CONCRETE LIBRARY OF JSCE NO.9. JUNE 1987

REVALUATION OF THE EQUATION FOR SHEAR STRENGTH OF REINFORCED
CONCRETE BEAMS WITHOUT WEB REINFORCEMENT

(Translation from Proceedings of JSCE No.372/V-5 1986-8)

Junichiro NIWA Kazuie YAMADA Kazuo YOKOZAWA Hajime OKAMURA

SYNOPSIS

In the past, the equation for the shear strength of reinforced concrete beams
without web reinforcement had been proposed, whereas the result of large-sized
beam tests carried out recently revealed that the nominal shear strength was
inversely proportional to the fourth root of the effective depth. Taking this
fact into consideration, the proposed equation is revaluated and a new equation
is derived. The validity of the new equation is verified by the authors using
test results of large-sized beams subjected to a concentrated load. Finally,
suggestions concerning the application of the new equation for practical design
are mentioned.
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1, TINTRODUCTION

For the shear strength of a reinforced concrete (RC) beam without web
reinforcement and having the ratio of the shear span to the effective depth
"a/d" more than 2.5~3,0 which would fail immediately after generation of a
diagonal crack, the equation (1) was proposed in 1980 [1]. And the design
equation for such beams based on that equation was adopted by JSCE as "Recom-
mendation for limit state design of concrete structures" [2].

£v=0.20 £c'1/3 (14 Bp+ Bd)[0.75+1.4/(a/d)] (1)

where, fv: ultimate shear strength (MPa), fc': compressive strength of concrete
(MPa), a: shear span, d: effective depth, bw: breadth of web, As: cross-
sectional area of tensile reinforcing bars

pw=100_As/(bw d), Bp=.pw - 1 £ 0.732
Bd= d-1/4 -1, d[m]

Eq.(1) is derived from the data of the experiments that have been carried out
in the past both in Japan and abroad; the outline of which is presented in
Table 1 classified by the authors' name., As seen in Table 1, most of these
data are for the beams of around d= 0.1~0.5 m and those within around the
range of pw > 0,5%. Especially, data for the beams of pw < 0,52 and d > 1 m
are nearly nil.

However, 3hm°ﬂg Ehe RC struc&- Table 1 Outline of the experimental data in
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?ulverts w'hose cross- section indicate the range of parameters,
1l31 determlnedhs?%ei.y If)y the figures in the parentheses are the
shear strengt v) of con- average value)
crete for without using web :
reinforcement, cases of pw < Researcher No. i<’ pw d ald
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FFFECT refer to the literature {1]




2.1 Investigation based on the data in the past

In these circumstances, a series of experiments has recently been carried out
over this range, and it is pointed out that a concept that fv decreases
proportionally to d-1/4 is reasonable within this range [3].

Therefore, the authors hit on the idea to replace the portion of the sum of
Bd and Bp with regard to the effective depth and the reinforcement ratio "HR
the form of the product which directly introduced the functional form of d~
and finally concluded that the following equation would be most suitable after
investigating from various aspects:

fv=0.20 (pw £c")1/3 d-1/4 [0.7541.4/(a/d)] (2)
where, no 1imitation is set for pw.

Comparison is made between the experimental values and the calculated ones with
respect to the 288 data in all in Table 1 from which eq.(1) was derived. As
its result, the average value of the ratio of the experimental values to the
calculated ones u and the coefficients of variation C.,V, are obtained as the

followings: Table 2 Distribution of data and degree of

Eq.(1) » =1.00 conformity of equation for

lculation
CVe= 0/u =9,2% ca
Eq.(2) u = 1/.81 (Total number of data 265)
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added. Examination is made [ No.ofdata

again with regard to 265 data
altogether. Its result is as
shown below:

Average of experimental value divided by calculated one by eq. (1)
(ditto. coefficient of variation)

Average of experimental value divided by calculated one by eq. (2)

(ditto. coefficient of variation)




In this case, it is also confirmed that the accuracy is nearly the same.

When the data are densely distributed within a certain range, there might arise
problems with regard to the applicability of the equation even if C.V. for the
data as a whole is small enough. Therefore, the authors divided the whole
ranges of "pw" and "d" into subdivisions so that pw and d-1/4 take nearly
equal intervals respectively as shown in Table 2 and by assuming that the
average value within a subdivision represents the range, re-examination was
conducted. As its result, the mean of the average within each subdivision and
C.V. are obtained as the followings:

Eq.(1) “

1.02, C.V.= 5.4%
Eq.(2) M = 5.2%

1.02, C.V.

Furthermore, if the four subdivisions in which the number of data is two or
less are disregarded,

Eq.(1) s = 1,00
Eq.(2) u = 1,01

?
,
are gained for the remaining thirteen subdivisions. In either case, conformity
of both equations is nearly the same.

With regard to eq.(2), the coefficient of variation in each subdivision falls
within the range of 3.9 ~12,0%. The average value of the coefficients of
variation in the subdivision that includes data more than or equal to 4 is 7.0%
and the standard de-

viation is 0.023. Table 3 Accuracy of calculation of pw, d and fc'
The coefficient of for each subdivision of range
variation for the
s 2%. Experimental value/Eq. (1) Experimental value/Eq. (2)
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) 3~2. . 9% 1.009 ( 8.7
In Table 3, for each 2.2~3.4 30 0.995 §7.598 1.041 57,233
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R ; 0.2 ~0.35| 161 1.002  ( 8.5%) 1.014  ( 8.6%)
eq.(2) are shown in 0.35~0.7 | 66 1.004 ( 5.9%) 1003 ( 6.2%)
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. c a y Average Average
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r 10~20 | 37 0.979 ( 7.8%) 0999 ( 7.7%)
20~30 120 0.993 ( 8.0%) 1.013 ( 8.6%)
30~40 92 1.027 ( 8.3%) 1.013  ( 8.6%)
40~50 14 1.039  ( 6.2%) 1.013  ( 5.7%)
50~60 2 1016 ( 1.1%) 0.975 ( 1.1%)




2.2 Examination with the data of the large-sized beams with low reinforcement
ratio

In case a RC beam without web reinforcement is subjected to a concentrated
load, conformity of eq.(2) in which the influence of the reinforc ment/ratio
and the effective depth is represented by the form of product pw1 3 4-1/4 and
eq.(1) in which the same is represented by the form of sum (1+ Bp+ Bd) with the
past experimental data is of nearly the same order. However, it must be
noticed that over the range where the past data are abundant, that is, the
range of d < 1 m and pw > 0.5%, there is practically no difference between the
calculated values by both equations, whichever form the portion that represents
the influence of the reinforcement ratio and effective depth may take, product
or sum.,

The case in which the difference between the calculated values by the two
equations becomes very large happens in the range where the thickness of the
cross section is determined from the shear strength for a beam having a small
reinforcement ratio and a large effective depth that is practically designed as
one-way slab.,

Therefore, the authors have undertaken to examine the validity of these two
equations using the data[3] of experiments of the beams with large effective
depth and small ratio of reinforcement which were recently carried out. How-
ever, in these experiments, uniformly distributed load is applied by way of
hydraulic pressure, which must be taken into consideration. Accordingly, prior
to examining the validity of both equations to the large-sized beam with low
reinforcement ratio, investigation on how to deal with the uniformly dis-
tributed load is going to be made in advance.

3. DEALING WITH UNIFORMLY DISTRIBUTED LOAD

3.1 Method by Iguro et al.[3]

In dealing with the case in which a beam is subjected to the uniformly dis-
tributed load, Iguro et al. consider one quarter of the span "g" to be
equivalent to the shear span "a" when the beam is subjected to a concentrated
load, referring to Kani's idea[4].

Assuming that the location where the diagonal crack that leads to failure of
the beam generates (the distance between the center of support and the location
where the diagonal crack generates at the lower edge of the beam is defined to
be "x" ) is the middle point of "a", they compare the calculated value of the
shear force applying at the position of x =12 d/(4x2) = 1.5d from the center
of support because £/d = 12 (calculated assuming a/d = 3.0) and that of the
shear strength. And to support this assumption, they point out that the values
of "x" observed in the experiments are nearly 1.5 d.

3.2 Method of dividing the uniformly distributed load into a number of
concentrated loads

Although the method employed by Iguro et al. is very simple, it is difficult to
reasonably explain the assumption that 1/4 of the span of a beam to which a
uniformly distributed load is applied is equivalent to the shear span of a beam
with a concentrated load and that the position at which the diagonal crack that
leads to failure of the beam generates is located at 1/2 of the said shear
span., And the authors presume, if 1/4 of the span should be assumed to be



equivalent to the shear span, the applying shear force have to be calculated
based on the same assumption., Anyway, generality of evaluating "x" to be £/8
can not be confirmed, partly because of the condition that the ratio of the
span to the effective depth £/d is kept constant throughout the series of
experiments.

Therefore, as one of the analytical approaches, the authors tried a new method
to divide the uniformly distributed load into a number of concentrated loads
and replace the former with the latter.

First, the condition of a beam to which a unit uniformly distributed load,
namely w = 1 is applying is considered, Then, by assuming this unit uniformly
distributed load to be a group of a number of concentrated loads, the span is
divided into the sections of a finite number and let one each concentrated load
equal to the sum of the uniformly distributed load on each section apply at the
middle point of the said section.

For a virtual concentrated load thus obtained, the applying shear force diagram
is drawn. Then, the increase in the shear strength around the points of
support and the loading points is to be taken into consideration by reducing
the shear force virtually, and the reduction of the applying shear force is
made based on the applying shear force diagram drawn.

In choosing the function of the reduction used for this purpose, possible
change in the failure mode, that is, from the mode of diagonal tension failure
to the failure such as deep beams in accordance with the distance between the
center of support and the loading point is taken into consideration. Thus, a
function that could be applicable to either mode of failure is chosen before-
hand.

Within the shear span between the loading point and the center of support, the
authors assumed that influences from both the load and the reaction at the
support are combined and averaged influence from the both are taken into con-
sideration, by referring to the method by Ishibashi et al.[7] for investigating
the shear strength of the footing supported by a few piles.

In this case, it may be assumed that failure happens in the shear span on
whichever side, right or left. If the shear span in question is the one on the
left side, for instance, out of the shear forces due to the virtual con-
centrated loads in the vicinity of the support on the left, the shear force
between the center of support on the right side and the virtual concentrated
load (negative shear force) is supposed to affect favorably for this pattern of
failure and tends to apply to increase the shear strength. Therefore, in this
method, only the shear force between the concentrated load and the center of
support on the left (positive shear force) is to be reduced and the shear force
between the concentrated load and the center of support on the right (negative
shear force) is to be used as it is.

