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Numerical Problems in Non-Linear Finite Element Analysis of
the Post-Failure Behavior of Structural System
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SYNOPSIS

Investigation was made of the sources of problems and peculiarities encountered
during finite element methods of analysis of strain softening structures.
Typical problems were demonstrated first by using reinforced concrete deep beam
example structure. Second, a one-dimensional three element example structure
was used to demonstrate the problems of solution divergence,oscillations,or
non-uniqueness of solution. Effects were discussed of the materials models,
such as hysteretic as contrasted to non-linear elasticity, load increment step
size, element size, tangent stiffness and non-negative stiffness convention.
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1. INTRODUCTION

1.1 Problem

There exist the needs to evaluatz reserve strength, deformation capacity, and
deterioration process of reinforced concrete structures under repetitive or re-
versal loadings. Successful results seem to be scarce in obtaining reliable and
convergent solution in the strain softening region of the load-displacement re-
lationships.

Two possible sources of the difficulty are, the ambiguities in representation
of the materials properties in large deformations, and the numerical problems
such as the divergence of the solution process.

This paper is first to report such problems encountered in analyses using an
existing finite element analysis program which takes into account of materials
non-linearity [ﬂ[ﬂtﬂ, and second to investigate the process of oscillation and
divergence of the solution using a one-dimensional analysis model structure.

1.2 Existing Finite Element Methods of Analysis for Strain Softening Materials

Two aspects of analytical procedure govern the reality of the solution of the
structural analysis in the strain softening regions of load-displacement relat-
ionships. The one is the treatment of the negative element stiffness when the
stiffness at the integration point went into strain softening region, and the
other is the convergence algorithm.

In some of the existing analysis programs [5]there has been accepted convention
to let the argument of the element stiffness equal to zero (or small enough
positive number) if that element is in the strain softening region, and then to
assemble the structure stiffness matrix. Then the unbalanced nodal forces are
relaxed until a convergence criterion is satisfied. During the process, the
decrease in stresses may be considered, or the stresses may be assumed to re-
main constant. For the former procedure no report is known to the writers that
demonstrated convergence. In the latter procedure, the unbalanced forces are
relaxed in the next step, which means that the actual constitive relation has
not been used.

A method referred to the hyper elliptic function method[6] has been effectively
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used for analyses of geometrically non-linear problem. No report is known to the

writers of successful application of this method to the strain softening concre-
te structures.

Those are the reasons which urge the investigation of divergence and oscillation
of the solution process.

2. EXAMPLE OF DIVERGENCE IN ANALYSES OF DEEP BEAM STRUCTURE (CASE STUDY)

The structure to be analysed was shown in Fig.l with finite element mesh layout
Euﬂ. Prescribed displacements were imposed on the node A, and the reactions at
that node were computed. Convergence algorithm was Newton's iteration. For simp-
lification the non-linear materials property was as shown in Fig.2. For this
model there is one-to-one relationship between stress and strain. The tangent
stiffness was used to form the structure stiffness matrix.

Fig.3 shows the load-displacement relationship that satisfied equilibrium. The
convergence process is also shown of the reaction for the prescribed displace-
ments (case A,mesh I)., The eqgilibrium equation is given by Eg.l. The convergence
index was defined by Eq.2 and denoted by ¢ . The convergence criterion was pre-
scribed by letting ¢ equal or less than 1.0%.
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where, Fi is external nodal load, Feq 5 is equivalent nodal force, AFi is unbal-
B 14
anced nodal force, RA is reaction at node A, Bij is strain matrix, and i is

degree of freedom.

At step number 7, where the stiffness of the elements Z. and Z. in Fig.l entered
into the strain softening region, the solution diverged. Fig.3” exhibits that
the computed reaction diverged with increasing number of iteration with some
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The next analysis was performed as follows. The iteration was terminated after
one execution, and the unbalanced nodal forces were carried over to the next
step (case B, refer to Fig.4). This process resembles the incremental integrat-
ion[7] . In appearance the results seem as if reasonable behavior, but in reality
error accumulated as the load increment advanced, and the convergence index ¢
exceeded 100%. This can hardly be accepted as correct solution.

Next, the stiffness of the element which was strained into the strain-softening
region was let equal to zero, and convergence procedure was executed with itera-
tion cycle number 1,5, and 10. The load-displacement relationships for respect-
ive case were given in Fig.4 (case C). Convergence was slow. The reaction kept
decreasing as the cycles of iteration was increased. Deviation from equilibrium
also became more pronounced.

