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SYNOPSIS

Major theories developed in the past on the in-plane shear load capacity of a
reqularly reinforced concrete panel are comprehensively compared. Some of the
interrelationship between them are also demonstrated. Then the predictability
of these theories are studied, comparing them with experimental results of 70
specimens in terms of dimensionless descriptions.

It is recognized that most of the values calculated by the various theories
provide similar results and show good agreement with actual data when the
ultimate failure is governed by the yielding of reinforcements. On the other
hand close agreement is not obtained between observed and calculated values when
the concrete crushes prior to the yielding of the reinforcements.

Finally a semi-analytical method to estimate the ultimate shear strength of an
orthogonally reinforced concrete panel is proposed based on modified limit
analysis methods for both cases.
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1. INTRODUCTION

Analytical approaches as well as experimental studies on the mechanical behavior
of reinforced concrete panel-elements where in-plane stresses are dominant have
been carried out intensively so far. Various theories have been developed each
of them differing at the point which they put heavier stress on and at the
method of deriving formulations.

It is first shown in this study that the in-plane shear strength of a reinforced
concrete panel based on these various theories can easily and systematically be
obtained through one common equilibrium condition and then transforming its
coordinate system. It appears that differences between given formulae are
stemming from the assumed stress state on concrete cracked surfaces.

It is noted that some models mentioned herein can form closed failure criteria
for cracked and reinforced materials which may be analogous to yield function of
isotropic materials in the elasto-plastic theory. The authors will f£finally
propose a semi-analytical method to predict the ultimate shear strength which
gives a better agreement with the experimental data collected based on the
aforementioned studies. :

2. COMPREHENSIVE EVALUATION OF PRINCIPAL THEORIES ON THE IN-PLANE SHEAR STRENGTH

The structural behavior of reinforced concrete panels is a reflected product of
phenomena, such as a shear transfer along cracked surfaces, an inelastic resis-
tance mechanism of reinforcement and concrete, and coupling effects of them. It
is thus quite a complicated problem if one tries to predict the entire behavior
of a reinforced concrete panel including deformational characteristics from an
early elastic state up to the ultimate stage. On the other hand, when only the
ultimate load capacity (maximum strength) of a reinforced concrete panel sub-
jected to in-plane forces- is concerned, analytical procedure becomes -much
simpler. Some theories such as limit analysis and other macroscopic modeling
are considered to be the good examples of this. ’

Most of the major theories on the in-plane shear strength begin with different
assumptions and derivations, and end up with seemingly different indexes and
formulations. It is thus not so simple to compare them and distinguish the
differences between them. It is required to transform or reexpress on the
unified and common coordinate system in order to evaluate and to compare these
theories comprehensively. Authors first try to indicate most of the formulae
from various analytical models can be derived by the equilibrium condition alone
and that difference between theories can be identified by a different assumed
stress state. :

2.1 Unified Formulation of Major Models Using Matrix Notation

Let us consider a reinforced concrete panel subjected to in-plane shear stresses
as well as normal stresses, schematically shown in Fig. 1, which constitutes an
earthquake-resisting component of many types of concrete structures. The
reinforcing bars are orthogonally -and regularly arranged in x and y direction. a
is an angle between the principal stress direction and the x axis, and B is an
inclination of cracks with respect to the y axis, which are taken to be positive
in counterclockwise. It is customarily assumed that bond failure and local
failure are negligible and that the spacing of reinforcing bars as well as the
spacing of cracks is sufficiently dense so that a concrete element can be
considered to be in a uniform stress state. '
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The stress state of reinforcing bars, the cracked concrete and the applied

internal forces are represented by the following stress matrices in their own
local coordinate systems, respectively.

R, O | o Te _ 0, 0 _ Op  Tyy
] = [Fq1 = [Fy1 = (1)
0 Ry T =Og | 0 Oy, Tey Oy
Where [0l is a stress matrix of regularly reinforcing nets in their longitudi-
nal direction, i.e., in the x-y directiogj [Oc]lis a stress matrix of cracked
concrete along the cracked surface, and [F;] and [F,] are applied stress matri-
ces in the principal direction of the forces and the x-y direction, respective-
ly. Table 1 offers more detailed informations about these four stress matrices.

(2) in the Principal Direction (b)in the x—y Coordinate System
Fig. 1 Reinforced Concrete Panels subjected to In-Plane Forces

Rx and Ry are called "equivalent" stress of steel in x directional bars and y
directional bars, respectively, defined by reinforcement ratios, Py, Py and the
axial stress in reinforcing bars Ogx, Osy, i.€., Ry = PyOgy, Ry = P,0g,. When
equivalent stress of reinforcing bars in both directions are the same (R = Ry =
Ry), R is referred to herein as isotropic reinforcing bars. In the case of
cracked concrete O, 1is the normal stress perpendicular to the direction of the
crack which is usually neglected, Or is the compressive stress parallel to the
direction of the crack and Tc is the shear stress along the crack. In general,
directions of the above local coordinate systems are not identical and therefore

the principal direction O or the cracking direction B is undetermined.