The reduced applying shear force diagrams obtained for each virtual concen-
trated load in the manner as mentioned above are summed up for all the virtual
concentrated loads. The largest value of the shear force (positive shear
force) in the shear force diagram as a whole thus summed up is denoted as Vmax.

Finally, the fundamental shear strength Vco is calculated by assuming the
portion of the function of a/d, F(a/d) in eq.(1) or eq.(2) to be unity and
Vco/Vmax is obtained. This value is considered to be the calculated value w_ ;7
of the uniformly distributed load at the time of shear failure.
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In so doing, it is assumed that the influence from the support and that from
the load can be represented in the same way and each Bxi is to be determined
solely by the position within the shear span in question and the distance "x"

(absolute value) from the center of support or the loading point.

In practice, referring to F(a/d) = 0.75+1.4/(a/d), the functional form of a/d
in eq.(l) or eq.(2) and aiming at the case of a/d=5.6 which makes the value of
these equations unity, the value of each Bxi is assumed to be 1.0, when the
distance "x" from the center of support or the loading point exceeds 2.8d, that
is one half of 5.6d. When "x" becomes less than 2.8d, the functional form is
changed from that in eq.(1l) or eq.(2) to the functional form corresponding to
the failure like deep beams in accordance with the mode of failure. Anyway, by
adopting this method, it becomes also possible to duly evaluate the shear

strength when the concentrated loads are applied to a beam in general.

From the above, the reduction function Bx by which respective diagram of the
applying shear force is to be multiplied is gained as the following (Fig. 2):

Bx = ( Bx1 + Bx2 )/2 : (3)
where,
2.8d < x Bxi =1 (4)
0<x<2.8d Bxi=1/[0.75+1.4/(2x/d)] (5)
or



Bxi = 0.21 fc'-1/6 [1+(2x/d)2] (6)
whichever smaller one among eq.(5) or egq.(6).

In this case the shear strength for deep beams is assumed to be calculated by
the following equation:

fv = 0.94 £c'1/2 pul/3 4-1/4 /[14(a/d)?] | .
€ ~

Eq.(6) is what is gained by dividing the fu7—
daT gtal hear strength fvo = 0,20 £ctl/3
o 78 -1/%

Load

by eq.(7).
tsuppon
3.3 Result of calculation of the shear i Eq.(5)

strength by the both methods

Among the experiments in which an idealistic
uniformly distributed load is applied, the one
carried out by Leonhardt is well known, In
order to verify the validity of each method of
calculation, the data by Leonhardt[8] are re-
ferred to.

Table 4 presents the results of calculation by
both methods, namely the method by Iguro et
al, and the one by dividing the uniformly
distributed load into a number of concentrated
loads in comparison with the experimental
values. For the purpose of comparison, the
calculation is made by both eq.(1) and eq.(2).

According to Table 4, the dispersion of the
ratios of the experimental values to the cal-

culated ones is small and their averages are -
well within the permissible range, whichever a
method may be employed, the method by Iguro et Fio.2 Reducti £ficient
al. or the one by dividing the uniformly dis- 8 ﬁi uction coetticien

tributed load into a number of concentrated

Table 4 Calculation of shear strength of small-sized
beams to which uniformly distributed load is

applied
Experimental value/ Experimental value/
Calculated value by the Calculated value by the
d Pw 1c' method of Igro etal. method of dividing into
Specimen| (m)| (%) g/d | (MPa) concentrated loads
Eq. (1) Eq. (2) Eq. (1) Eq. (2)
14/1 10;273 | 2.04 11.0 33.0 1.04 1.08 1.10 1.13
14/2 10.273 | 2.04 11.0 | 33.0 1.04 1.08 1.10 1.14
15/1 10.272 | 2.05 14.7 35.0 1.01 1.05 1.0§ 1.08
15/2 10,273 | 2.05 14.7 35.0 1.08 1.11 1.11 1.15
16/1 [0.273 | 2.04 18.3 34.5 1.09 1.13 1.12 1.16
16/2 10.274 | 2.04 18.2 345 1.09 1.13 1.12 1.15
17.2 {0.274 | 2.04 21.9 324 1.07 1.11 1.08 1.11

[Remark] Data from Leonhardt [8], compressive strength is
converted by fc'= 0.85 Bz



ones. And, if the results of calculation by eq.(l) and eq.(2) are mutually
compared, the results by eq.(2) tends to give slightly smaller values. Anyway,
these data are based on the following ranges of variables:

fc': 32,4 ~35,0 MPa, pw: about 2%, d: about 27 cm, £/d: 11~22

4. VERIFICATION OF THE EQUATION FOR SHEAR STRENGTH BASED ON THE DATA
OF LARGE-SIZED BEAM WITH LOW REINFORCEMENT RATIOS

4,1 Case of distributed load

Since the shear strength could be estimated with reasonable accuracy by a
method in which the distributed load is divided into a number of concentrated
loads for small specimens to which uniformly distributed load is applied, the
authors went further to apply this method to the large-sized beams with low
reinforcement ratio to which uniformly distributed load is applied and compare
the results with the experimental values of the shear strength. The results
are presented in Table 5.

According to Table 5, with regard to the large-sized beams with low reinforce-
ment ratio, considerable differences are observed between the calculated values
and the experimental ones,

In case eq.(1l) is applied, the ratio of the experimental values to the calcu-
lated ones varies over the range of 0.81 ~1.18, Among them, the specimen KS-4
whose ratio of the experimental value to the calculated one is 0.81 has "d" of
1 m and the maximum size (MS) of coarse aggregate of 10 mm, and its strength is
lower by about 107 than that of the specimen KS-5 which has the same details as
those of KS-4 except that its MS is 25 mm. Assuming that KS-4 be excluded,
because such difference is supposed to be caused by lower interlocking action
of aggregate, the ratio of the experimental data to the calculated ones becomes
0.93~1.18 which may be said that estimation is made more or less reasonable
accuracy.