Next, a path-dependent elasto-plastic-fracture model[é] was used for the materi-
al property. This model recognized negative stiffness. The problem was the same
as before in reference to Fig.l.

Newton's iteration was again used. The -
results are shown in Fig.5 (case D). 50
In this case, convergence was attained
even in the strain-softening region up —
to step 9. However, divergence suddenly 3
occurred in the next increment, when the
unbalanced nodal forces were relaxed

due to cracking occurred in the element
surrounding the strain softening elem-~
ent.
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The mesh layout was changed in such a s -—
manner that the strain softening elem- i | ] 1
ent was subdivided as was shown by the 0 1.0 2.0

mesh II in Fig.l. Divergence occurred Digp[gcement of A (mm)

in step 7, two steps earlier, despite

the identical analysis procedure as the Fig.5 Effect of hysteretic material
last case D (case E). Particularly, (case D) and Mesh subdivision (case E)
oscillation occurred for the nodes connected to the subdivided elements and sur-
rounding elements. This dependence of the solution on the mesh layout cast doubt
about the validity of the solution obtained in the previous case D.

3. EXAMPLE ANALYSES OF ONE-DIMENSIONAL MODEL STRUCTURE

In the preceding example analyses it was demonstrated that the behavior in the
strain softening region of the load-displacemnt relationships depend on the non-
linear solution procedure, the mesh layout, and the constitutive law of the mat-
erials. a

The next series of analyses were made of the model structure composed of three
of the one-dimensional elements for more detailed pursuit of convergence behav-
ior. From the analyses of the preceding section it was found that the nodes
where the solution oscillated or diverged were confined within the limited area
of the structure. Those nodes were indicated by solid dots in Fig.6, and the
nodes where solution converged were indicated by open circles for the case A at
step 7. The objective of this section was to simulate the behavior of those
problematic nodes.,
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Three elements were connected in a row as shown in Fig.8. The stress-strain
relationship was given in Fig.7. The solid lines show the first model, and the
broken lines show the second model. (The second model is to be used in the dis-—
cussion of section 3.3.) Prescribed displacement was imposed on the node A, and
the displacement of the internal node S was to be obtained. The cross sectional
area of the element A was made equal to 98% of that of element B. The graduated
variation in cross sectional area of the three elements was to simulate the

stress pattern in the critical region of the preceding example deep beam struc-
ture, where the stress flow was funneled into a narrow channel.

3.1 Strain Softening Materials Model (Element length equal)

Comparison was made of the three different step size of the load increment aft-
er the last stable step 9 which was just before attainment of the maximum re-
sisting strength of the structure. Fig.9 shows the load-displacement relation-
ships for the three cases. Fig.1l0 shows the variation in the strains in the el-
ements with the progress of iteration. The structural stiffness matrix to be
used while relaxing the unbalanced nodal forces were tangential stiffness even
for the strain softening region. (The data with solid dots in Fig.10 are for
the case of non-negative stiffness, which is to be discussed in section 3.2.)
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Type 1 was for the smaller step size of load increment. Convergence was attain-
ed after two cycles monotonically.

Type 2 was for the larger step size of the load increment., Convergence was at-
tained but with larger number of iteration. For the successive load increments
also solutions were obtained by two or three cycles of iteration for both types.
However, the load-displacement relationships grossly differed. (Fig.9).

Type 3 was for the intermediate step size of load increment. The solution osci-
llated as shown in Fig.10 and convergence was not attained. This dependence of
the solution on the step size of the load increment does not occur in the cases
of positive tangent stiffness.

For type 1 solution the element A (weaker element) was in the strain softening
region, whereas the element B was on the unloading path (from strain hardening
region). This situation agrees with theoretically correct solution. (See Fig.10)
For type 2 solution both element A and element B were in the strain softening
region, and the equilibrium was satisfied.

For type 3 solution it was assumed that the element A (weaker element) was on
(the unloading path from the) strain hardening region, and element B was in
strain softening region.

Tn the following discussion "mode 1,2,3" refers to the state of the strains
in the two elements. The meaning of "type 1,2,3" is same as above.

Next, the equilibrium equation, Eg.l, was solved analytically and the results
were shown in Fig.1l on the next page. The relationship between force and change
in length were plotted of the stronger element B, the weaker element A, and the
entire structure for the three modes.
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The incremental changes of nodal forces due to small changes in nodal displace-
ments were computed by Eq.3. :

{ar

eq’i}= [k]{a v}, [x] = IIIVBTDB dv (3)

where, u, is nodal displacement and D is tangent stiffness.

Mode 1 solution in Fig.ll is the case where the weaker element is in the strain
softening region and the stronger element is in the unloading region, which is
correct answer,

Mode 2 solution is the case where both elements are in the strain softening
region.

Mode 3 solution is the case where the stronger element is in the strain soften-—
ing region and the weaker elemnt is in the strain hardening region.

It can be seen from Fig.ll that there /
are regions where the displacement
solution does not exist (jump region)
for the mode 2 and mode 3.

aUa
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For the type 2 analysis where the
larger load increment was used, the
first trial displacement value given
was such that causes strain softening
in the two elements. The convergence
procedure was started by using the
tangent stiffness at the point cor-
responding to the assumed displace-
ment. Thus, convergence was complet-—
ed at the equilibrium point for the
mode 2 which was the location near-
est to the trial starting point.
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For the type 3 analysis where the
intermediate step size for the load
increment was used, the stronger ele-
ment was assumed to be in the strain
softening region, and hence, the pro- o
cedure was the one to search the

mode 3 solution. However, as indicat-

ed in Fig.1ll, the assumed trial dis- Fig.11
placement fell in the region where

the correct solution did not exist.

Hence, oscillation took place. For the case such as this one, where the assumed
mode was incorrect, conventional remedies of numerical procedure [7] have no
effect.

Al

EQUIVALENT FORCE OF EACH ELEMENT

TYPES|

Us-Uc _ UnUs  TOTALDISP. Ua
MODE 3

Mode, or state of strains in
element A and B

Next, a description will be made of the process of divergence for the type 3
solution. The equilibrium of the node S is given by Eq.4, where the structure
tangent stiffness is K ,the unbalanced nodal forces are AF , the correction inc-
rement of the nodal displacement is AIJS, and the tangent sgiffness for element
A and B are respectively Ka and Kb.

= F = + O
Aus KSA Ss! Ks Ka Kb (4)
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The relationship of Eg.4, or the relat- —

ionship between the nodal displacement Us AFs
G, and the unbalanced nodal force AF -QB ‘-Uﬁ ~04 -95 <02 -01 0 4/12
for the internal node S can be obtained 59— P1 { r//
analytically, and was plotted in Fig.l12. an St s>0
The displacement u_ is the movement from jéf | _X005
the equilibrium position for the preced- i ‘\\‘\\\\ i [

ing step. The solution for u_ which Ks<0Q coI
satisfies equilibrium is the point on I {-0.10
the curve of Fig.l2, where the AFS i
coordinate is zero. The tangent stiff- 3
ness K corresponds to the slope of MODE 2 -0‘]5
the @ 2 AF_ curve. On the figure the R N

modessthat %ell the state of the two
elements that are dictated by the value
of U were also indicated. The positive
and negative sign of the tangent stiff-
ness KS is also indicated.

Fig.12 Unbalanced nodal force vs.
nodal displacement (node S)

In the convergence algorithm which use the tangent stiffness, correction for the
nodal displacement is always directed to the direction that decreases the value
of AF . If the sign of KS adopted was opposite to the one which is directing to
the correct solution, thé result is that the computed Au is moved away from the
correct solution. In the type 3 analysis the trial point?for the first step was
indicated by P, in Fig.12. This point was projected from the preceding converged
solution using tangent stiffness and load increment at that stage. The point
resides in mode 2 region. Locally the modification for the displacement is to
move into the direction to reduce the unbalanced force. However, as is evident
from Fig.12, the true solution is located in the direction opposite to the dir-
ection of the movement. Hence, the second trial value is moved to mode 3, giving
rise to the unbalanced force. Then, if redistribution is executed using K_ at
this point, the movement is then toward the true solution. Nevertheless, %he
displacement again falls inside mode 2 region, and the procedure oscillates.

3.2 Convergence Process When Using Non-negative Convention for Negative stiffness

The type 3 analysis was performed using the convention to let the element stiff-
ness zero in forming the global stiffness matrix even if actual stiffness was
negative. Then, for the global stiffness, which is to be denoted by K , each e-
lement of the stiffness matrix is positive. In the neighborhood of thg'ggial
displacement the direction of correction was to increase Ar , but convergence

was attained eventually(See Fig,10,12). In order for successSful use of the nega-
tive stiffness, the starting (trial) value of displacement has to be positioned

in the region of the correct mode (mode 1 for this case).

A qguestion now would be whether or not there is generality in.expecting conver-
gence by using non-negative convention for the element stiffness as was just
mentioned above. For the type 2 analysis it is possible that two elements enter
into strain softening region simultaneously. (It is frequently experienced that
large unbalanced force is carried over from other elements even when the load
increment is small, because of stress released from cracked elements.) Then, if
the global equilibrium eguation, Eq.4, is considered, the stiffness K for
node S is zero or very small number, and hence by Eq.4, AYg should divgfge. This
is the mechanism that cracking is prescribed during solution process for the
elements connected to the softening elements.

— 76—



In the analysis of type 1 and convergent in mode 1 case, the number of repeti-
ion increased when negative stiffness was ignored. This is because the process
approaches the true solution in either way of treating the stiffness, since K
and KS have the same sign owing to the fact that the first trial value for
strain’is set as mode 1 in Fig.1ll. In this case convergence is better with tan-
gent stiffness.

Next, an analysis was performed for another material model which is to lose
resistance very drastically after the peak stress as shown by broken lines in
Fig.7. The relationship between the nodal displacements U and the unbalanced
nodal forces AFS was shown in Fig.13 for the type 2 case.SWhen the tangent

stiffness was used, immediate conver- \

gence was attained from point P. in :\ AFs 0] _

Fig.13 to the solution of mode %. RA ] i//

Whereas, when positive stiffness was -03\ -02 -0.1 0 01 027~
" L

used, divergence occurred, since cor- !
rection of the trial value moved away

from the solution owing to the fact

that KS and K are of the same sign.

! T

1-0.1

s,NZ

Convergence is fast when unbalanced Ks< O Ks>0
nodal force is relaxed using tangent d
stiffness, when the direction of disp- MODE 2 I MODE 1

B o

lacement to reduce the unbalanced
force and the direction toward the
true solution coincide on the trial
displacement position. There is no
problem if load increment is small.
There occurs cases where the direction toward true solution and the direction of
correction by Eg.4 disagree. Then the stiffness to project the process toward the
true solution is undecided. )

Fig.13 Unbalanced nodal force vs. nodal
displacement with non-negative
stiffness convention

3.3 Effect of Shape and Size of Element (Element Length Changed) and Effect of
Hysteretic Unloading Path as Compared to Non-linear Elasticity

In section 2 the solution changed when some elements were subdivided. This moti-
vated the analysis of this section for the one-dimensional model structure where
the element A was made shorter while element B was made longer as shown on the
right side of Fig.8. The results are shown on Fig.14. The load increments were
made small and negative stiffness was _
recognized. -10

Elasticity
The load-displacement relationship
until the maximum resisting strength
was almost identical to Fig.9. In the
strain softening region convergence
was attained in a similar manner as
the mode 1 of Fig.ll. However, the 3 v
load -displacement relationship in L)

this regign differed markedly from Inelasticit \Qg ,/ 5]
that of type 1. The recover of strain T T T A R A
in element B is greater than the inc- 0 -1.0 -20 -30
rease in strain in element A during
the unloading of element B which is
caused by softening of element A.(
(Release energy is large)

]

e

o
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Reaction Va

i

Total Displocement Ua

Fig.14 Effect of element size(Element B
was made longer)
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The true solution is also given in Fig.l4. From this it can be seen that there
exist "jump region". In the same figure the true solution for the materials
model for which the unloading path traces back along the loading path (Non-
linear elastic model) was shown. Such are the reasons for the variation of the
solution due to the element subdivision and materials model as was experienced
in Section 2.

The fact that the true solution changes with the element size (refer to case E,
section 2) raised a problem in adopting materials model for strain softening
behavior. In tests of materials the measured stress-strain relationships in soft-
ening region vary with gage length. The numerical analyses in softening regions
could be unreal unless coherence is considered for shape and size of the finite
element model and the test specimens.

4., CONCLUSION

The following characteristics of the behavior of the numerical solution process
for the strain softening region were found from the investigation of example
structures. The general solution process was not established.

(1) For the non-linear solution process by using Newton's iteration there could
be cases where the direction of correction of trial solution projected by the
tangent stiffness differs from the direction where the true solution exists.

Then, ‘it is possible that divergence or oscillation occurs and that the true
solution is not obtained. Further, it does not guarntee that there is the true
solution in the direction opposite to the direction of modification that had
led to oscillation.

(2) In the analyses of strain softening materials it was demonstrated that the
true solution changed with the shape and size of the elements. This was attribu-
ted to the fact that the amount of energy released from the element depends on
the shape and size of the element. Hence, when defining the materials models,
there should be consistency between the shape and size of the finite element
models and those of the physical test specimens used for experiments to derive
the materials properties.
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