When deriving a formula for the ultimate strength, it is required to determine
these stress matrices according to the failure type and assumptions. For exam-
ple, R = Pfy when reinforcement yielding type or 9., = f. when concrete fails.
(f- is the compressive strength of concrete and fy is the yield strength of
reinforcement). Coordinate transformation is employed to get a balanced condi-
tion (equilibrium condition) in a properly chosen common coordinate system as
follows,

loglg + [0.1g = [Flg : (2)

The transformation law for coordinate system is in general defined as,
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cosB  sinB

Olg = [TIt[01IT] (r] = (3)
[9lg (ritoit ! -sin® cosf i

in which [ 1 and [ 1, express stress matrices in local coordinate and in trans-
formed coordinate systems, respectively, and [T] 1is a transformation matrix.
Final results are summarized in Table 1.

Table 1 Stress Matrices for Materials and Internal Forces

g stress matrices
model Mohr’s circle |j
in local coor-| ; :
dinate system | I transformed coordinate system
T
Osy Ry 0
[_ ] (o] Recos?d+R,sin*8 (R,—R,.,)sinﬂ-cosﬁj
i X = 1=
reinforcement T 0[g a|Los *07\(R,~R,)sinf-cos8 Rusin'6+R.cos'd
=4 x 0 Ry
8¢ T
1
cracked Tc - On %) _['V:Siﬂ 260-asin'd  rcos? e+% dcsmsz
concrete On o|lo]= Lolg= f&oszvi--;— 0.5in20 7sin 2 8 — o.cos*f
1c Tc ~ O
n . 3 © em0)
62
7 o 0
[43 = ! _[mcos'd+6,sin’o (a'.—a.)smﬂcosd]
4 ‘r [FI = [F.]p= (6,— ;) sinfcosh  a,5in'8 + c:C0576.
H xy
mternal Ch PR _/_3% 0 o
applied Sy Ox
0, -gﬁ‘ 2a
forces Oy & e Tay] 06,0058+ g,sin*0— 2 74,sinfcosé
Txy gy | o [f_: ]__ { (0,— a.)sinfcosd + 1. (cos'd —sin?6)
= £.10=
Ox ? [FJg 1 (0,—0,)sinfcos 8 + 7, (cos?8 —sin’8)
T
i Txy Oy L g sin’6+0,c0s?6+ 2 7.,5indcosd

Most of the formulae proposed by the various researchers can be derived by means
of the above equations (2) and (3) which may be different from their original
methods, which will be developed below.

a. Nielsen .......... Nielsen studied limit analysis to obtain analytical
solutions for the ultimate strength of several types of concrete member
({1), [31, [7]1, [8]). As for a reinforced concrete panel in a membrane stress
state, the following balanced equation is given choosing the x-y direction as a
common coordinate system,

[05)p=0 * [0clg=-pg = [F2lp=o (4)
Nielsen [8] assumes that the concrete is a uniaxial compressive member which

carries a load only in the cracking direction. Therefore, 0, = 0 and T, = 0,
and the above equation can be written as,

.2 1 .
R, O -0_sin“B -=0_sin2fB o, T
o] X X
X . lc 2 - Y (5)
- : - 2
0 Ry 50051n28 0cos B Txy oy

When the reinforcement bars in both directions have reached a tensile yield
point, the shear stress is given as follows from Eg. (5) considering that Ry =
Pyfy, Ry = Pyfy and O, <f..
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Ty =\/(Pxfy = Oy) (pyfy — 0y) (0, < £.) (6)

In the case of isotropic reinforcement (R, = R, = R) and a pure stress state,
(0X= 0, = 0), Eg. (6) becomes a simple equation, Txy = R = Pf,, which is
identical with a formula used in ordinary design practice. When one of either
of the reinforcements yield and the compressive failure of concrete occurs, the
shear stress Txy is provided as follows,

Ty =V(B,E, - O ) (£, - (pyE, - 0} , (7)

in which stress state is considered in such a way that Rx‘szfyr R, = nyy and
Oc = fc. Egq. (7) then reaches its maximum value,

Tey = % £, (8)
when Ry - Oy = £:/2. Eq. (8) shows the maximum shear stress characterized only
by the compressive strength of concrete f., which is in a so-called over-rein-
forced state. Finally, a continuation of the above development into the
compressive yielding of reinforcement leads from the above formulae to the five
formulae for the shear strength of a reinforced concrete panel which construct
closed failure criteria to be mentioned later.

b. Marti .......... Marti [13] introduced the modified Mohr-Coulomb criterion
with tension-cutoff as a fracture behavior of concrete in 1limit analysis.
Hence, by considering that the axial stress 0, normal to the cracking direction
is equal to the tensile strength of concrete fi at failure and making the same
development as Egs. (4) through (8), Marti's shear strength for a reinforced
concrete panel is obtained. For instance, the following equation is given,

Tey =\ (Pxfy + E¢ = O (B E, + £ = O)) (9)
which corresponds to Eq. (6) by Nielsen.

c. Ono and Tanaka .......... Ono and Tanaka's work [14] is known in Japan as
an analytical approach using limit analysis and resulted in the upper and lower
bound limitations for load carrying capacity of shear walls. They assumed that
the cracked and reinforced concrete is isotropic and that the entire failure
criteria can be determined from only the two values; the tensile strength T and
the compressive strength C of a reinforced concrete member. (We assume that T =
R and C = fc + R, in which R is considered to be Pfy, so that this analytical
work can be compared with other theories.) So obtained failure criteria is
subdivided into three regions, tensile, shear and compressive failure types,
which will be shown in Fig. 2. The present study doesn't allow the use of Eq.
(2) because the reinforced concrete is not regarded as a composite material in
their theory. 1In case of an isotropic material, however, the transformation
law, Eq. (3), makes it possible to obtain the shear strength as follows. The
shear strength of tensile-failure type is written as,

Tey = (PEy, = O ) (PE, = 0,) (10)

using 01 = T. 1In the case of shear failure type, one can get,

=\J{(pfy+fc)(pfy—0x) + pf 0y} (pE +£0) (pf,-0,) + pf,0,}
Xy 2pfY + fc

(11)
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using 01/T - 02 /C = 1, Eq. (10) is identical with the case of isotropic rein-
forcement of Eq. (6), while Eg. (11) appears quite different from the corres-
ponding equation given by Nielsen.

d. Bazant and Tsubaki .......... Bazant and Tsubaki [15] proposed the slip-
free (frictional) criterion for an orthogonally reinforced and arbitrarily
cracked concrete element failing by the tensile yielding of both reinforcements
basing on limit theory. Their study notes that any shear stress transmitted
across the crack must be accompanied by the occurrence of significant normal
compressive stress in the concrete perpendicular to the crack surface, and of
the corresponding tensile stress in the reinforcement due to cracking dilatancy.
Therefore, the tensile stress O, must be replaced by the compressive stress of
concrete -0, namely,

o] = ¢ c (12)
o ,

The condition of no-slip along the cracked surface is expressed in the form of
Coulomb law (frictional criterion) such that,

*

T, < kO (k : frictional coefficient on cracked surfaces) (13)

Eq. (2) can be written in the form as,
[0g1g=g + [0.)g=p = [F1lg_gq ‘ ' (14)

by selecting the cracking direction B as a common coordinate system, then
rearranging Egs. (12) to (14) leads to the following inequality,

g(B) = {k(1l+cos2B)-sin2B}p £, + {k(1-cos2B)+sin2Blp £ - k(0;+0))

(15)
-(0,-05){kcos2(B-a)-sin2(B-a)} > 0

To obtain safe design for all possible cracking directions, two conditions such
as,

. _dg(R)
gB) =0, ZB =0 : (16)

are imposed on Eg. (15). From Egs. (15) and (16) the following shéar criterion
is finally obtained,

- 1 5 ) - g )- -
Ty T = {(pyfy=0,) -1 (P £,-0) (D £, -0, ) -ry (P, £, -0} an
2 : )

in which r: = 1=-sinY/1l+sinY and r, = 1/l+siny (Y = arctan(k)), being charac-
terized by the friction coefficient k. It should be noted that the above
equation reduces to Eq. (6) by Nielsen for k-—®.

e. Baumman .......... The coordinate system in the direction of reinforce-

ments (the x-y direction) is the proper choice of coordinate axes if one wants
to obtain the equilibrium equation by Baumann [16]. Namely, it is,

—266—



[0glg=0 * [Oclp=-g = [F1lp=-g (18)

Assuming that 0, = 0 and T, # 0 in the concrete stress matrix, one has,

"

pry Glcosza(1+tanatan8) + Ozsinza(l—cotutanB) - TctanB

pyfy Olsinza(1+cotacot8) + Ozcoszu(l—tanucotB) + chotB (19)

O, = (0;-0,) %}E% + 2T cot2B

These equations are identical with ones provided by Baumann [16]. Since the
principal stress direction of concrete B becomes the indeterminate value before
the yielding of reinforcements, another equation is needed. For this require-
ment, Baumann introduced a strain energy approach {16] and Aoyagi [17 ] proposed
the experimentally obtained formula by which f can be calculated from the ratio
of principal stresses 0, /0; and the reinforcement direction o. On the other
hand, the ultimate shear stress can be obtained from Egs. (19) alone when the
reinforcing bars in both directions reach the yield strength. For example, in
the case of the isotropic reinforcement which results in B = o, Egs. (19) reduce
to Eq. (10).

f. Collins .......... In the diagonal compression field theory formulated by
Collins [19], he utilizes the compatibility condition as well as the equilibrium
condition so that the deformation can be analyzed. It is assumed in his theory
that for the diagonally cracked concrete the direction of the principal stress
coincides with that of the principal strain and a constitutive law relating the
two values is simply linear. Although the diagonal compression field theory has
originally been built for understanding the shear behavior of a prestressed or
reinforced concrete beam, it is considered to be also applicable to the problem
treated in this paper.

