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SYNOPSIS

Biaxial loading tests of concrete under compression-tension stress states were
carried out for collecting the fundamental data to formulate the plane stress
constitutive equations for concrete. The non-proportional stress paths were
newly adopted to make clear the anisotropic and nonlinear behaviors of concrete
quantitatively.

According to the test results, the elasto-plastic and fracture constitutive
equations describing the process of the plasticity and the fracture are
formulated. A new system of flow-rules, which specify the directional
correlations of the stress and strain vectors, is also proposed for formulating
the anisotropy of concrete.

By organizing those constitutive equations, the plane stress constitutive law
is derived, and its applicability is verified by the numerical analysis of the
finite element method and the experimental data.
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Biaxial loading tests of concrete under compression-tension stress states were
carried out for collecting the fundamental data to formulate the plane stress consti-
tutive equations for concrete. The non-proportional stress paths were newly adopted
to make clear the anisotropic behavior of concrete quantitatively.

According to the test results, the elasto-plastic and fracture constitutive equa-
tions which describe the progress of the plasticity and the fracture are formulated. A
new system of flow rules, which describe the directional correlations of the stress and
the strain vectors, is also proposed for formulating the anisotropy of concrete.

By organizing those constitutive equations, the plane stress constitutive law is
derived, and its applicability is verified by the numerical analysis of the finite element
method and the experimental data.

NOTATION

directional parameter of plastic flow.

equivalent strain.

max ! maximum experimental equivalent strain,
equivalent plastic strain.
material coefficient corresponding to the stiffness.
biaxial stiffnesses.
stiffness coefficient in reversible process.
fracture strength of constituent element.
uniaxial compressive strength.
uniaxial tensile strength,

:  flow rule parameter (biaxial compression stresses).
flow rule parameter (compression-tension stresses).
fracture parameter.
the ratio of the fractured constituent elements of concrete.
fracture strength distribution.
loading (yield) function in the theory of plasticity.
parameter to control numerical integration steps.
equivalent stress.
equivalent stress of constituent elements.
time.

. incremental stress invariant vector.

Ve : components of vector V.
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X : incremental strain invariant vector.

X1, X2 : components of vector X.

o, f :  anisotropy parameters.

Y 1 rotation angle of the principal stress axis (degree).

Yo :  deviatoric strain function.

€45 :  strain tensor (Green’s tensor).

€eij ¢ elastic strain tensor.

Epij :  plastic strain tensor.

Epts ¢ effective plastic strain in the strain-hardening.

Epiw ¢ effective plastic strain in the work-hardening.

€1, €2 : principal total strains.

€p1, €Ep2: principal plastic strains.

€o : mean strain function.

€20 ¢ uniaxial compressive strain at the uniaxial strength.

Oij 1 stress tensor.

61, 02 : principal stresses.

Go : mean stress (one of the stress invariants).

Geij : stress tensor of constituent element.

To "t deviatoric stress (one of the stress invariants).

4 :  angle of the maximum principal stress direction to the X-coordinate,

Ge :  angle of the principal elastic strain direction to the X-coordinate.
Y12, V21 : biaxial Poisson’s ratios (compressive and tensile).

v* : Poisson’s ratio in reversible process.

1. Introduction

Many years have passed since Scordelis applied the finite element method (FEM) to
the analysis of reinforced concrete beams in 1967 V. During the last few years, the
numerical method of analyzing nonlinear problems has made a great advance and the
studies for mathematical models necessary for the FEM analysis of reinforced concrete
structures have been executed. Constitutive model and failure criteria of concrete, shear
transfer across a crack in concrete, bond between concrete and reinforcing bars are
typical mathematical models.

The FEM analysis is used to simulate the behavior of large-scale structures for design
purposes and the behavior of reinforced concrete members under various external actions
for investigating the mechanics. The numerical method of predicting the behavior of
structures based on the microscopic mechanical characteristics is attractive for researchers
because it gives the unified analytical method. During the last ten years, a lot of studies
concerning the numerical analysis have been carried out, however, unified analytical
method is not yet completely established. It is because the mechanical characteristics of
constituent materials are not completely investigated by experiments, and because there
exist some problems in regard to the numerical method to represent the nonlinearity of
the mathematical models. Especially, constitutive laws of concrete, shear transfer and
dilatancy on _cravlcked faces of concrete, bond and dowel actions between concrete and
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reinforcement are to be investigated, and modelling of cracking in FEM analysis, non-
linear analytical method including strain-softening and the mathematical model to express
the difference of stress-strain relations of concrete due to the size of the finite elements
should be solved. i

This paper deals with the constitutive equations of concrete under the plane stress
condition, one of the most basic problems for the finite element analysis of reinforced
concrete structures. The behavior of concrete under multiaxial stress states have been
studied since an early age. Among these studies, the experimental study by Kupfer et al.
in 1969 ? is wellknown. Since the study of Kupfer et al., biaxial and triaxial loading
tests of concrete have been executed, and their main objective has been to get the failure
envelope indicated by stresses. On the other side, a lot of multiaxial constitutive models
of concrete have been reported such as the hypo-elastic model (isotropic nonlinear elastic
model ¥, anisotropic model® , equivalent uniaxial model” etc.), the elastoplastic
model®>?+19, Endochronic model '", plastic fracturing model'? and so on.

The behavior of the reinforced concrete structures often depends on the deformation
and failure of concrete element under high compression-tension stress state'”). But the
previously reported models and experiments are not careful enough for the characteristics
of this state. The objectives of this research are to investigate the behavior of concrete
under compression-tension stress states with an experimental approach and to formulate
the constitutive equations for concrete with high accuracy.

In the previously reported biaxial loading tests?s'¥:!4 16

the stress paths
have been limited in the very special case, where the ratio of the principal stresses is con-
stant and the principal direction is fixed in the loading hysteresis. If we adopt only this
type of stress hysteresis, the anisotropic behavior of concrete and the path-dependent
deformational characteristics of concrete can not be made clear.

Taking these situations into consideration, authors adopted non-proportional stress
paths, and for the first time in this research, the principal axis rotation tests were carried
out. ‘

According to the tests results, the elasto-plastic and fracture constitutive equations
are proposed. These equations describe the relation between the degreﬁof the stress and
strain vectors in taking the path-dependent deformational characteristics of concrete into
account. A new system of flow rules, which formulate the directional correlation of stress
and strain vectors, is also proposed. The proposed flow rule system is constructed by four
equations and takes the anisotropy of concrete into account.

By solving the elasto-plastic and fracture equation and the four flow rule equations
simultaneously, plane stress constitutive equations are derived and their applicability is
verified by the experimental data.
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2. Deformational Behavior of Concrete under Biaxial Stress States
(Compression-Tension Area)

2.1 Experiments

2.1.1 Difficulties in the test

In all the series of experiments, biaxial compressive and tensile forces were applied to
concrete plates, and strains were measured by strain gauges. The precision and reliability
of this kind of experiment depend very much on the creation of uniform stress and strain
fields in concrete specimens. Actually it is quite difficult to create the uniform stress
condition, therefore, it took more than one year to get the reliable data with reasonable
accuracy.

In the first place, the friction between concrete specimens and loading plates must be
eliminated as far as possible. To eliminate the friction at the contact faces where tensile
forces were applied, authors sought for materials with higher tensile strength and lower
stiffness than those of concrete. One-way fiber reinforced plastics were examined, but,
finally natural wood was selected for the material to cut the friction.

In the second place, local splitting at the adhesive faces must be avoided when the
tensile force is transmitted to concrete through the wooden appratus for eliminafing
the friction. It is not desirable to apply tensile forces to the face where the local tensile
strength is lowered due to bleeding of concrete.

In the third place, it is important to make specimens with the precision of shape in a
high order. Especially, corners of the specimens must be angled ds right as possible. If the
precision of test specimens is not guaranteed, it is impossible to create the uniform biaxial
stress and strain fields within acceptable accuracy.

In the forth place, in order to eliminate the eccentricity, it is necessary to keep the
axes of compressive and tensile forces through the center of the specimen at any time of
loading.

Strictly speaking, it is impossible to solve these problems completely. However,
within a certain acceptable limit from an engineering point of view, these problems have
been solved.

2.1.2 Test specimens

Concrete plates 200mm x 200mm x 50mm were used for experiments. This concrete
specimen has the same dimensions as Kupfer’s experiment . Therefore, experimental
data can be compared with each other. To ensure the finishing precision of specimens, a
special metal mould with finishing precision of 1/100mm were used. Fresh concrete was
placed in the metal mould where cement powder was sprinkled on the inner faces of the
metal mould to control fhe decrease of the tensile strength near the faces of the mould by
bleeding of concrete. :
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During a week after placing, specimens were cured in water. Four or five weeks later,
specimens were used for tests after drying in a laboratory. Mixture of concrete used are
shown in Table 1. Uniaxial compressive strength was between 27 and 35 Mpa.

Table 1. Mixtures of concrete used.

Type W/C(%) W(N) C(N) s/a(%) G(N) S(N)
A 50 1800 3620 47 9500 8270
B 60 1800 3000 48 9900 9130
G 50 1740 3480 47 9670 8420
D 45 1800 4000 47 9490 8260

High Early Strength Portland Cement used
Maximum Size of Coase Aggregates: 15mm

2.1.3 Cutting of friction

The compressive force was applied to concrete specimens through the loading plates.
To reduce the contact friction, two sheets of teflons (0.1mm and 0.5mm thick) with
silicon grease were set between the loading plates and concrete specimens. In order to
prevent the injection of silicon grease into the specimen and the increase of contact

friction, paraffin was impregnated into B and D faces for coating as shown in Fig. 1.

Direction
of Placing
D
o,<j A C Q>o,
B
[P

Fig. 1. Directions of applied
biaxial stresses.

Fig. 2. Wooden brush and test specimen.

The tensile force was transmitted to concrete specimens through the wooden brushes
as shown in Fig. 2. This brush was placed between the concrete specimen (A and C faces
in Fig. 1) and the loading plates as shown in Fig. 2 with epoxy type adhesive agent. The
wooden brushes were designed with reference to the steel brushes by Kupfer et al? .

The tensile strength of the wood used was about 60—70 Mpa and the modulus of elastic-
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ity was 60—75 X 10% Mpa. To reduce the stiffness, cuttings were made as shown in Fig. 2.
The shape of the tooth section is 8.1mm x 11.0mm and the depth is 30mm. Faces A and
C in Fig. 1 were scraped by 1.5mm deep so that tensile force shall be directly transmitted

to the coarse aggregates and mortar. Epoxy resin between the teeth of a brush was wiped
out before hardening.

2.1.4 Loading system

The loading system of this experiment is shown in Fig. 3. Two sheets of concrete
specimens were used and biaxial compressive and tensile forces are simultaneously
applied. Two center-hole type jacks introduced the tensile force to concrete specimens.
In order to prevent the eccentricity of load, the same amount of oil was supplied to the
two jacks. To follow the movement of the cylinder head of the compressive jack, two
center-hole type jacks were fixed to the head of the compressive jack by the steel frames.
The objective of this arrangement of jacks as shown in Fig. 3 is to eliminate the eccentric-
ity of compressive and tensile forces even when the concrete specimens were deformed
during the loading. Applied forces were distributed by the bearing plates. Two compres-
sive loading plates were connected by four prestressing bars, and two tensile loading
plates were linked by two prestressing bars. These bars increase the stiffness of the total
system of the biaxial loading apparatus and make it possible to get the data under the
stable situation near the failure conditions of concrete.

'
! Fixed Head

Load Cell

Center Hole Jack
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Fig. 3. Biaxial loading system.

The strains of concrete specimens and prestressing stiffness were measured by wire
strain gauges. The displacement-type transducers were set on the specimens to supple-
ment the measurement of strains in the area of large deformations. Loading speed was set
approximately 0.1 Mpa per second. The experimental data such as strains, stresses, load-
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ing speed were scanned with the interval of about 4 second and the real time analysis of
data was carried out by an 8 bit micro-processor and the results were always displayed on
console. With the updated information from the micro-processor, the operators con-
trolled the oil pumps of the jacks according to the loading programs.

2.2 Deformational characteristics of concrete under monotonic loading

2.2.1 Loading paths to get the biaxial stiffnesses and biaxial Poisson’s ratios

Most of the reported biaxial loading tests concerning the concrete behavior were
carried out under a special loading history, that is, monotonic and proportional loading
where the ratio of two principal stresses was constant at any time of loading. However,
from this type of loading paths, the tangential coefficients in the linear system of Eq.(1)
cannot be directly obtained from the results of experiments.

de, = —El;dm“%jdaz
dez = —%ddl‘*‘é‘:dﬂz (1)

where €1, €2 : principal strains &, > €2

o1, o2 principal stresses o1 > o2 (tension is positive). Even if increments of
strains de1, dez and stresses do,, do: are measured from the proportional loading tests,
that is, do\/do.=01/ 62 = constant, four unknown quantities E,E,, vy, and vy cannot be
uniquely determined since the number of unknown values is larger than the number of
equations. In such a case, to get these values from experimental data, the hypothesis of
isotropy and symmetry in the tangential stiffness matrix (E,=E,, V1,=V,1) is usually
assumed. If we use this assumption, we can solve the system of Eq.(1) completely and
obtain the four coefficients from experimental data. Because of simplicity, this assump-
tion has been also used in the mathematical expressions of constitutive model of con-
crete. Strictly speaking, however, the applicability of the assumption of isotropy and
symmetry of stiffness to the concrete mechanics has not been verified. The authors
adopted two types of loading paths to get the biaxial stiffnesses and biaxial Poisson’s
ratios explicitly from the experiments.

(1) After uniaxial compressive stress is monotonically applied (do; =0, do,*0), the
tensile stress is applied in the direction normal to the principal compressive stress (doy%0,
do,=0). This type of loading path gives the information about the effect of the tensile
principal stress on the total deformation of concrete. This type of loading path directly
gives the tensile tangential stiffness and the tensile Poisson’s ratio as

oy des @

Ex = V21
d€1 ’ dex

where d0y=0, and doy, d ¢;,d ¢, were measured in experiments.
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(2) After uniaxial tensile stress is monotonically applied (d0,%0, d0,=0), the com-
pressive stress is applied (d0j=0, d0,%0) under the constant principal tensile stress state.
The compressive stiffness and the compressive Poisson’s ratio can be directly calculated
by this type of loading paths as

_ do’z _ _@
E,= E , Viz — des 3)

where d0,=0, and d05, de 1, de,were measured in experiments.

2.2.2 Tension test under constant compressive stress

The stress-strain diagrams and the loading paths, where the compressive principal
stress was constant, are shown in Fig. 4. Two principal stresses are normalized by the peak
stress f. under uniaxial monotonic compressive loading and uniaxial tensile strength /;.
Two principal strains are also normalized by the compressive strain 2o which corres-
ponds to the peak stress f. in uniaxial compression. Increments of strains which were
newly introduced by the tensile principal stress are shown in Fig. 5. The effect of the
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N
h v O Crushing w - 0.2

1 0.68

€,/€20 i ' €2/%20
-05 : v 0.5 (1.0
H RN VA SRS D N SN SR S N |
\
! : L
\ i ' -0.1 ° 0.1
= -0} ! \ - —A¢, /€20 —Ag, /e
]
F- Fig. 5. Principal tensile stress and
- 1.0 — . - .
| o1 /fe . | incremental biaxial strains when

principal tensile stress is applied under
Fig. 4. Stress-strain diagram when the the constant principal compressive
principal compressive stress is constant. stress.

principal tensile stress on the deformation of concrete under biaxial stress state is clearly
indicated in this figure. Where the principal compressive strain is low, say e,/ €20<0.6,
the relationship between the principal tensile stress and corresponding increments of
strains is nearly linear. But, with the increase of the level of principal compressive strain,
the nonlinearity appears in these relationships. The deformation of concrete is accelerated
by the increase of the tensile stress and the rate of the deformation becomes larger. This
deformational characteristics of concrete can be easily expressed by the tangential tensile
stiffness £,. The diagrams of the relations between the tensile stiffness and the compres-
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sive strain level are shown in Fig. 6. The tensile stiffness decreases rapidly as the level of

the compressive strain in the direction normal to the increment of tensile stress increases.
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Fig. 6. Relation between the tangential
tensile stiffness and the compressive
level.

In the same way, the tensile Poisson’s ratio y,; calculated by Eq.(2) are shown in
Fig. 7. Where the level of compressive strain is low, the tensile Poisson’s ratio is nearly
equal to the initial value, but, when the level of the compressive strain €2/ €20 exceeds
0.6, it becomes large rapidly. For the first time, these deformational characteristics were
quantitatively measured by using this type of stress paths.

Let us now consider the equivalent uniaxial model of anisotropy ”. According to
this type of constitutive model, the tangential tensile stiffness in the direction normal to
the uniaxial compressive stress is evaluated as constant and is equal to the initial stiffness.
This prediction contradicts with the results of this experiments. A special care should be
taken in analyzing the mechanics of concrete by this modelling.

In these experimental series, two types of failure modes were observed, say, cracking
mode and crushing mode. The cracking mode is defined as the brittle failure mode where
a crack rapidly appears in the direction normal to the principal tensile stress. This type of
failure mode was observed under the stress condition where the tensile stress is relatively
large. The crushing mode is defined as the ductile faijlure mode where the several distrib-
uted cracks appear and the two principal stresses cannot be kept constant at the peak
stress condition. This type of mode was observed under high compression-low tension
stress state as shown in Fig. 5. It is considered that in case of the cracking mode, the
failure is mainly introduced by the tensile stress, and compressive stress accelerates this
type of failure. On the other side, in case of the crushing mode, the tensile principal stress
is considered to help the extension of microcracking which is advanced by the compres-

sive principal stress and at last, the strain-softening behavior starts.
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2.2.3 Compression test under constant tensile stress

The stress-strain diagrams and loading paths, where the principal tensile stress was
constant, are shown in Fig. 8. It is recognized that the tensile principal stress has little
influences on the relationship between the compressive stress and strain under low com-
pression level, but on the other hand, when the compressive strain level 62/ €20 exceeds
0.6, the total deformations are accelerated by the existence of principal tensile stress.

T T
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= ! Q
;S; 0.5
®
"/ €2/€20 o
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- ; g
o5 | - o .
L. [o) 0.5 1.0
! 5106, /4, [ . Compressive Level £,/€50

Fig. 9. Relation between tangential

compressive stiffness and compressive
level when the principal tensile stress

is constant.

Fig. 8. Stress-strain diagram when the
principal tensile stress is constant.

The compressive tangential stiffness E, calculated by Eq.(3) is shown in Fig. 9,
where E, decreases as the level of compressive strain increases, and the principal tensile
stress accelerates the decreasing rate of the compressive stiffness. The deformational

behavior is remarkable in the high compression-tension stress state.
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The compressive Poisson’s ratio is calculated from this experiment and shown in
Fig. 10. Under biaxial high stress states, the compressive Poisson’s ratio increases rapidly
when the compressive level 52/ €20 exceeds 0.6 as in the case of the tensile Poisson’s
ratio. The principal tensile stress seems to advance the increase of the tensile Poisson’s

ratio.

2.2.4 Anisotropy under biaxial stress states

The biaxial stiffnesses and biaxial Poisson’s ratios were obtained by adopting these
two special types of loading paths. The biaxial stiffnesses decrease and the values of two
Poisson’s ratios increase as the compressive deformation level increases. These deforma-
tional characteristics are accelerated by the increment of the principal tensile stress. From
the two types of loading paths, the ratio of biaxial stiffnesses £1/E, and that of biaxial
Poisson’s ratios vz1/viz at a certain stress or strain condition can be easily obtained. A
new test which has the step-type loading paths as shown in Fig. 11 was also carried out in
order to get the biaxial stiffnesses and Poisson’s ratios. The ratio of biaxial stiffnesses, the

T
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Fig. 11. Stress-strain diagrams of
step-type loading.
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ratio of biaxial Poisson’s ratios and the ratio of the diagonal components in the stiffness
matrix, E V12 /E,v21, are calculated and shown in Fig. 12, Fig. 13 and Fig. 14 respectively.
If the behavior of concrete is isotropic, these ratios of biaxial stiffnesses and diagonal
components in stiffness matrix must be equal to unity (E,/E,=1, viz/ va1 =1).

According to the test results, concrete behaves isotropically when the stress level is
low. But anisotropy becomes significant when the deformation level ¢,/ ez0 exceeds 0.6
as shown in Fig. 12. The decreasing rate of the tensile stiffness exceeds that of the com-
pressive stiffness in compression-tension stress state.

Significant differences between the biaxial Poisson’s ratios are not observed in
Fig. 13. The ratio of diagonal components in the stiffness matrix in Eq.(1) deviates from
unity under high compression-tension stress state as shown in Fig. 14. This experimental
result means that the tangential stiffness matrix becomes nonsymmetric under high
compression-tension stress state.

According to these test results, concrete behavior may be assumed isotropic within a
certain compression level, that is, €2/€20<0.6 or 0,/f,<0.9. Under high compression-low
tension stress state, concrete constitutive laws should take the anisotropy and nonsym-
metry of the biaxial tangential stiffness matrix into consideration. The cause of this type
of anisotropy is considered to be the rapid and unstable extension of micro cracking.

2.2.5 Failure envelope and loading paths i

The main objective of the previously reported studies of multiaxial behavior of
concrete was to obtain the failure envelope indicated by stresses. The obtained failure
envelopes were often used for formulating the plastic potential in the theory of plasticity.
The failure envelope obtained in this research is shown in Fig. 15 where the data by
Kupfer’s experiment? are also included. The failure envelope on the strain space which
corresponds to the envelope indicated by stresses are shown in Fig. 16. According to
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Fig. 15. Stress paths and failure F=Const. ___;
envelope with reported data[2]. - Fig. 16. - Strain paths and failure envelope.
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the experimentally obtained failure envelopes and stress-strain paths to these failure
envelopes in Fig. 15 and Fig. 16, it may be concluded that the stresses and strains at
failure exist on the failure envelopes which are not dependent on the stress or strain paths
under monotonic loading conditions where two principal stresses always increase or are
constant in compression and tension stress state. Moreover, when the applied stress is
monotonic, the relationship between stresses and strains seems to be independent of the
stress paths even when the states of stress and strain are within the failure envelopes.
That is, there exists unique relationship between stresses and strains under biaxial stress
conditions. Accordingly, the hypo-elastic models (See Chapter 1.) and the total strain
models !5 are reasonable only in the monotonic loading.

2.3 Characteristics of plastic deformation

2.3.1 Loading paths to get the plastic deformation

The plastic deformation is a very important factor of describing the mechanics of
material. The plasticity is mathematically used for representing the effect of hysteresis
in the constitutive laws of concrete. The classical theory of plasticity formulates the
bahavior of plastic deformation with the strain-hardening or the work-hardening rule
and the normality rule which decides the direction of the plastic flow. The theory of
plasticity has been applied in the numerical analysis of concrete !, because this theory
is well established in the mathematical system and has much experiences to be applied
to various nonlinear materials. Some references ¥, !? reported that the theory of
plasticity has the ability to predict the nonlinear behavior of concrete under biaxial and
triaxial compression stress states. On the other hand, there is a question as to whether the
theory of plasticity could express the behavior of concrete including the principal tensile
stress or not 3.

But unfortunately, there exist very little data discussing the concrete plasticity in
the biaxial condition. Therefore, in the first place, the following type of test was carried
out to get the information concerning the plastic deformation under the uniaxial stress
condition. The uniaxial compressive stress was applied monotonically and unloaded
completely. By this type of loading path, biaxial principal plastic strains €p1 and €p2
could be measured. In the second place, the following types of tests were carried out to
make clear the effect of tensile principal stress on the total plastic deformation.

(1) The principal tensile stress was applied to the uniaxially comﬁressed concrete
(do,=0, do;>0) and unloaded completely.

(2) The principal compressive stress was applied to concrete specimens under
uniaxial tensile stress state in the direction normal to the principal tensile stress and
completely unloaded.

The plastic deformation is directly expressed by plastic strain tensors. However, the
tensorial expression is not suitable for indicating the degree of total plastic deformation

and the direction of the plastic flow. Accordingly, in this paper, the plastic deformation is
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represented by the incremental plastic strain vector deps in the form
dEpLs = (deph depz) 4)

The degree of the incremental plastic deformation represented by ¢ ,,; may be indicated
by the norm of the incremental plastic strain vector, that is

dész - “de‘sz“ = /(dEpl)z‘*‘(dEpz)z (%)

The integrated degree of plasticity €ps has the meaning of the accumulated damage of
plastic deformation and we have

Eps = fe_pzs = f"dépzs" (6)

The direction of the plastic flow can be represented by

o _den
D o depz

(7

where D is named as ‘directional parameter of plastic flow’.

2.3.2 Characteristics of plastic deformation under uniaxial compressive stress state

The uniaxial unloading paths on the diagram of stress-strain relationship is shown in
Fig. 17 and strain paths are developed on the biaxial principal strain space as shown in
Fig. 18, where the incremental plastic strain vector dep:s is illustrated as arrows. Com-
pressive and tensile plastic strains &g, €p1 flow as the maximum deformation level ¢, max/
€20 increases. As the compressive level increases, the tensile plastic strain in the direction
normal to the compressive stress proceeds rapidly compared with the compressive prin-
cipal plastic strain.

/
i
\ ’ Ll
\ A\ (104,777
€./¢ NN oore, o 7 €;./¢
1'/1“; N WL 2/
-0.5 o] 0.5 1.0
Fig. 17. Uniaxial compressive stress-strain
relations including the stress paths
of unloading.
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The relationship between the calculated rate of plastic flow, déps /da, and experi-
mental maximum principal compressive strain ez max is shown in Fig. 19. The plastic
deformation flows rapidly when the maximum compressive level &, max/ €20 exceeds 0.6.
There exists the correlation between the direction of incremental plastic flow and the
maximum compressive level as shown in Fig. 20. When the applied compressive strain is
small, the value of the directional parameter of plastic flow ‘D’ experimentally coincides
with the initial Poisson’s ratio. Under the high compressive stress state, the value of D
rapidly becomes larger. This means that the plastic strain in the direction normal to the
uniaxial compressive stress proceeds rapidly rather than the plastic strain in the compres-

sive direction.

A
H r © 5= piaxial Data
v 1'5: Biaxial Data ; dc,;‘fo do,=0
g dg,# 0d0,= 0 54 = Yo Uniaxial Data
Q. | ° = -0/
5 1.0 N 2 46,=0 [dg,#0
e - & 3¢

- (o)
¢ [ c

- S
— 0.5 o E 2 -
& 5« r ° Uniaxial Data 5
29 L dg,=0,dG,7#0 .
wo L
o 1 1 1 1 1 1 | 1

(o] 0.5 1.0

€2max/ €20 | TS R Wt
. . 0.5 1.0 1.5
Fig. 19. Plastic flow rate due to the 0
ezmax/ﬁzo

increment of principal compressive and

tensile stresses Fig. 20. Direction of incremental

plastic flow when the increments of the
principal compressive and tensile stress
are applied respectively.

The direction of the incremental plastic flow is given by the normality rule in the
theory of plasticity. If the isotropic plastic yield function is assumed, the unique relation-
ship between the direction of plastic flow and the direction of stress vector is derived
from the formulation of the normality rule in the theory of plasticity. According to this
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theory, value of D must be constant, because the stress direction is uniaxial and always
constant. This assumption is not applicable to express the characteristics of the direction
of concrete plastic deformation.

2.3.3 Characteristics of plastic deformation under compression-tension stresses

The stress paths and stress-strain relationship of tensile loading test with constant
principal compressive stress are shown in Fig. 21. When the compressive strain level is
low, the increase of tensile principal stress does not influence the plastic deformation so
much. But, under the condition where the principal compressive stress is near the peak
stress fc in compression, the increase of principal tensile stress normal to the principal
compressive stress direction introduces the more rapid rate of the plastic deformation
rather than the increase of principal compressive stress under uniaxial stress state.

L L1.0 ®2/fc

| )

TN e

Stress-strain diagram including biaxial
unloading paths.

TTVT T 1T T 117171

1.0 c,'/f‘ -

This deformational characteristic is mathematically and quantitatively represented
by the plastic flow rate dé s/ do; (i=1,2) as shown in Fig. 19. When the compressive level
€2 max/ €20 exceeds 0.6, the increasing rate of plasticity due to the increment of principal
tensile stress, J¢,,s/do, increases rapidly, and is about two times of the plastic flow rate
by the increment of the principal compressive stress, déprs /dg‘z. It means that under the
high compression-tension stress state, the increment of the principal tensile stress acceler-
ates the plastic deformation more rapidly than the increment of the principal compressive
stress.

The direction of the incremental plastic flow is shown in Fig. 20. When the com-
pressive stress is low, the direction of the plastic flow tilts in the direction normal to the
principal compressive stress, therefore, the value of D becomes larger than the value in
the case of the uniaxial compressive stress state. According to the increase of the com-
pressive strain level, the direction of the plastic flow gradually approaches the direction of
compressive principal stress, and the value of D decreases.
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Stress paths of compression tests under constant tensile stress and stress-strain
diagrams are shown in Fig. 22. In this type of loading, the increment of compressive stress
advances the plastic deformation when the constant tensile stress level is higher, and the
rate of plastic flow by compression becomes larger.

2.4 Cracking strength of concrete

In the finite element analysis, the criterion of cracking under biaxial stress state has
been often indicated by stresses. This type of criterion is usually formulated by using the

2,149,189 According to the

biaxial data of the proportional monotonic loading tests
test results in Section 2.2.5, cracking criterion can be certainly indicated by stress and is
independent of the stress paths in case of the monotonic loading conditions.

But, it is not reasonable to use the cracking criterion which was derived from the
data of monotonic loading condition for analyses including the stress hysteresis such as
unloading and cyclic loading. Actually, it is easily imagined that the tensile strength of
concrete which has been compressed to the strain softening level is nearly zero. In order
to investigate the effect of the stress hySteresis on the tensile strength and the stiffness, an
uniaxial tensile stress was applied to the concrete specimens which have the experiences
of being compressed in the direction normal to the uniaxial tensile stress, and strains were
measured and shown in Fig, 23.

The uniaxial tensile stiffness E; decreases as the maximum compressive strain in-
creases. The stress points when the crack forms are plotted on the stress space as shown
in Fig. 24. The uniaxial tensile strength of concrete with the compression history exists
‘not on the cracking failure envelope of monotonic loading but inside the envelope. The
cracking criterion indicated by stress is not enough to take the effect of the stress history
into account. Accordingly, failure criterion of cracking mode must include a parameter
which represents the effect of stress paths or strain ones.
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The relationship between the principal tensile stress at cracking and the maximum
value of the principal compressive strain at cracking under the compression-tension stress
state is shown in Fig. 25. In case of the monotonic loading condition, the maximum value
of the principal compressive strain, €2 max, is equal to the total compressive strain, €2, at
cracking. At the cracking type of failure there exists unique relationship between the
principal tensile stress and maximum level of principal compressive strain which repre-
sents the deformational history of concrete. This experimental results suggests the possi-
bility to get the cracking criterion applicable to all the case of stress or strain hysteresis.

2.5 Concluding témarks

As the biaxial strains were precisely measured under various types of biaxial loadings
with unloading paths, it became possible to obtain the following characteristics of con-
crete directly from experimental data.

(1) Biaxial stiffnesses and Poisson’s ratios

As the previously reported biaxial loading tests were mainly carried out under mono-
tonic proportional loading hysteresis, we could not determine the biaxial stiffness matrix
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quantitatively. However, by adopting non-proportional stress paths repQrted in this
chapter, the components of tangential stiffness matrix, say biaxial stiffnesses E;, E, and
corresponding Poisson’s ratios ¥y 5, V53, could be quantitavely obtained.

(2) Anisotropy of concrete

Since an early age, the anisotropic behavior of concrete has been discussed and
idealized in using some simple assumptions. However, this anisotropy has not been experi-
mentally investigated, therefore, we had no data to verify the constitutive models con-
cerning anisotropy of concrete. But, as the biaxial stiffness matrix could be quantitatively
investigated, the degrees of anisotropy and non-symmetry of stiffness could be indicated
by the ratio of these stiffnesses and the ratio of diagonal components of stiffness matrix.

(3) Plasticity of concrete

In order to formulate the effect of strain hysteresis on the stress-strain relationship, it
is important to follow the plastic deformation in biaxial stress conditions. But, in spite of
the wide applications of the theory of plasticity to the engineering problems, the plastic
flow rate and its direction under biaxial stress states have not been investigated at all.
Unloading stress paths under biaxial stress states were introduced in this experimental
program, and biaxial plastic strains were for the first time measured. Using biaxial plastic
strains, we can express the plastic deformations.

These deformational behaviors of concrete have been qualitatively supposed and dis-
cussed by researchers of concrete engineering but, for the first time quantitatively made
clear by using the stress paths. Moreover, the following new results were quantitatively
obtained in this research. ’

(4) Under the compression-tension stress state, the behavior of concrete is isotropic
and independent of the stress paths when the deformational level is low. As the level of
deformation increases, the tensile stiffness in the direction of the tensile principal stress
becomes smaller than the compressive stiffness in the direction normal to the principal
tensile stress, and the tangential stiffness matrix gradually becomes non-symmetric and
anisotropic.

(5) In the monotonic loading condition under the compression-tension stress state,
there exists unique relationship between the biaxial stresses and strains. Both the failure
envelopes indicated by stresses and the one indicated by strains are not influenced by the
stress paths. '

(6) Under high compression-tension stress state, the increment of principal tensile
stress accelerates the plastic deformation more effectively than that of principal com-
pressive stress, and the plastic strain in the direction of principal tensile stress more
rapidly flows than that in the direction of principal compressive stress.

(7) The failure mode in the compression-tension stress states can be classified into
the cracking mode and the crushing mode. In the cracking mode, a few brittle cracks
appeared and the tensile stress could not be sustained. In the crushing mode, the strain-
softening behavior was observed and both the principal stresses could not be kept con-
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stant. The mode of failure is not also influenced by the stress paths in the monotonic
loading condition.

(8) The uniaxial tensile strength is influenced by the loading hysteresis. The strength
and the tensile stiffness decrease rapidly when a large compressive stress was applied to the
concrete.

The formulations of these characteristics of concrete and derivation of constitutive
laws are-discussed in the next chapters.

3. Formulation of Constitutive Equation based on the Elasto-Plastic and Fracture Model

In Chapter 2, the complicated nonlinear behaviors of concrete were quantitatively
investigated by the newly adopted experimental approach. From an engineering point of
view, the constitutive equations which predict the stress véctor{ .;} under arbitrary strain
paths must be formulated for the nonlinear finite element analysis. In order to formulate
the stress vector, this paper proposes the following two types of constitutive equations
based on the investigated nonlinear behaviors of concrete, the elasto-plastic and fracture
constitutive equation which describes the degree of the stress vector and the flow rules
which predict the direction of the stress vector (Chapter 4) under arbitrary strain
hysteresis.

In this chapter, the constitutive equation to predict the invariant of the stress vector
(“length” of the vector) is proposed. In formulating this type of equation, the macro-
scopic deformational characteristics, such as the difference of stress-strain curves between
the monotonic loading and unloading stress paths, the progress of the plastic deforma-
tion, strain hardening and softening behaviors and the change of stiffness in unloading
and reloading (effect of the fracture defined later) are taken into account.

3.1 The concepts of plasticity and fracture, and the definition of reversible and

irreversible process

As shown in Fig. 17, the relationship between the uniaxial compressive stress and
strain is nonlinear, even in the low compressive stress state. When the applied compressive
stress is unloaded, the incremental stress-strain relationship becomes practically linear and
average stiffness (or secant stiffness) gradually decreases as the maximum value of com-
pressive strain becomes large. These nonlinearities are considered to appear because a part
of the strain energy given by the external load may be consumed. In this report, authors
define the plasticity as the change of the plastic strain. The plastic strain is the total strain
which corresponds to the zero stress state. The plasticity can be taken up first as an index
which represents the “degree” of the accumulated damage in concrete. It is imagined that
the plasticity originates.from the collapse of fine voids of concrete, dislocation of the
cement paste, the mechanical slip between coarse aggregates and mortar.
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If the concrete nonlinearity is explained only by the plasticity, the stiffness must be
constant and equal to the initial stiffness when the plastic strains do not change, such as,
in the unloading process. This model is successful in expressing the macroscopic deforma-
tional behaviors of metals. This classical theory of plasticity explains the degree of plas-
ticity with a “‘state value” named the effective or equivalent plastic strain and introduces
the nonlinearity in the constitutive laws by giving the nonlinear relationship between
the effective plastic strain and the degree of externally applied stress named the effective
stress ' 1) (plastic hardening rule). This process is illustrated in Fig. 26.

stress

l l l Gemax

stress

slip

()

slip
-

Fig. 26.
Modelling of strain-hardening plasticity.

stress

3)
(&) 2 3

strain

However, in the case of concrete, the unloading stiffness is not constant. Accord-
ingly, above and beyond the plasticity, it is necessary to take another factor which repre-
sents the concrete nonlinearity and the degree of the accumulated mechanical damage
into consideration. There must exist another factor which represents the damage of con-
crete such as the appearance of microcracking, microscopic buckling and collapse of
mortar and aggregates. These phenomena are characteristic of concrete as a composite
material.

It is considered that these nonlinear factors can be mechanically explained with the
concept of the disappearances of a volume of the constituent material of concrete which
has the ability to reserve the elastic strain energy. In this paper, this type of damage in
concrete is defined as “fracture”. Authors consider that the nonlinearity of concrete can
be macroscopically explained with the concept of the plasticity and the fracture. .

In the following sections, symbol d and A mean the differentiation (infinite value)
and difference (finite value) respectively. Index T means the transformation of matrix.

3.2 Basic model of deformation for concrete

In this report, authors adopt the approach of formulation which connects the con-
cepts of the plasticity and the fracture quantitatively with the relationship between
biaxial stresses and strains. The following basic models (conceptual models) concerning
the stress-strain relationship are assumed.

(1) Concrete is modelled to be constructed by some constituent elements as shown
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in Fig. 27. Symbols E,, E, E., E S, S. indicate the idealized values which represent the
degrees of the elastic stiffness of each constituent elemnent, plastic strain, elastic strain,
total strain, total stress and element stress respectively. These elements behave as the
strain-hardening material as shown in Fig. 26 and are located in parallel. Therefore, the
plastic strain level E, is uniquely determined by the maximum stress level of each ele-
ment ‘S, max’. The elastic spring of each constituent element represents the area which
reserves the strain energy reversibly. The Z-direction in Fig. 27 corresponds to the direc-

tion normal to the biaxial plane stresses.

Eo E

— ()]

Fig. 27. Elasto-plastic and fracture model for concrete.

— ()} — (iv) ‘

(0]

(2) Each constituent element loses its ability to support stress when the applied
stress level of each element S. in Fig. 27 reaches its fracture strength. This assumption
represents the appearance of microcracking and local buckling. Accordingly, the fractured
elements do not reserve the strain energy at all. This process is the irreversible one.

(3) The fracture strength of constituent elements " is not constant but has a
strength distribution P as shown in Fig. 28. Pdf indicates the ratio of elements whose
fracture strengths exist between f and f+df. This assumption represents the distribution of
material quality in concrete.

Fig. 28.
Fracture strength distribution of
constituent elements.

Semax
f Strength of Constituent Element

o Probability of Fracturing
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The deformational behaviors of concrete are derived from the above assumptions as
follows and illustrated in Fig. 27. (I)—(IV). ‘

(I) When the deformation level is low, the element stress level is small. Accordingly,
the plasticity and the fracture proceed very little. As a result, the stress-strain relationship
becomes almost linear.

(II) In this model, the stress-strain relationship is generally explained as follows.
According to the assumption (1), element stress level is

Se = Eo(E_Ep) =FE, E. (8)
where F = E.+E»

From the assumption, the ratio of fractured constituent elements is
se max .
n = '/; P(f)df " Semax = EO(Emax_‘EP) = Eo Eecmax ®

where S, max, Emaxs E. max: maximum values of element stress, total strain and elastic
strain level in the stress and strain hysteresis of deformed concrete.
According to the assumption (1), the total stress level of concrete as a composite is

Sem

S =(1—mSe == [ ™ P(f)df )EE—Es)

= KE(E—E») (10-1)

5e max
K=1- f P(f)df (10-2)

From the definition, the value of K means the ratio of constituent elements which main-
tain the abilities to support stress. At an initial condition, the value of K is equal to unity.

(III) In this model, the strain-softening behavior is unifiedly explained as follows.
Under the high deformation level, as the plastic strain proceeds, the element stress level
becomes large due to the strain-hardening as shown in Fig. 26. As a result, the fracture
proceeds rapidly. The reduction of the total stress due to the fracture exceeds the increase
of the element stress due to the plastic strain-hardening, therefore, the total stress level as
a composite gradually decreases in appearance.

(IV) The unloading process is systematically modelled as follows. If the applied
stresses are unloaded, element stress level decreases and the plasticity and fracture does
not proceed according to the assumptions (1) and (3). The stress-strain relationship has
the same mathematical form as Eq.(10), but in this case, the maximum elastic strain level
E.max is larger than the elastic strain level E,. Therefore, the idealized stress-strain rela-
tion in Eq.(10) becomes linear and its stiffness E, K is constant. In other words, value of
K indicates the ratio of the unloading linear stiffness to the initial one. The effect of the

—206—



K. Maekawa and H. OxaAMURA

fracture appears directly in the decrease of the unloading stiffness, accordinly, K is the
parameter to represent the degree of the fracture and defined as “fracture parameter”.

From a macroscopic point of view, these idealized relationship can describe the
behavior of concrete qualitatively with the unified philosophy. Therefore, laws derived
from the concepts of the fracture and the plasticity are considered to be effective for
constitutive model of concrete. It is implicitly assumed that the degree of the plasticity
and the fracture has one-to-one relationship because the plastic strain level and fracture
parameter are uniquely determined by the element stress level.

- In this modelling, the stress-strain relationship of unloading process is idealized as
linear in spite of the nonlinearity of actual behavior under high strain levels. This non-
linearity of concrete is an important factor in analyzing reinforced concrete structures
under large and cyclic deformations. However, in this type of analysis, the modelling of
time-dependent deformational behaviors of concrete and the effect of cyclic loading
hysteresis is also important. Therefore, authors discuss the unloading nonlinearity of con-
crete with the time-dependent problems in other papers. In this paper, the process where
the plasticity and the fracture do not proceed is defined as reversible process, and the
process where the plastic strain changes and the fracture proceeds and damage is accumu-
lated in concrete as irreversible process.

3.3 State values to indicate the damage in concrete mechanics

Authors considered that equivalent plastic strain E, and fracture parameter K are
quantitatively introduced in the constitutive model as state values for the plasticity and
the fracture. As these parameters represent the state of damage in concrete, they must be
defined as scalar values which are independent of the transformation of coordinate

system, and which take the effect of strain paths into account.

Strain Path
3 . :
(0" Vi Direction of i Direction of
=X \ Projecti Pr
o —
Y Gz O On £ Em E1y

Fig. 29. Stress and strain paths under the plane stress condition.
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The stress paths in the stress space and corresponding strain paths in the strain space
in case of the plane stress condition are demonstrated in Fig. 29. The stress point moves
on the limited plane in 6D (six dimensional) stress tensorial space where the stress com-
ponents oz are all equal to zero (i=x,y,z), and the corresponding strain point (state)
moves generally in 6D total strain tensorial space. But, in the plane stress constitutive
equations, the strain components €zz;, e.rand €zy do not explicitiy appear. In other
words, the plane stress constitutive equation is the mathematical expression which des-
cribes the relations between the position of stress point in the stress tensorial space and
the projecting position of strain point on the plane where strain components ¢; are equal
to zero. Considering the lack of stresses and strains’ data under 3D condition, constitutive
equations in this paper express the strain state with strain tensors €z, €yy and exy as
illustrated in Fig. 29.

3.3.1 Equivalent stress

The equivalent stress S, which indicates the level of applied stress under plane stress
conditions, is introduced. The mean stress do and the deviatoric stress 7, can be defined
as stress invariants which are independent of the coordinate transformation.

Go= TULO = sy oaton | (an
_ 2 — 2
f0=y/2(25%) = /7, e+ (2 0m) (12)
40 02 Stress State 0% - & —
___.:';?\\ ‘ Tozo l OCo=0
df:l s o,

\ »
Fig. 30. Mean and deviatoric stress Fig. 31. Direction of fracture and stress
components.

coordinates.

The geometrical relationship between the stress invariant space (do, o) and principal
stress space (o1, o2 ) is illustrated in Fig. 30. The mean stress represents the average stress
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level in the plane stress condition and has an effect to introduce the fracture normal to
the principal stress directions, and the deviatoric stress has an effect to introduce the in-
plane fracture as shown in Fig. 31.

Let us now consider the isotropic stress state where the deviatoric stress is zero. In
this condition, shear stress component Txy is equal to zero and in-plane normal stress

0o . .
components ozx and gyy are equal to—\/%m any coordinate system. It may be reasonable

that the equivalent stress be in proportion to the mean stress.
In the pure shear stress condition, that is, the mean stress is zero where the normal
stress components oz, and oy, are all equal to zero and the shear stress component |z- Iyl

is equal to% at a certain coordinate system, it will be also reasonable to define the
equivalent stress as proportional to the deviatoric stress.

In the general case where 60%0, 700, the equivalent stress should be evaluated to be
larger than the stress states (Go, 0) and (0, 7o). From these considerations, the equivalent
stress S wés defined in the form

S = v(ao_'o)2+(b‘[_'o)2 (13)

where coefficients a and b indicate the contribution level of the mean stress and the
deviatoric stress to the value of S.

According to Eq.(13), the equivalent stress has the conceptual ‘“length” of stress
vector {g'ij} or distance between the origin and the stress point in the stress space (See
Fig. 30.). The envelope which corresponds to the set of constant equivalent stress points
on ¢y — T, space has an elliptical shape. The stress states at the peak conditions with the
crushing mode(See Section 2.2.5.) may be considered to have the same stress level respec-
tively. Because, these peak stress points are considered to be in the common condition,
where the effect of plastic strain-hardening balances the effect of the fracture so that the
apparent tangent stiffness becomes zero (See Section 3.2.). