Fig.4 Tension stiffening model

Fig.4 shows the Okamura-Maeckawa model, the Collins-Vecchio model[2] and the
Morita-Kaku model. The Okamura-Maekawa model with parameter ¢=0.2 shows the same
curve obtained from the Collins-Vecchio model. On the other hand, the
Okamura-Maekawa model with parameter c=0.4 show the same curve obtained from the
Morita-Kaku model. The Collins-Vecchio model evaluate tension stiffening higher
than other models. This is because the steel mesh, that shows different bond
nature to a deformed bar, is used in the Collins-Vecchio experiments. The
parameter ¢=0.2 is introduced for the Collins-Vecchio experiments and c=0.4 for
the RC panel experiments that use deformed bars.
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4.2 Constitutive Model for Steel after Yielding

(1) Criterion of yielding

The tensile stiffness as RC is expressed by superposition of the stiffness of
concrete and steel. Until now, the analysis for RC has been performed on the
assumption that yielding starts when the mean strain of the RC element reaches
the yield strain of steel. However, the stress acting along the steel bar
between cracks is not unique because of bond action. The steel stress becomes
into maximum at the cracked face where concrete does not bear the tensile
stress. Therefore, the tensile stiffness of the RC element results in higher
values, when the yield criterion of the RC element is evaluated through the mean
strain of steel. This phenomenon can be confirmed through the uniaxial tension
experiments of the RC element performed by Tamai et al.[6]. The yielding of the
RC element starts when the steel stress at the cracked face reaches the yielding
stress. This is described by;

o s=fy . (14)

The the principal tensile stress direction of concrete and that of steel do not
always conform with each other. Therefore, the steel stresses acting on the RC
panel element are more difficult to be obtained when compared to the RC element
under uniaxial tensile stress condition. Solving the equilibrium relating to the
global coordinate system, while considering of the triangular Free Body
containing the cracked face, the steel stresses at the cracked face can be
obtained (refer to Appendix I ).

(2) Constitutive Model for steel after yielding

The stiffness of yielded steel in RC depends on the mean stress of steel when
yielding starts. The strain hardening rate has the tendency to increase when the
mean stress of steel at yielding is lower (the strain hardening rate describes
the hardening of the mean stress-mean strain relationship in RC and it is
different from the strain hardening rate of steel as a simple material). When
steel is yielded in the low stress condition, the plastic area of steel is
rather small. Therefore, the stiffness of steel in RC is higher than that of
steel yielded in the high stress condition. The authors have adopted a cosine
function as a stress distribution of steel after yielding and well succeeded to
describe the behavior of the RC element by this function{6]. The eq.(15) is the
generalized constitutive law for steel after yielding obtained by introducing
the cosine function as the stress distribution of steel after yielding.

?3=K1(?5‘K2) . . S (15)

The tensile stress of the RC panel element uses eq.(13) for tension stiffening
and eq.(15) for steel after yielding. As the bond deterioration occurs after
yvielding, tension stiffening is smaller than one obtained from eq.(15). However,
the effect of tension stiffening after yielding is considered to be small.
Therefore, this effect is neglected.
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4.3 Verification of the Tension Stiffening Model

The tension stiffening model has been obtained from the uniaxial tension test of
the RC elements. The adopted tension stiffening model may not be applicable to
the the RC panel element subjected to in-plane stresses. Therefore, verification
of the tension stiffening model must be needed through a comparison with the
experimental data of the the. RC panel element. Following points will be studied
for verification.

1) Will the behavior of the RC panel element be described, when eq.(13) is being
used as the constitutive law for tension stiffening ?

2) Is the Okamura-Maekawa model applicable to the RC panel element in case of
the direction of steel being different from that of the principal tensile stress
of concrete ?

3) Will. the criterion of yielding and the constitutive law for steel after
yielding describe the behavior of the RC panel element ?

The analyses for verification have been done through selected specimens that are
effected by tension stiffening in the Collins-Vecchio experiments and the
Aoyagi-Yamada experiments. Specimens selected from the Collins-Vecchio
experiments are PV3, PV9 and PV28, which are not effected by the shear stiffness
because of the bars arrangement being isotropic. Effects of the compressive
stiffness is relatively small except for the neighborhood of failure because the
acting stresses are relatively low. Further, the steel does not yield, so these
specimens are suitable for verification of the tension stiffening model. The
specimens PV3 and PV9 are subjected to pure shear stress. The specimen PV28 is
subjected to pure shear stress and tensile stresses in x and y directions. Fig.5
shows analytical results. The shear strain of the RC panel element and steel
strains in x and y directions agree well with the experimental results, when the
analyses are performed with the parameter c set to 0.2. It can be recognized
that the adopted tension stiffening model describes well the tension stiffening
behavior of the RC panel element.

PV28
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Pv3

-]
% 2 —— ANALYSIS
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m 0 1 1 1 1
% - PV28
T4l
54
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Fig.5 Analytical results (verification for tension stiffening model)
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The stress acted on the specimen PV4 is low and the placement of reinforcing
bars is isotropic. In this case, reinforcing bars yield in the both directions.
Fig.6 shows the analytical results. Fig.6 also shows the analytical results
assuming that yielding occurs when the mean strain of steel reaches the yielding
strain of steel. When the tensile stresses of concrete and steel are simply
added as the tensile stress of the RC panel element, the yield point of RC will
be evaluated in high value and will effect the behavior of the RC panel element
after yielding. On the other hand, the presented constitutive law for steel
accurately evaluates the lowering of stiffness caused by yielding at the cracked
face.
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Fig.6 Analytical results (verification for constitutive law for steel)
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Table 2 shows the observed values and the analytical values regarding to the
shear strain and the maximum shear stress. The maximum shear stress ratio of the
observed value to the analytical.value .is 0.94 in average. The shear stress
ratio of the observed value to the analytical value for each shear strain; 0.1%,
0.2% and 0.4% is 0.98 in average. These averages are consistent to the
analytical results. Table 3, Fig.7 and Fig.8 show the analytical results for the
Aoyagi-Yamada experiments. The loading condition of the chosen specimens are in
the uniaxial tension state (Except specimen No.13 is the in tension-compression
biaxial loading state). However, the direction of the principal tensile stress
of concrete and the direction of the tensile stress of steel are different.
These specimens can be used to study the application of the presented tension
stiffening model to the the RC panel element. Table 3 shows the observed value
and the analytical value of yield stress and the maximum stress. The observed
strain of steel in the Aoyagi-Yamada experiments does not have efficient
accuracy after yielding, therefore, the behavior after yielding can not be
followed. The analytical value and observed value have good correspondence
before yielding. The analyzed yield stresses are slightly higher than the
observed values and slightly lower for the maximum stresses. However, the
observed values and the analytical values have good correspondence. The
direction of steel axis and that of the principal tensile stress of concrete are
different in specimen No.7 and No.1l. From these analytical results, the tension
stiffening model can be applied to the in-plane stress field even when
directions of the principal tensile stress of concrete-and the steel stress are
different each other.
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Table 2 Analytical results (Collins-Vecchio experiments)

Average

Average Shear Strain Shear Stress

Maximum Shear

Specimen

(MPa)
(2)

(x107%)

stress (MPa)

(1)

(1)/(2)

(1)

(2) (1)/(2)

0.91
1.05
0.95
1.00
1.03
0.92
0.87
0.98
1.03
1.03

1.52 1.67

1.00
2.00
1.00
2.00
4.00
1.00
2.00
1.00
2.00
4.00

3.07 3.41 0.90

1.96 1.86

PV3

2.06 2.16

2.65 2.65

2.89 3.06 0.94

PV4

2.74 2.65 0.98

0.94

1.81 1.96
2.60 2.99

2.25 2.30

3.74 4.00 0.94

PV9

3.23 3.14

5.80 6.02 0.96

pPv28

4.85 4.70

1.00
1.00
0.98
0.95
0.97
1.03
1.03
1.00

4.51 4.51

1.00
2.00
4.00
1.00
2.00
1.00
2.00
4.00

8.87 7.97 1.11

pPv23

5.78 5.78

7.55 7.64

5.78 6.08

7.30 17.55 1.00

9.12 8.67 1.05 1.03

PV25

3.33 3.23

4.36 4.21

6.35 6.76 0.94

PV27

5.98 5.98

1.05
1.09
1.05
1.05
1.11
0.96

1.96 1.86

2.35 2.16

1.00
2.00
4.00
1.00
2.00
4.00
1.00
2.00
4.00
1.00
2.00
4.00

3.13 3.18 0.98

PV12

2.84 2.70
2.16 2.06
2.50 2.25
2.74 2.84
2.74 2.60

3.23 3.09

3.04 3.26 0.93

PV18

1.05

0.94

1.05
1.05
1.11
1.04
1.00
1.03

4.26 4.52 0.94

PV20

4.02 3.63
2.94 2.84
3.72 3.72

4.66 4.51

5.03 5.68 0.89

PV21

1.00
2.00
4.00

0.98
0.95
1.04
0.98
0.94
0.93

2.01 2.06

2.70 2.84

3.97 4.12 0.96

PV10

3.68 3.53

2.16 2.21

2.94 3.14

2.00
1.00

3.56 4.05 0.88

PV11

2.01 2.16 1.02

2.14 2.32 0.92 0.93

PVi6

1.02
1.15
1.09
1.03
1.03
1.02
1.04
1.03
1.07

2.40 2.35
3.04 2.65
3.53 3.23

1.00
2.00
4.00

3.95 4.09 0.97

PV19

3.04 2.94

1.00
2.00
4.00

4.02 3.92

24 0.97

6.07 6

PV22

5.68 5.59
2.55 2.45
3.23 3.14

1.00
2.00
4.00

‘5.80 6.47 0.90

PV29

3.97 3.72

Average 1.01

Average 0.95

Total Evaluation

Coeffcient of
Variation 5.6%

Coefficient of

6.0%

Varfation

(1) Experiment (2) Analysis
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Table 3 Analytical results (Aoyagi-Yamada experiments) -

Specimen  Yield Stress (MPa) Maximum Stress (MPa)

(1) (2)  (1)/(2) (1) (2) (1)/(2)
No.7 2.35 2.45 0.96 3.26 2.92 1.12
No.11 2.87 2.94 0.98 3.66 3.33 1.10
No.13 - 2.48 2.50 0.99 3.01 2.97 1.01
No.23 3.46 3.82 0.91 5.13 4.53 1.13
No.24 3.33 3.63 0.92 4.24 4.02 1.05
Average 0.95 Average 1.08

Coefficient of Coefficient of

Variation 3.7% Variation 4.7%

5. CONSTITUTIVE MODEL FOR COMPRESSIVE CRACKED CONCRETE

5.1 Constitutive Model for Compressive Cracked‘Concrete

Collins and Vecchio tested the the RC panel element subjected to biaxial
stresses. They reported that the compressive stiffness of concrete paralleling
to the cracked face was reduced[2]. Maekawa proposed an idea that the lowering
stiffness of concrete was due to the stress relaxation in the vicinity of
cracks. He also presented the constitutive law for compressive cracked concrete,
introducing the elasto-plastic fracture model for plain concrete to cracked
concrete[3]. Miyahara et al.[5] have conducted uniaxial compression tests of the
RC element with pre-set cracks paralleling to the loading axis. The lowering
strength of cracked concrete has been confirmed to be represented by the tensile
strain in the direction orthogonal to the cracked face. Furthermore, they have
reported that the compressive strength only lowers 0.65 to the compressive
strength of uncracked concrete. Primarily, the Maekawa model is introduced to
this study to represent the lowering stiffness of cracked concrete. The
stiffness lowering initial point and stiffness lowering end point will be
decided through the Collins-Vecchio experiments.

From the Collins-Vecchio experiments, the specimens PV23, PV25 and PV27 have
been selected. These specimens are much effected by the lowering compressive
stiffness. From these testing results, compressive stresses in the direction
paralleling to the cracked face are obtained. The obtained compressive stresses
are normalized through compressive stresses, which are obtained from the Maekawa
model for uncracked concrete. Fig.9 shows the relationship between normalized
compressive stresses and the tensile strain obtained from the Collins-Vecchio
experiments, the Maekawa model[3], the proposed model which modifies Maekawa
model and the model proposed by Collins and Vecchio[18]. In the modified Maekawa
model, the initial point of the lowering stiffness and the end point of the
lowering stiffness are decided through the test results conducted by Collins and
Vecchio. There are correlations between the lowering of compressive stiffness
and tensile strain in the direction orthogonal to the cracked face.
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Fig.9 Relationship between the the lowering rate of concrete strength and the
average tensile strain perpendicular to the cracked face

The authors describe the constitutive law for compressive cracked concrete by
eq.(16).