In stress field that Collins treated the shear stress plus the axial stress to
one coordinate direction are considered. Thus the following equation may be
written to fulfill these conditions,

p f, O 0 0 ‘ Oy Ty
Xy + - Y (20)
0 pyfole=0 0 -O|p=B Ty O |6=0
Then, when Ry = Bxfy and Ry = nyy' you can have,
= -
TXy 1/(Rx OO)Ry (21)

from Eq. (20). When the compressive failure of concrete precedes the yielding
failure of reinforcing bars, the following equation is also obtained from Eq.
(20) on the assumptions that Ry <P f,, Ry SR £, and o, = fg,,

Tey = /Ry(fdu - Ry) (22)
Egs. (21) and (22) are in accordance with a special case of Egs. (6) and (7)
given by Nielsen, respectively. The limiting value of the compressive stress in
the diagonal member, fdu in Eq. (22), 1is considered to be 1lower than the
standard cylinder crushing strength f.. <Collins proposed the formula for this
limiting value fq, expressed in terms of the maximum shear strain, which will be
stated in 2.3.
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g. Duchon .......... The theory formulated by Duchon [18] is also to analyze
stresses in materials and deformation of reinforced or prestressed concrete
members in a membrane state. According to the authors' calculations, a numer-
ical result from Duchon's theory is similar to these by other theories.

Among the aforementioned seven theories, three theories which form closed-
failure criteria in the plane stress are shown in Fig. 2. The envelope curves
in the figure describe ultimate strength of orthogonally and isotropically rein-
forced concrete panels.

researchers in plane stress Mohr’s stress circle lin shear stress + normal stress

(o ~7 relation) (o7 relation)
% z/fc w
fc A _ Te afc
. ~ O T 0.5 )~ ‘\\‘ "‘I _
D " fc -
Nielsen [8] SRR j - 5 ;’0 \57 \
@ Tl 1 el levly
®\\® \ “\\_’,"’J 1-2¢
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o T > z
f_cl fc z fc
Ono, NL,a_* z
Tanak ~ fc | / &3
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T
T - z/fc
g _>| o5 L
Baumann = / AN L
fc >
[16] 1 v ‘,\ s Vﬁl
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Fig. 2 Failure Criteria of a Reinforced Concrete Panel with
Orthogonal and Isotropic Steel Bars

Note that in Fig. 2 dimensionless notations are employed, in which physical
values are normalized relative to the compressive strength of concrete f;, and
that ¥, the degree of reinforcement, is defined as ¢y = Pfy/fc and that the
diagrams are obtained taking the uniaxial tensile strength T to be equal to Pfy
and the uniaxial compressive strength to be C= fc + Pfy in Tanaka's theory and
extending the failure criterion given by Baumann to the compressive failure
region. In the case of tensile failure or compressive failure of reinforcement
(which correspond to domain I and V in Nielsen's criteria) these three theories
provide almost the same result, while the theories reveal different strengths
in-between where the concrete fails prior to the steel yielding.

It may be seen from the investigation in this chapter that each of the major
formulae for the ultimate strength of a reinforced concrete panel can be clearly
derived solely from the equations with the Mohr's law and that the differences
among the theories mainly depend upon the assumed stress matrix for the con-
crete. The interrelationship between the theories investigated herein are
briefly summarized as follows.
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Compared with a theory by Nielsen [7] who introduced limit analysis, Bazant and
Tsubaki [15] add to it the slip-free criterion on cracked surface and Marti [13 ]
uses Mohr-Coulomb law as a failure criteria of the concrete. The results by Ono
and Tanaka [14 ] based upon limit analysis both in the tensile failure and in the
compressive failure type exactly agree with Nielsen's theory, whereas the result
in shear failure type between the first two types differs from other theories.
In the diagonal compression field theory formulated by Collins [9 ] and formulae
given by Duchon {18 ], the deformations as well as the strength can be analyzed,
introducing the compatibility condition for strains and the simplified
stress-strain relation for the concrete.

This analytical treatment for reinforced concrete members will be quite useful
as it is expected that these explicitly expressed failure criteria for a
composite material (a cracked reinforced concrete) can readily be incorporated
into the elasto-plastic theory as a yield surface.

2.2 Numerical comparisons of the theories

Numerical calculations are carried out for the previously mentioned theories
whose assumptions and derivations were investigated in 2.1. To allow a general
comparison of the ultimate in-plane shear strength, the non-dimensional values
normalized by dividing by the compressive strength of concrete f. are used, such
that,

pf
n:T g:g , LD:TL (23)
fC ! c C

by which all the mathematical expressions obtainable from various models can be
represented. Eq. (6) given by Nielsen, for example, is rewritten as,

n =V, - 5 Uy - &y (6"

By adoption of these dimensionless descriptions, it is anticipated that formulae
expressed by different units and measured data under different conditions can
successfully be compared in a common base. (Hereafter T indicates the shear
stress at the ultimate stage, so subscripts xy are omitted, and R indicates the
equivalent stress of reinforcing steel when yielded, R = Pfy)

Comparisons of the ultimate strength calculated from the five theories are made
in Fig. 3 for the state of pure shear stress and in Fig. 4 for the state of the
shear stress plus the additional normal stress in the X direction.