However, if the results of calculation are closely examined, the trend that the
ratio of the experimental value to the calculated one is relatively increasing
as the effective depth increases is clearly observed. In other words, the
influence of the scale effect that is taken into consideration in eq.(l) is a
little too large as compared with the actual case and it means that its effect
is being enlarged as the effective depth increases.

On the other hand, in the case of eq.(2), while there is no such change in the
ratio of the experimental value to the calculated one as seen in the case of

Table 5 Calculation of shear strength of large-sized beams
with low reinforcement ratio to which uniformly
distributed load is applied

Experimental value/Cal- Experimental value/Cal-
) culated value by the method | culated value by the method
Specimen | d pw | od| f¢ of Iguro etal. of dividing into concentrat-
(m) (%) (MPa) ed loads
Eq. (1) Eq.(2) Eq. (1) Eq. (2)
KS -3 0.60 (0.42 | 12.0 | 21.1 0.88 0.81 0.93 0.86
KS -4 1.00 | 0.40 | 12.0 | 27.2 ®©.77 €0.66) ©0.8n (0.69
KS -5 1.00 {0.40 | 12.0 | 21.9 0.92 0.79 0.97 0.83
KS -6 2.00 | 0.40 | 12.0 ] 28.5 0.99 0.75 1.04 0.79
KS-7 3.00 {0.41 | 12.0 | 24.3 1.11 0.79 1.18 0.84




eq.(1), the value of the ratio itself is as small as 0.79~0.86 which shows the
trend of overestimating the actual value to a certain extent. After all,
neither equation can be appreciated in estimating the experimental value with
satisfactory accuracy.

In case concentrated loads are applied to the beam, the conformity of eq.(2) is
not so bad even for the beam with comparatively large effective depth, say d =
1 m or so. However, for the data of the large-sized beam with low reinforce-
ment ratio which is subjected to the uniformly distributed load, there remains
some problems in the estimation.

As mentioned previously, between eq.(l) and eq.(2), no significant difference
is observed with respect to the great majority of the results of experiments in
the past. However, in the range for which these equations are going to be
applied, for instance in the case of d = 3 m and pw = 0.4%, very wide differ-
ence would arise (Eq.(2) gives a value about 1.4 times as large as the one
given by eq.(1)).

As the possible cause of the large difference between the experimental value
and the calculated one as seen in this example, the problem of accuracy of
eq.(1) or eq.(2) may be pointed out first on the side of calculated values and
then problem of adequacy of the method of dealing with the uniformly distri-
buted load., However, because the specimens are the large-sized beams with low
reinforcement ratio, the experimental values themselves might possibly include
errors to a certain extent either. ’

In the experiment of this large-sized beam, for instance, the time of loading
is as long as about 30 minutes per one step (10 min. for loading and 20 min.
for measurement) and failure happened during measurement while the load was
kept constant. Since the number of steps of loading until failure took place
was around 12 with equal loading intervals, if the increase in the load could
be made smoothly the strength might possibly be raised further by 1 more step
or so (about a little less than 10%)[9].

In any case, the influence of the method of dealing with the uniformly distri-
buted load is supposed to be very large. Therefore, the authors determined to
newly carry out the experiments of shear failure of the large-sized beams with
low reinforcement ratio to which concentrated loads are applied, partly for the
purpose of eliminating the vague portion of knowledge due to the uniformly
distributed load.

4,2 loading tests of concentrated loads

The shapes, dimensions and arrangement of the reinforcing bars of the specimens
are shown in Table 6 and Fig.3. The number of specimens is four in all,
Specimen No.l and No.2 have the effective depth d = 2 m and their reinforcement
ratios pw are 0.28% and 0.14%, respectively. Both specimen No.3 and No.3-CR
have d = 1 m and pw = 0.147 and No.3-CR is provided with flexural cracks in
order to investigate the influence of existence of flexural cracks on the shear
strength. '

Besides, in order that the flexural failure would not take place prior to the
shear failure, deformed prestressing bars (Gebinde Stab) which have higher
yield point: are used for the tensile reinforcement. As a matter of course, no
web reinforcement is made within the span. At the fixing ends of the rein-
forcing bars, anchor plates are fixed with nuts, and furthermore, stirrups are
arranged to reinforce the anchoring parts. The Gebinde Stab are being offered



Table 6 Variables of specimens of large-sized beams with low
reinforcement ratio

Overall Lffective Cross-sectional
. length { Span [ Depth D((:]pth Breadth| arca of tensile Ratio of tensile
Specimen L 3 ! w | reinforcement reinforcement Remark
(m) () (m) (m) (m) As pw
(em?) %)
No. 1 13.5 120 | 2.1 2.0 0.6 33.24 0.28
$23-8
No. 2 13.5 120 | 2.1 2.0 0.6 16.62 0.14
$234
No. 3 7.0 6.0 1.1 1.0 0.3 4.15 0.14
23-1 g i
No.3-CR} 7.0 6.0 1.1 1.0 0.3 s 4.15 0.14 (l:rlfl:(lxusI !
$23-1 introduced
No. 1 $23-8 8
e | = :?
| DI6CICIO0 283
0=
| B
=== ‘
750 12000 50
i 13500,
No.2
t o0
1 s le]
{ O~
Ll s
{750 12000 750 $0k28908
1 13500 S
No.3.No.3- -
0.3~ CR $23-1 g
W ! olg
l R
X a ==
500: 6000 500 30
[ 7000 | -

Fig.3 Shape and dimensions of each specimen

by Sumitomo Denko Co.,Ltd.

The mix proportion of concrete is common throughout all the specimens. The
maximum size of coarse aggregate is 25 mm., The mix proportion is shown in
Table 7.

As the tensile reinforcement, the aforementioned "Gebinde Stab" 23 is used.
Its yield point, tensile strength, modulus of elasticity and bearing area
coefficient[10] are as shown in Table 8. The "Gebinde Stab" is a prestressing
bar with screw lugs, having the bearing area coefficient of 0.068. In view of
the fact that the bearing area coefficient of the conventional deformed rein-
forcing bars is around 0.06, the "Gebinde Stab" is considered to have the bond
characteristics of similar order to that of the conventional deformed rein-
forcing bars.

Concrete is cast, while the specimens are placed in a horizontal position with



the side surfaces of the
beam at the top and

Table 7 Mix proportion of

concrete used

bottom. The specimens Maximum size | Air [ Ratjo of Stump | C W (S G | Admixture
No.l and No.2 are made of aggregate (%) | finc agpregate | (cm) | (kg)| (kg) |(kg)| (kg) (kg)

by two-layers casting (nm) %)

with 30 cm thickness of Pozzolith
one layer, while the 25 4 434 12+ 1322 | 177{880] 1023 542.570

specimens No.3 and No.3-

CR are made by single

casting. Concrete is Table 8 Characteristics of deformed pre-

fully compacted with
high frequency vibra-

stressing bar (Gebinde Stab)

tors. After casting is N glominal Nominal cross| Yield | Tensile Mrodulus Bea;[ipg area

PR ame|djameter| -section area | point | strength| of clasticity | coefficient
fln]&Shefiéhtheg af:e COVE mm cm MPa | MPa MPa Y
ered wi sheets an
cured under temperature $23 | 23 4.155 999 | 1130 |2.01x10* | 0.068
control and water spray.

Plan

As the method of 120
loading, one point PN e Q0 A,
loading at the middle of o5 e
the span is adopted. L Coobn :;J;: et é)’
The shear span ratio a/d beoring plotey” |} 4y b i il i o S
is 3.0. The specimens Hl50161150<lj Ul o- U UU U| ;_J
No.l and No.2 are placed =0 12501500 bOOIIZzO!S;OOISOzcgéj
in a horizontal position %ﬁd TR 7
with one of its side vz v
surfaces down and loaded
against the reaction , ¢ 3
wall. The specimen is Bearing bO“SIBSOO Tefion sheer | 3
placed on the holders. I I 7 i .8
Between the specimen and cHE—; A — Q x
the holders supporting 777 ; 74

it, numerous steel
bearing balls are placed
in order to eliminate
frictional constraint
between the holders and the specimen and steel plates are inserted on the
balls. Between the steel plates and the specimen, Teflon sheets are laid. At
the loading point and the points of support, bearing plates with the length of
13 cm and 10 cm respectively are used for loading over the full breadth of the
beam,

Fig.4 Method of loading for specimens
No.l and No.2

In order to examine whether frictional constraint could be eliminated or not,
the specimen is actually moved by way of a pantograph jack, It is known that
the specimen with its own weight of about 390 kN can be moved sliding on the
holders being pushed with the horizontal force less than 5 kN, thus, it is
considered that frictional constraint is almost fully eliminated, This method
of loading is illustrated in Fig. 4.

The specimens No.3 and No.3-CR are held in a beam testing machine in the
vertical position and loaded by way of the bearing plates having the length of
6.5 cm at the point of loading and the points of support as well over the full
breadth of the beam.

The cycle of loading follows the standards mentioned below:

1st cycle O kN—sGeneration of flexural cracks—s0 kN



2nd cycle O kN—Until 7= o Gouge for reinforcing b
V/(bw d) = 3.92 MPa No.l. No.2 - Contrete qaugs
(4 %gf({vcmz) is reached >, Displacement gouge
—— N

3rd cycle O kN —» Failure L

2100

(I

During the loading cycle, occa- il——:jg EEEE#

sionally the load is held constant 1 mood o f W] v ol ] .1 . loog &J

to measure the strain in the ten- 200 ° S S 200
sile reinforcing bars, the strain ;gggg

of concrete in flexural compres-

sive zone and the lateral dis- No.3 . No.3- CR

placement of the beam and at the ¢

same time the development of
cracks are observed. The loca- l j
tions of various instruments used

;
f ; 2
i : ; i $388888484888
;r;gth;.s experiment are shown in 500)(5:2500'250‘”:27'50‘

Specimen No.3-CR is the one that Fig.5 Arrangement of measuring instru--
is provided with flexural cracks ments

prior to loading. The flexural

cracks are introduced into the Load cell

specimen by applying a constant Jock £ Tension rod
flexural moment using the rigid
frame constructed with the beam
and H-shaped steels as shown in H-Shaped stee
Fig, 6 in which the flexural mo- -

ment is generated by applying Sheath
tension between the ends of the H- T -
shaped steels. During this opera-
tion, the beam is kept horizontal . .
being placed on the holders., And .
along I::he flexural tension side \Me_n
edge of the beam’ notches of 1 cm Fig.6 Method to introduce flexural
depth are provided at the interval , cracks
of 0.25d so that flexural cracks

are easily generated. The flex-

ural cracks thus introduced are QI
shown in Fig. 7.

AL L]
4.3 Outline of the test results i NN SIS DA S

As the result of the experiments, Fig.7 Conditions of introduced flex-
the compressive strength of con- ural cracks (No.3-CR)

crete, modulus of elasticity, the

load at which flexural cracks

generate, the maximum load and modes of failure are shown in Table 9 and the
conditions of the specimens after failure are presented in Fig. 8.

T8

(a) Specimen No.1 ( £=12m, d = 2 m, pw = 0.28%)

At the load P = 706 kN (shear stress 7 = 0.294 MPa), flexural cracks almost
reaching the neutral axis generated at once around the middle point of the beam
with a loud bursting sound.

In the 2nd cycle of the test, at P = 588 kN ( 7= 0,245 MPa) flexural cracks



Table 9 Outline of test results

. Concrete Load at which

Specimen | Compressive| Modulus of | flexural crack | Maximum Mode of

strength elasticity generates load failure

MPa MPa kN kN
No. | 28.0 2.60 x 10: 706 804 Diagonal tension failurc
No. 2 27.1 2.38x 10 627 764 Diagonal tension failure
No. 3 25.4 2.50 x 10* 98* 204* Diagonal tension failure
No.3 -CR| 254 2.50x 10* —_ 311* | Flexural tension failure

* Values excluding their own weight for No.3 and No.3-CR

began tu generate, gradually increased
their number., A diagonal crack started
at the lower edge about 1.5d apart from

one of the points of support at P = 784 (a) No. |
kN ( 7= 0.327 MPa) and developed. Fi-
nally, while loading was suspended and AN
measurement was carried out at P = 804 W A
kN (7= 0.335 MPa), failure occurred ﬂ/ RN
suddenly. (b) No.2
O.
(b) Specimen No.2 (£=12m, d = 2 m, N
pw = 0.14%) NN
At the load P = 627 kN ( 7= 0.261 MPa), (¢) No.3
flexural cracks generated almost :
reaching the neutral axis at the middle =T i S
part of the beam. The conditions of // v
generation of the first flexural cracks } r \
were nearly same as those of the speci- . J
men No.1. (d) No.3-CR
In the second cycle of the test, flex~ g i—
ural cracks started to generate at P = | { Yy ]
529 kN ( 7= 0,221 MPa), However, if UL A \

compared with the specimen No.l, the 3 S
range over which flexural cracks gene-

rated is narrower and they tends to  Fig.8 Conditions of each specimen
concentrate in the vicinity of the after failure

flexural cracks generated at the middle

part. The number of cracks is less.

Failure occurred when the diagonal crack width generated at the point of the
lower edge about 2d apart from one of the points of support at the load of P =
764 kN (7= 0.319 MPa) quickly developed. Anyway, both specimens No.l and No.2
failed before the load originally aimed at in the 2nd cycle of the test, namely
T = 0,392 MPa had been reached. '

(c) Specimen No.3 (£=6m, d =1 m, pw = 0.14%)

At the load of P = 98 kN ( 7= 0.163 MPa)(excluding the beam's own weight, ditto
hereinafter), flexural cracks almost reaching the neutral axis are generated at
the middle of the span. While in the test of the 2nd cycle, the number of the
flexural cracks gradually increased, the intervals of the cracks are more



regular in comparison with the case of No.2 and they generated within the range
of 1.5d on both sides of the point of loading at about 70 cm pitch (0.7d).

Failure occurred when the diagonal crack that was generated on the lower edge
of the beam at around 1.5d apart from one of the points of support at P = 204
kN ( 7= 0.340 MPa) quickly developed. This specimen also failed in the same
manner as specimens No.l and No.2 before the load of 7= 0.392 MPa is reached.

(d) Specimen No.3-CR (£=6m, d =1 m, pw = 1.47, with flexural cracks)

This specimen which is provided with flexural cracks that reach the height of
about 2/3 of the beam depth in advance presented a behavior remarkably differ-
ent from those of other specimens.

At P = 108 kN ( 7= 0,180 MPa)(excluding the beam's own weight, ditto herein-
after), flexural cracks started at the middle of the beam where there had been
no flexural cracks given in advance. At around P = 147 MPa ( 7= 0.245 MPa),
diagonal cracks began to develop at the tops of the flexural cracks introduced
prior to the test and expanded little by little, as the load was increased, but
did not develop quickly. The flexural cracks generated at the middle part
developed gradually as the load is increased and finally, at P = 311 kN (7=
0.518 MPa) following abrupt expansion of widths of flexural cracks at the
middle part, concrete around the loading point crushed and the beam failed.

Although flexural cracks had existed on the lower edge of the beam at around
1.5d apart from the points of support, they did not induce shear failure.

4.4 Discussions on the test results

(a) On the load at which flexural cracks generate

In view of the large effective depth of the beams, the authors decided to
calculate the load at which flexural cracks generate by the theory of elas-
ticity, taking the influence of the tensile reinforcing bars into consider-
ation,

As shown in Table 10, the loads at the time of generation of flexural cracks
calculated by the theory of elasticity for specimens No.l and No.2 taking the
influence of the tensile reinforcing bars into consideration give higher values
by about 7% and 4% respectively than those calculated neglecting the rein-
forcing bars, which shows that these values estimate the experimental values
with reasonably good accuracy.

With regard to specimen Table 10 Calculation of load at which flexural
No.3, while the load at crack generates

which flexural cracks

gen?rate wa's calculated Calculated value Calculated value
taking the influence of s Expetimen-| considering ;cnsile neglecting tensile P P

: 1 pecimen | tal value reinforcing bars reinforcing bars cr cr
th? SP?C:Lmen s own Per Peri kN Pcr kN Pery | Pera
weight into account as- No 1 706 P 25 ool 113

> A . 0. . .

suming the unit weight No.2 | 627 635 613 099| 1.03
of the specimen to be No. 3 122% - 165 161 0.74| 0.76
24,5 kN/m3, the result
of calculat%on gave the * Value compensated against the influence of its
value on fairly higher own weight

side compared with the



experimental one either for the case in which the influence of the reinforcing
bar is considered or neglected. As one of the reasons for this, the fact that
specimen No.3 has been under the influence of drying shrinkage is considered
since longer time has passed than specimens No.l or No.2 until it is loaded in
the test after curing under temperature control and water spray finished.
Actually, in the case of specimen No.3-CR which was introduced flexural cracks
soon after curing was finished, the flexural crack is first generated at the
flexural moment of 250 kNm. If this value is converted to the concentrated
load at the middle, about 155 kN is obtained. This is very close to the
calculated value at which the flexural crack is generated.

(b) On the maximum load

The experimental values of the maximum load and the calculated values by eq.(1)
and eq.(2) are presented in Table 11. The mode of failure was diagonal tension
failure for specimens No.l, No.2 and No.3 and flexural failure for specimen
No.3-CR to which flexural cracks had been introduced prior to test.

If comparison between the experimental values and the calculated ones is made
among the specimens No.l1~No.3, it is known that eq.(l) gives a smaller calcu-
lated value than the experimental one for every specimens. All these calcu-
lated values are on the safe side, but the ratios of the experimental value to
the calculated one disperse widely over the range 1.2~2.0 and accuracy of
calculation is not satisfactory enough., Over the range of variables of the
present experiments which lacks sufficient number of data that would constitute
the basis of eq.(1), namely the range of d > 1,0 m, and pw < 0.5%, the result
that might suggest drop in conformity of eq.(l) was gained as previously
feared.

In contrast to this, eq.(2) that contains the influence of "d" and that of "pw"
in the form of their product referrinf to the information that the shear
strength falls down proportionally to d~ 74 which was obtained from the experi-
ments of large-sized RC beams subjected to uniformly distributed loads, gives
the ratio of the experimental values to those calculated ranging over 0.83
~1.03 for specimens No.l to No.3 throughout, from which it is made clear that
the experimental values can be estimated with deviation of tolerable extent.
With regard to specimen No.l, failure occurred during measurement was being
done by keeping the load constant, There was possibility of getting somewhat
higher experimental value, if loading could have been stepped up.

Specimen No.3-CR that was provided with flexural cracks in advance presented
flexural failure against expectation. The calculated flexural strength is as
shown in Table 11,

While the yield Table 11 Calculation of shear failure load by Eq.(1)

point of the "Ge- and Eq.(2)
binde Stab" is de-
i 3 Failure Calculated value | Calculated valuc | Flexural c|

fined as the stress Specimen | load by Eq. (1) by Eq.(2) capacity  [P/Pcaly | P/Pcal:

that leaves the re- P kN [Pcali kN Pcal: kN P{ kN

sidual strain of No. 1 804 651 972 2350 | 123 | 0.83

0.2%, the difference No. 2 764 374 762 1210 | 2.04 1.00
; No. 3 227* 160 221 303 | 1.42 1.03

between this value No.3-CR| 334* 160 221 303 | 2,09 | (5D

and the tensile above | above

strength is not so

large. Taking the * Value compensated against the influence of its own
above fact and the weight

conditions that spe-



cimen No.3~CR is a beam of low reinforcement ratio and that the width of the
cracks at the time of failure was considerably spread into consideration, the
flexural strength was calculated by using the tensile strength.

(c) On the modes of failure

The specimens No.1~No.3 failed with the mode of diagonal tension failure as
intended by design. In the case of specimen No.3-CR, however, the mode was of
the flexural failure against expectation.

The reasons why specimen No.3-CR was added to this series of experiments are
the followings: As the result of close investigation on the conditions of
generation of cracks and failure of the specimens No.l and No.2, it is recog-
nized that because they have low reinforcement ratio, generation of flexural
cracks concentrates at the middle of span. Consequently generation of flexural
cracks in the middle part of the shear span that would induce diagonal cracks
and furthermore cause diagonal tension failure may be prevented. Since rea-
soning that the above fact might have caused higher value of the shear strength
than that which is given by eq.(1), it is determined to conduct the test of
specimen No.3~CR, anticipating that the value of lower limit of the shear
strength would be obtained by generating flexural cracks prior to the test.

In providing flexural cracks, investigation was made on the problem how deep
these flexural cracks should be made. In consideration of the prerequisite
that the purpose of the test requires that flexural crack should have been
generated for sure, and in anticipation that if the flexural cracks provided
are deep enough, diagonal cracks would generate on the way along them, the
flexural cracks are so made as to cover more than half of the depth of the
beam, However, since the reinforcement ratio of the beam is very small, fine
control of the depth of cracks is so difficult that the depth of flexural
cracks introduced have reached the level of about 2/3 of the depth of beam from
its lower edge.

In the actual test, however, diagonal cracks never generate on the way along
the flexural cracks, instead slight ones are observed at their tops only, nor
they develop quickly. The beam finally failed in flexural failure mode. As
the factors caused such failure, the following are considered: Deformation is
concentrated to the cracked part due to drop of the flexural rigidity of the
beam influenced by the introduced flex-

ural cracks and in the vicinity of P (kN), Load
flexural cracks the tensile stress 300~
normal to them is freed and temnsile
forces do not apply any more in con-
crete, thus preventing generation of 200}~ -
diagonal cracks that branch from the " No3
flexural cracks.

No3-CR

Accordingly, it is understood that di-  'OO/
agonal cracks that would have generated !
when the conditions of deformation of D : .

eflect .
concrete within the beam exceed the 0 1 QnoflhamMMeoﬂqmn
critical limit for generation of di- 5 10 15 20
agonal cracks if there were no flexural ‘ d{mm)

cracks, have not generated in this case

and the beam ended up with flexural Fig.9 Measured value of load and
failure. The load-displacement curves deflection at the middle of
for the specimens No.3-CR and No.3 are span (No.3, No.3-CR)



shown in Fig. 9. As clearly seen in the diagram, the flexural rigidity in the
initial stage falls heavily,

5. REVALUATION OF EQUATIONS FOR SHEAR STRENGTH AND THE APPLICATION TO DESIGN

According to Table 11 in which comparison between the result of experiments
newly conducted for the large-sized beams with small reinforcement ratio and
eqs.(l) and (2), it is known that the experimental values are fairly larger
than the calculated ones by eq.(1) and rather closer to the values gained by
eq.(2), though the number of experiments is not so many.

Without any doubt, eq.(1) shows excellent conformity with the great majority of
the experimental data in the past., However, though eq.(1) can represent the
qualitative trend of the experimental data, it can not confirm its conformity
for the range within which the data of the past experiments are not sufficient
because it is an empirical equation, According to the result of experiments
conducted this time for the range where the past experimental data have been
scarce and where the RC structures are often used in practice, it has been made
clear that eq.(l) estimates the shear strength fairly on the safe side.

Although eq.(2) itself is an empirical equation derived based on eq.(l), its
conformity with the great majority of the past experimental data is as good as
that of eq.(l) and furthermore its conformity over the range of d > 1.0 m and
pw < 0.5% is judged to be better than that of eq.(l).

However, since the number of experiments is small, problems are left unsolved
whether eq.(2) could be applied to design as it is or not. It is considered to
be possible to cope with such problems for the time being by taking a larger
partial safety factor for calculating the strength of member in the design
practice. From now on, as the experimental data over this range are
accumulated, clearer knowledge on the value itself of the partial safety factor
for calculating the strength of member will be established.

In addition, when eq.(2) is applied to design, there is a problem in calcu-
lating pw to what extent the reinforcing bars in the axial direction could be
taken into account. In other words, in case the designed cross section is not
a rectangular but box-shaped one, the problem is whether all of the cross-
sectional area of the reinforcing bars along the axial direction arranged in
its bottom slab could be taken into account or not, When the effect of pw on
shear strength should mainly arise from restriction of expansion of the width
of cracks and dowel action, the influence of the latter on the reinforcing bars
along the axial direction arranged far away from the webs can not be expected.
Therefore, it would be recommended to establish a certain limit for the value
of pw used in design (say pw < 3.0% and so forth).

Among the large-sized beams of low reinforcement ratio, the tensile reinforce-
ment ratio of specimen No.3-CR to which flexural cracks are introduced is
0.14%. This value almost equals to the minimum reinforcement ratio which is
determined from the structural details. While it is considered that the mini-
mum reinforcement is arranged for the level of the design load at which flex-
ural cracks would not generate, so far as known from the result of this experi-
ments, even if cracks have generated by the influences of such factors as
thermal stress, drying shrinkage etc,, its shear strength may be evaluated by
eq.(2) without risk.



6., CONCLUSIONS

This study was undertaken aiming at the following two problems: The first one
is whether the equation for the shear strength of the beam without web
reinforcement that was previously proposed (eq.(1)) could be reasonably applied
or not over the range of d > 1,0 m and pw. < 0.5% in which past experimental
data are rarely found; and the second one; how closely the new equation for the
shear strength (eq.(2)) to which the influence of the scale effect that the
strength decreases proportionally to d-1/4 which was pointed out from the
experiments of the large-sized beams of low reinforcement ratio is introduced
could conform with the experimental value ?

Thus, specimens of the large~sized beams with low reinforcement ratio are
manufactured and the experiments are carried out by applying the concentrated
load. As the result of a series of investigation, the following conclusions
are obtained:

(a) For the range containing past abundant data, both egs.(l) and (2) are
applicable for estimating the experimental values with reasonable accuracy and
their conformity differs little.

(b) For the large-sized beams with low reinforcement ratio, eq.(1) estimates
the values considerably on the safe side, while eq.(2) gives those very close
to the experimental ones.

(c) Although both of eqs.(l) and (2) are empirical ones, it would be desirable
to adopt eq.(2) for design, judging from both aspects of accuracy of the values
calculated and the range of application, However, considering that the number
of experimental data for the large-sized beams with low reinforcement ratio is
scarce, it would be suitable for the time being to take larger value of the
member factor (for instance, around 7y = 1.3).
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