0 c=EoKc( & c- ¢ P) ’ (16)

The fracture parameter of cracked concrete Ko is given by Ko w , where Ko denotes
the fracture parameter of uncracked concrete obtained.from the Maekawa model and
@ denotes the reducing factor. o is expressed by the following equation as a
function of the tensile strain in the direction orthogonal to the cracked face.

w =1.0 for e <€,
(4)"-'1.0'0.4(8 t~ & 1)/(82'51) fOI’ 8t§82
© =0.6 ' for e v> ¢ 2

where, & 1=0.0012 and & »=0.0044

Considering all of the specimens fractured by compression, Collins & Vecchio
arranged the test data and introduced the model that explained the stiffness
lowering of compressive cracked concrete. In their model, the compressive
strength of cracked concrete becomes closer to zero as the tensile strain
increases. Taking the experimental results conducted by Miyahara et al.[5] into
consideration, the authors keep the lowering of the concrete strength up to 0.6.

In this study, the cylinder strength is being used as the compressive strength
for the analyses. The compressive strength is generally lower than the cylinder
strength that is affected by confinement through friction of the loading
surface. The cylinder strength in the Collins-Vecchio experiments was
approximately 20 MPa. The effects of confinement through friction are considered
to be small. However, there is a report that the compressive strength drops near
to 0.9, when the cylinder strength is over 50 MPa[19]. The cylinder strength,
being used as a compressive strength, must be reduced, when the concrete
strength is high.
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5.2 Verification of the Constitutive Model for Compressive Cracked Concrete

Fig.10 shows the analytical results of PV23, PV25 and PV27 obtained through the
presented constitutive law. The specimen PV27 is subjected to pure shear stress.
The specimens. PV23 and PV25 are subjected to shear stress and compressive
stresses in x and y directions. Table 2 shows the observed values and the
analytical values regarding to the shear strain and the maximum shear stress.
Analytical results describe the behavior of the RC panel element very well. This
is because the proposed constitutive law are introduced from the Collins-Vecchio
experiments. This constitutive law will be used in the analyses of the RC panel
element hereafter. ’
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Fig.10 Analytical results (verification for the modified Maekawa model)

6. CONSTITUTIVE MODEL FOR SHEAR DEFORMATION ALONG CRACK

6.1 Constitutive Model for Shear Deformation along Crack

There are existing constitutive laws for shear deformation along crack studied
by Aoyagi & Yamada[4], Cervenka[20], Fardis[21], Fenwick[22] and Walraven[23].
Assumption of the crack width and the crack spacing are necessary for all of the
constitutive 1laws except the Aoyagi-Yamada model and the Cervenka model.
Further, the dowel action must be studied. The Aoyagi-Yamada model and the
Cervenka model were developed in order to apply to the the RC panel element with
smeared cracks. These models describe the shear stiffness transmitted by cracks
as the function of the principal tensile strain. Therefore, these models are
useful for analyzing the the RC panel element.

The Cervenka model does not consider the crack spacing and another parameter
must be set to describe the shear stiffness. The Aoyagi-Yamada model can
represent the shear stiffness with one valued function of the tensile strain.
Therefore, the Aoyagi-Yamada model has been adopted for the shear stiffness of
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cracked concrete in this study. It will be desecribed by eq.(17) and is
equivalent to the shear stiffness that are connected in series with the shear
stiffness represented by Aoyagi & Yamada and the shear stiffness between cracks
(refer to Fig.11).

Gor=1/(1/Go+1/61) (17)

UNCRACKED

Gers MPa

TENSILE STRAIN

Fig.11 Model for shear stiffness of cracked concrete

6.2 Verification of the Constitutive Model for Shear Deformation

The specimens PV12, PV18, PV20 and PV21 have been chosen from the
Collins-Vecchio experiments to verify the presented constitutive law. These
specimens are subjected to pure shear stress. As steel bars are placed
anisotropically in these specimens, the selected specimens are affected by the
shear stiffness. Further, the steel in these specimen shall be yielded. Before
verifying the constitutive law for shear deformation, the effect of steel
yielding should be studied. Using the specimen PV12 that has strong anisotropy,
the sensibility analysis has been performed by changing the strain hardening
rate of steel or the shear stiffness. As the strain hardening rate of steel

cannot be obtained from the Collins-Vecchio experiments data, it is given by
eq.(18). Eq.(18) sets the strain at reaching the tensile strength of steel to
10% and keeps the strain hardening rate constant from yielding to breaking. The
strain that starts hardening of steel has been assumed to 1.5% considering the
specification of standard reinforcement in Japan.

Esh=10(fu'fy) (18)

Fig.12(a) shows the analytical result in case of changing the strain hardening
rate from 1/2 times to 2 times of the strain hardening rate given by eq.(18) and
in case of no yield plateau. The difference obtained by changing the strain
hardening rate and the yield plateau are small enough to be neglected. When the
shear stiffness is changed to 2/3 times and 1 times of the shear stiffness given
by eq.(17), the effect of changing the shear stiffness is bigger than the
changing the strain hardening rate of steel (see Fig.12(b)). In case of PV12,
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the behavior is affected more by the shear stiffness than the tensile stiffness
of yielded steel. The same results have been obtained from PV18, PV20 and PV21.
Therefore, these specimen may be used for verifying the shear stiffness model.

Fig.12 and Fig.13 show the analytical results of PV12, PV18, PV20 and PV21. The
analytical results fit all behaviors of each experiment results. Table 2 show
the observed values and the analytical values regarding to the shear strain and
the maximum shear stress. The maximum shear stress ratio of the observed value
to the analytical value is 0.94 in average. The shear stress ratio of the
observed value to the analytical value for each shear strain; 0.1%, 0.2% and
0.4% is 1.05 in average. The model presented by Aoyagi & Yamada sufficiently
shows the shear behavior of the RC panel element. .
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(a) effect of tensile stiffness for steel (b) effect of shear stiffness

Fig.12 Sensibility analysis
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Fig. 13 Analytical results (verification for shear stffness model)
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The Collins-Vecchio experiments used to verify the constitutive law for shear
had relatively low  cylinder strength of concrete, which were approximately
20MPa. Therefore, the effect of the concrete strength influencing on the shear
stiffness is small. Although, when the concrete strength is relatively high, the
effect of the concrete strength on the shear stiffness must be considered. The
verification of the shear stiffness model for the RC panel element which have
the high strength of concrete, is also necessary but there is not any
satisfactory experimental data for verification at this present.

7. TOTAL EVALUATION

From the analytical results in aforesaid chapters, the proposed constitutive law
describe the behavior of tension stiffening, compressive cracked concrete and
shear deformation in the RC panel element. In addition to those analytical
results, six more specimens ‘have been analyzed by using the proposed
constitutive model. The analytical results are shown in Fig.14 and Fig.15.
Results sufficiently describe the behavior of the RC panel element.

Analytical results concerning the maximum shear stresses and deformations are
described in Table 2. The maximum stress ratio of the observed value to the
analytical value is 0.93 in average. The shear stress ratio of the observed
value to the analytical value for each shear strain;0.1%, 0.2% and 0.4% is 1.02
in average. Further, regarding all of analytical results, the maximum stress
ratio is 0.95 in average and 6.0% for coefficient of variation and the shear
stress ratio is 1.02 in. average and 5.6% for coefficient of variation. The
proposed constitutive law can be applied to the RC panel element subjected to
in-plane stresses.
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Fig.14 Analytical results (verification for the RC panel element)
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In this study, the analyses have been done by using the tensile strength of
concrete being coincided with the observed cracking load. The study by Shioya et
al.[24] reports that the scale effect is being confirmed in the tensile
strength. Further, the tensile strength is much effected by the drying
shrinkage. The tensile strength greatly affects the behavior of RC after
cracking. An accurate estimation of these affects are the subject for future

studies.
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Fig.15 Analytical results (verification for the RC panel element)

8. CONCLUSIONS

The constitutive law for the RC panel element has been developed by combining
the constitutive laws which have been obtained from uniaxial testing results of
the RC elements. The application of the proposed law to the the RC panel element
subjected to in-plane stresses has been confirmed through the test results
conducted by Collins & Vecchio and Aoyagi & Yamada. Conclusions are as follows.

(1) The behavior of the RC panel element affected by tension stiffening can be
represented by the Okamura-Maekawa model, which is expressed by the tensile
strain in the direction orthogonal to the cracked face.

(2) The constitutive law for steel, obtained from the criterion of yielding and
the assumption of the steel stress distribution can accurately describe the
behavior of the RC panel element after yielding.

(3) The modified Maekawa model, reducing the compressive stiffness with the
tensile strain in the direction orthogonal to the cracked face, can represent
the compressive behavior of the RC panel element.

(4) The Aoyagi-Yamada model, expressed by the tensile strain in the direction
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orthogonal to the cracked face, can sufficiently represént the shear behavior of
the RC panel element.

(5) The constitutive law for the RC panel element, developed by the constitutive
laws for cracked concrete and for steel after yielding, can accurately predict
the deformation and the ultimate strength of the RC panel element in the range
of experiments used in this verification.

Following points must be considered when applying the constructed constitutive
law for the RC panel element.

(1) The tensile strength, which decides the crack generating condition and the
post crack behavior of RC, is influenced by the scale effect and the drying
shrinkage. Therefore, the tensile strength must be obtained with an accuracy.

(2) The cylinder strength being used for the compressive strength, the effect of
confinement through friction on the cylinder surface should be taken into
consideration in case of the high strength of concrete.

(3) The concrete strength must be considered for the shear stiffness, when
concrete strength is high.
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APPENDIX T

By considering the equilibrium-of-force of the free body with regard to x and y
directions, eq.(1-1) and eq.(1-2) can be introduced (see Fig.1.1). The
equilibrium of forces with regard to x and y directions are given by eq.(1-1)
and eq. (1-2)

0 =2xAsxCOS @ - 0 syAsySin @ - v ABtsin 0 + 0 cABtcos 8 = o xBCt+ v «yACt (1-1)
0 sxAsxSiN @ + 0 syAsyCOS a + 7 ABtcos 8 + o cABtsing = o ,ACt + 7 xBCt (1-2)
The reinforcement ratio being defined by the rate of the cross-sectional area of
steel to the area of the RC panel element crossing in the direction orthogonal
to the steel bar axis, eq.(1-3) and eq.(1-4) can be introduced as follows.
Px=Asx/BDt=Asx/ {ABtcos(6 -a )} (1-3)
py=Asy/ADt=Asx/ {ABtSin( 6-a )} ‘ (1‘4)

From geometrical condition, eq.(1-5) can be given by;

sin 6 =AC/AB . (1-5)
cos @ =BC/AB

Eq.(1-1) and eq.(1-2) being rewritten by using eq.(1-3), eq.(1-4) and eq.(1-5),
eq.(1-6) and eq.(1-7) can be introduced.

Px 0 5xC08( 0 - @ )COS @ -Py 0 sy8in( 6 -a )sina =( 0 x- 0 <)cos 8 +( ¢ =¥+ 7 )siné@

(1-6)
Px 0 sxC08( 0 - )sina -p, 0 sy8in( 6 -a )cosa =( o y-0 c)sind +( ¢ xy= T )Cos @

(1-7)

Fig. 1.1 Stresses act on the free body
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Eq.(1-6) and eq.(1-7) being solved regarding to Px ¢ =x and Dy 0 sy, eq.(1-8) and
eq.(1-9) are obtained.

cosS @

cos(6-a) {(0x-0 c)CoSO +(T xy+T )5ind }

Px0 =x=

sina

+m {(0y-0c)sind +(t xy-7 )cos 8 } (1-8)

sina

Py 0 ay=— m){(ox‘ac)cose +(T xy+7 )sing }

cosa

+ m{(ay-ac)sin6+(rxy—t)cosG} (1-9)

o sx and o sy obtained by eq.(1-8) and eq.(1-9) are the steel stresses at the
cracked face.

APPENDIX I

Assumed that the stress distribution of steel after yielding between cracks is
expressed by a cosine function as shown in Fig.2-1, the steel stress can be
given by eq.(2-1).

0 s=— ACOS T X+ 0 s (2-1)

Further, the mean steel strain is expressed by eq.(2-2), using eq.(2-1).

-5—5=f:‘( o «/Es)dx +_/; { & snt( 0 s=-fy)/Esn} dx

- & *%f‘)} Tet e Bh(l-xl)—fE’—sh(l—xm (—%s;—}g—s) sinz xa (2-2)
[§ \ !
= W ] [ -

\

Fig.2-1 Modelling of the steel stress distribution after yielding between cracks

1T X
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X1 indicates the normalized length of elastic parts along the steel bar and can
be obtained by substituting fy for o s in eq.(2-1).

xl=i cos™* (L'—-f—y—) (2-3)
4 A

Eq.(2-2) being solved regarding to the steel stress; o s, eq.(2-4) can be
introduced.

T =K1 (Z =-Kz) ' (2-4)

where, K,=1/ {3%% +Ll:§l)} » Kz= & sn(l-x1) - fy (I-x1)+ ( L L

Esh Eah Esh Es ) sinz X1

Steel stress after yielding is obtained by using eq.(2-3) and eq.(2-4). In this
analysis, steel stress after yielding has been obtained by repeating calculation
with eq.(2-3) and eq.(2-4), assuming the stress amplitude of steel A expressed
by eq.(2-5)

A=Ao( & 50/ € =)° - (2-5)

Eq.(2-5) indicates that the lowering stress amplitude of steel is assumed be
approximately equal to the lowering of tension stiffening.
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