Fig. 3 shows that compared with the values of Nielsen's limit analysis that
precisely agrees with the conventionally used formula (T = Pfy), the shear
strength of Bazant's slip-free criteria gives smaller values with decrease of
friction coefficient k and Marti's result varies according to the level of
tensile strength of concrete. (The result given by Bazant at k = o or the
results by Marti at T = 0 reduces to Nielsen's as stated early.) Limit theory
formulated by Ono and Tanaka provides a different result from other theories
partly because Mohr-Coulomb criterion is introduced as shear failure condition
in their theory.

Fig. 4 depicts the interaction curves between the normalized in-plane shear
strength and the normal stress when the degree of reinforcement is fixed at 0.2.
All the curves start at &o = Y (0o = pf ) in the tensile region (£; > 0) and the
shear strength increases with an increase of the compressive normal stress
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(£, <0), levelling off or falling within the compressive failure domain when an
over-reinforced state is reached. It is shown in Fig. 4 that all the theories
provide similar results in the tensile failure region in which the yield of
reinforcement precedes the concrete crush, while they differ significantly under
the larger compressive normal stress where the concrete fails prior to the rein-
forcement yielding.
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Fig. 3 Comparison of Calculated Values, Y -n
Relation in Pure Shear Stress
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7 fc ——— Bazant
----- Ono, Tanaka
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—= T — x — Baumann{ modified )
Goc} :':T_ 0o [0.5 —o— Collins k=13

v 1+

Fig. 4 Comparison of Calculated Values, &p- N Relation in
Shear Stress and One Directional Normal stress

2.3 The Shear Strength determined by the Compressive Failure of Concrete

In the over-reinforced state of a concrete member, where the concrete crush
precedes and the increase of strength is not expected by the increase of the
ratio of reinforcement, it is rather difficult to apply analytical approach and
much scattering of experimental data is observed. In this situation, it seems
to be decisively important how Oc is assumed in the concrete stress matrix [0.]
among Eq. (1). Limit analyses given by Nielsen and Marti offer Eg. (8) as an
ultimate shear strength on the natural assumption that 0o = f, which is identi-
cal to that by the extended Baumann's theory (see the last row in Fig. 2).
wWhile some researchers assume that the concrete in a structure crushes below its
uniaxial strength as determined from standard cylinder specimens introducing the
effectiveness factor of concrete strength.
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Therefore, we use the following equations instead of Eq. (8).

n=_%_\) or T=—;—Vfc , (0<v<1) (24)

The introduction of the effectiveness factor of the concrete Vv may allow a
general discussion of the shear strength of a reinforced panel due to the
concrete failure.

The effectiveness factor of the concrete can be figured out directly from shear
tests using over-reinforced concrete members. The values v = 0.80 (Campbell
[6]1) and v = 0.74 (Braestrup [1]) are experimental values so obtained. Assuming
it to be particularly related to the compressive strength of concrete £,
Nielsen [3] and Higai [4] proposed the following equations,

Nielsen : v = 0.8 - £_/2040 Higai : v = 10/1/fc ~ 13/VfC (25)

Exner [5] and Yoshikawa et al [12] considered that the concrete strength is
required to be reduced in order that the strain energy doesn't change even if
the concrete is assumed to be perfectly plastic in 1limit analysis (Fig. 5).
Exner, then, arrived at,

Vv = 10.22/1/fc (26)

which is again a single-valued function of the compressive strength of concrete,

while Yoshikawa et al offer a constant value of v = 0.75 from his assumed
parabolic stress-strain curve.

oc/fc oc/fc

observed observed

elastic perfectly

rigid perfectly
i lastic i

plastic

&/ €0 &/ &

0 1 m*
(a) Exner [5] (b) Yoshikawa [12]

0 1 m*

Fig. 5 Perfect Plastic Model of Concrete

There are emprically determined values of the effectiveness factor from some
tests on concrete containment vessels., From a series of verification tests on
reinforced or prestressed concrete vessels conducted in Japan, Japanese design
criteria for a concrete containment has been drafted (Ohsaki, et al [101),
providing T = 5.25 /ch as a ceiling value of the ultimate shear strength.
Analogous to Eg. (24), this value can be written as follows,

1 * *

TESV £, Vo= 10.5/V%, (27)
It is also possible to_connect other experimental formulae T = 5.6/f_c (Ogaki et
al [11]) and T = 4.2/f. (Kawamata and Iida et al [21]) with Eg. (24) as well.
According to the investigation by Collins and Vecchio [19], the concrete
strength of the diagonal compression member fg, in a shear member can be ex-
pressed in terms of maximum co-existing shear strain Y. A degrading factor
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f qu/f proposed by them also corresponds to the effectiveness factor discussed
herein, which is also described as,
f
V** - du  _ 3.6 (28)

fo l+2Ym/EO

The above value may change depending upon a reinforcement ratio and stress state
of a member, by which Collins' equation (28) is distinguished from other formu-
lae all of which are characterized by the compressive strength of concrete
alone.

3. COMPARISONS WITH TEST RESULTS

Values predicted by the theories stated so far are compared to the experimental
data, which are presently available from approximately seventy specimens by
eight research groups that are listed in Table 2.

Table 2 Major Experimental Works on In-Plane Shear Behavior

No. Experiments Variables Researchers References
Pure shear loading on . .

:\ RC panels Py, Py, fy Vecchio, Collins [19]
Normal forces loading on o, ratio of 0,/03 ;

B A
RC panels Py, Py oyagi, Yamada [20]

Torsional loading with
C vertical axial force on P, Oy (axial force)
RC cylinders

Yoshikawa, Iida,

et al t12]

Torsional loading with

. Px, Py,
D internal pressure on RC 0x (pressure level) Nakayama [22])

cylinders
Tors1onal loading with P, By Kobayashi ,

E | internal pressure on Oy, O, (prestress) Ogaki, et al (23]
PC cylinders xr %y P gakl,

F Torsional loading on RC P+ B,, arrange- Uchida, Aoyagi, [24]
cylinders ment of steel et al
Torsional and axial s . .

: P

G loading on RC cylinders ; Oy (axial stress) Tsuboi, Tomii [25]
Shear loading on RC panels Cas c .

H | with biaxial tensioned Initial biaxial Oesterle, Russell {26]

tension

reinforcements

These tests are either torsional loading on a hollow cylindrical concrete
specimen or in-plan forces loading on a flat concrete panel where reinforcement
ratios and membrane stresses induced by mechanically applied forces, internal
pressure or prestressing forces are chosen as changing parameters. Results
obtained from horizontal loading tests using shear walls or hollow cylinder
specimens are excluded here because stresses observed in those experimental
works are not uniformly distributed over a specimen, which makes it difficult to
convert force into stress directly. All of the studied specimens have
orthogonally and regularly arranged reinforcing nets in either double or single
layer. Failure of reinforced concrete panels is supposed to be divided into
three modes as follows: both of reinforcing bars in two directions yield (mode
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I); reinforcing bars in one direction yield and concrete crushed (mode II); and
concrete crushed with no reinforcement bars yielded (mode III).

The ultimate shear strength in a pure shear stress state (Y - TN relation) and the
ultimate shear strength under shear stress with normal stress in one direction
(Eo~ N relation) are shown in Fig. 6 and Fig. 7, respectively, in which a dimen-
sionless notation is again used. In order to carry out numerical calculations
of each theory, it is necessary to determine some coefficients and constants
required for the theories. It is, therefore, assumed that the effectiveness
factor of concrete in Nielsen's theory is v = 0.67, the ratio of tensile and
compressive strength of concrete in Marti's theory is ¢ = 0.05, the frictional
coefficient on the cracked surfaces used in slip-free criterion is k = 1.7 and
in limit analysis by Tanaka the tensile strength T and the compressive strength

C as a reinforced concrete member are taken as T = Uf, and C = (1 +¢)f,,
respectively.
0.4
> Tanaka
Bazant >, =Ll
// n 5 v
N\ s _6 v - -
L7 & s .~ .
D 58 v ns
v 037 Y _ooltes .
Il 7 < -
IS // // o
£ 7 //// measurements | ® reinforcement yielded
b z /
s 0.2 S (A,C.D,E F, G ) | o concrete crushed
k7 it 1
= .7 Nielsen 7=y = ? (»=0.67)
Py 7/
@ ® /// ° // ————— Marti 7= ¢+§< v (£=0.05)
0.1 //. / ———Bazant 7= l+kz‘1f (k=1.7)
. 4
//. / —-—Tanaka ;7:%1%‘%1
Py —0—Collins 7z=y=/(=y)y
0 0.1 0.2 0.3 0.4 0.5 0.6

degree of reinforcement  ¢=pf, /fc

Fig. 6 Comparison with Test Results, y -n Relation
in Pure Shear Stress

Fig. 6 shows that measurements roughly agree with calculated values by Nielsen
and a conventional formula T = Pfy and it may be said that a measurement slope
in mode I is much closer to that of Bazant's slip-free criterion and an inter-
cept of measured data with the vertical axis is not zero, which corresponds to r
used in Marti's theory. These may be suggestive that the adoption of Mohr-
Coulomb failure criterion is justified in the lower degree of reinforcement and
the tensile stress in the reinforcement bars is increased due to slippage along
cracked surfaces.

The regression curve, N = 0.85Y + 0.024, is obtained from the experimental data
in mode I of Fig. 6, which means the frictional coefficient k = 1.6 in Bazant's
theory and the ratio of tensile-compressive strength of concrete £ = 0.024 in
Marti's theory. Fig. 6 also shows that limit analysis by Tanaka provides the
lower shear strength than the measured values through failure mode I and mode
II.

Fig. 7 describes a change of the shear strength with respect to the normal
stress for the case with a constant reinforcement ratio. (It should be noted
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however that the degrees of reinforcement ratios Yy = Pf /f of the plotted
measurements are not exactly the same from specimen to spec1men because the
compressive strengths of concrete f are slightly different.) As can be seen in
Fig. 7, values calculated from the theories agree fairly well with experimental
data, and all the theoretical predictions give a reasonable explanation of a
change of in-plane shear strength through failure modes I, II and III.

Al .
Tfe 0.4 0.2 0 -0.2 —0.4 —0.6

reinforcement yielded | —

@ two directions
measurements . . T
©) © one direction

0.1 yfc=45.8 kg/art

gozi‘l i/ | , , ,
fc " 0.4 0.2 0 —0.2 —0.4 -0.6

Nielsen

———Bazant 7;=~2}r——2 VT=n¢=&} {(1 —r,)a/r+r15°b}

———Ono, Tanaka 7=V (1 F+ ) (=& (1 +¥+&) /1+2¢
{V'ﬁ'(lb 50)
‘/,( **

— 0 —Collins

Fig. 7 Comparison with Test Results (§p- N Relation in
Shear Stress and One Directional Normal Stress)

The experimental result of mode III (concrete-crushed failure) are plotted with
respect to the degree of reinforcement ¥ and the compressive strength of con-
crete £, in Figs. 8(a) and 8(b), respectively, in which values computed by the
theories and by some proposed experimental equations. are shown on the basis of
the statement made in the section 2.3.

It can be seen in Figs. 8(a) and (b) that only Collin's prediction is influenced
by the axial stress level and the degree of reinforcement and other theories and
formulae depend upon the compressive strength of concrete only and that the
theoretical predictions overestimate the experimental results. It is suggested
that no theory is in close agreement with the experimental data and that the
in-plane shear strength is slightly affected by the degree of reinforcement and
the compressive strength of concrete.
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Fig. 8 In-Plane Shear Strength for Concrete-Crushed Failure;
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4. A SEMI-ANALYTICAL METHOD TO ESTIMATE THE IN-PLANE SHEAR STRENGTH

To improve the differences between the theoretical and the experimental results
authors propose the following semi-analytical procedure for the estimation of
in-plane shear strength of a reinforced concrete panel. This method is obtained
by simplifying limit analyses formulated by Nielsen [7 ], Marti [13 ] and Bazant
[15] (hereafter, equations in parenthese are expressed by a metric unit not a
dimensionless expression) and making a correlation with experimental observation
studied in the paper. Proposed formulae are prepared for reinforcement-yielded
type (failure modes I and II) as well as concrete-crushed type (failure mode
III1).

Reinforcement-yielded type

If one takes,
n=a +>b, (T=aR+Dbf,) (29)

as a general form of a shear strength formula for a reinforced concrete panel in
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a pure shear stress state, then this formula can represent all the three analy-
tically obtained expressions by Nielsen, Marti and Bazant just by changing
constants a and b, that is schematically shown in Fig. 9. The above equation
corresponds to Eg. (16) by Nielsen when a = 1 and b = 0, and Eq. (29) is identi-
cal with Marti's theory (Egq. (9)) when a = 1 b = g, and with Bazant's theory
(Eq. (11)) when a = k/ V1 + k? and b = 0.
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Y=y (V’x—gx) (%y_gyj

Fig. 9 Proposed Linear Equation for Shear Strength and
Corresponding Theories (Reinforced-Yielded Type)
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Fig. 10 Relationship between the Equivalent Degree of
Reinforcement Y* and Shear Strength n
(Reinforcement~Yielded Type)

We now introduce a new term, the "equivalent" degree of reinforcement, Y *, in
the more extended form as,

V= E ) (0E) ( R* =40, £,-0,) (0 £,-0,) ) (30)

This is determined from four quantities such as the reinforcement ratios and the
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applied normal stresses in both x and y directions. It is considered that the
coefficients may be determined by adjusting them to the experimental data,
supposing Eq. (29) is still applicable even when Y is substituted with this
equivalent degree of reinforcement U#*, Toward that purpose, measurements
plotted in Fig. 6 is added by other data from specimens subjected to normal
stresses in either one or two directions and is shown in Fig. 10 with respect to
the equivalent degree of reinforcement Y*. By the least squares method a linear
regression line is then obtained whose parameters a = 0.76 and b = 0.026, which
may be in accordance with the investigation for Fig. 6. Now a formula of the
shear strength for the reinforcement-yielding type is written as,

n = 0.76 w* + 0,026, (T=0.76 R+ 0.026 fc ) (31)
Fig. 10 exhibits that so obtained equation (31) leads to the better agreement
with experimental results arranged by the term of the equivalent degree of

reinforcement Y* rather than the chosen three theories discussed in this paper.

Concrete~-crushed type

Previous studies in the section 3 imply that none of the theories or experi-
mental formulae seen in Fig. 8 can give a satisfactory explanation. It is
observed from the experimental results that the shear strength governed by the
concrete crushing is slightly influenced by the compressive strength of concrete
fc and the degree of reinforcement Y. Hence, we introduce a new dimensionless
parameter, Y *(250/f »°-s + which is linearly related to the shear strength of
this failure mode.

0.4
lower bound
K
0.3
Il
EN
=
g’o 2 ° _~
2 - 250 95
: . proposed [ T 7=0.290(52%) ¢r+0.145
201 ——— 7=0.367( 250) ¥*+0.084 |
© measurement (A, C. D)

0 0.2 0.3 0.4 05 06 07 0.8
. (2500
v (%)

fc

Fig. 11 Relationship between the Parameter Y* (250/f.)°*° and
Shear Strength N (Concrete-Crushed Type)

Consequently two straight lines are obtained as shown in Fig. 11; an estimated
regression curve is indicated by a solid line and a lower bound is shown as a
dashed line. The average strength (solid line) is thus expressed as,

* *
R
n=4.50 —Y 40,145, ( T = 4.59 + 0,145 £ _ ) (32)
C
Vi, Vi,

—277—



5. THE USAGE OF THE NEWLY PROPOSED METHOD OF DETERMINING SHEAR STRENGTH

As for the application for the design use, one only needs to calculate the
equivalent degree of reinforcement {* and the parameter Y */fc°‘s from given
conditions and then two values of n (or T) using Eq. (31) and Eg. (32). The
smaller value of n (or 1) is the shear strength of the plane and the correspond-
ing equation shows the failure mode, which is illustrated in Fig. 12 as a
practical chart.

0.4t
0.3F &
N S
w 7;=4.59—’/':+0.145
0.2 Ve
&
0.1

1 1

0 0.2 0.4 0.6 0.8 1.0
vr=y (V’x—gx) (Wy_gy)

Fig. 12 Proposed Failure Criteria for In-Plane Shear Strength
6. CONCLUSION

The mechanical behavior of a reinforced concrete member failed in shear load are
known to be influenced by a large number of factors, requiring a more sophis-
ticated analytical method. Recent works therefore have a trend directed toward
the more microscopic approaches, such as modeling the mechanism of the shear
transfer and the the dowel action at the cracking using a finite element method.

However, it may be more useful if we can construct a practical yet accurate
failure criteria with a simpler formulation. From that point of view, authors
tried to evaluate major theories on the shear behaviors of reinforced concrete
panels comprehensively and proposed. failure criteria which is expressed with
simple indexes in the form of the two concise equations; one corresponding to
the reinforcement yielding mode and the other corresponding to the concrete
crushing mode without losing accuracy as found in other theories.

FPinally authors gratefully acknowledge the contributions of many researchers
whose test results from their literature are referred to in this paper.
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NOTATION

The principal symbols are defined as follows and others were indicated when
necessary. Stress matrices are shown in detail in Table 1.

X, ¥y
0y r Oy
{0)41 Uyr TXY}
fy
fr
fC
€o
[0s1: [951g
[oc1, (0.1
[F1l, [F1ly
(Fal, [Fz]g
[

[ le
(Tl
b
R
a
B
v
£
o
n
4
k

rr, ra
\Y
ll)*
R*

Directions of cartesian coordinate axes oriented in the long-
titudinal directions of orthogonal reinforcing bars, subscript
x and y refer to corresponding directions.

Principal stresses of internal applied forces.
Stress components in the x-y direction.

Yield strength of reinforcement. k

Tensile strength of concrete.

Compressive strength of concrete as determined from standard
test cylinders.

Compressive strain of concrete corresponding to fe..

Stress matrix of reinforcement.
Stress matrix of cracked concrete.

Stress matrix of internal applied stress in the principal
direction.

Stress matrix of internal applied stress in the x-y direction.
Stress matrix in local coordinate system.

Stress matrix in coordinate system transformed by 6, which is
calculated from Eq. (3).

Transformation matrix.
Percentage of reinforcement.

Equivalent stress of reinforcement (R = pf_ when yielded).

y
Angle between the principal direction and the x axis.
Inclination of a crack with respect to the y axis.
Degree of reinforcement defined as y = pfy/fc.

Normal stress normalized to the compressive strength of con-
crete, & = 0/f..

Constant and one directional normal stress normalized to the
compressive strength of concrete, o = Go/f.

Shear strength normalized to the compressive strength of con-
crete, n = 1/f..

Ratio of tensile and compressive strength of concrete, r =
ft/fc.

Friction coefficient on a cracked surface.

Constants determined from k

Effectiveness factor of concrete (0<v<1).

Equivalent degree of reinforcement, defined as
bro= Yy - ) Uy - B
Extended R, defined as R* = /(Pxfy - Ox) (Pyfy - Oy)
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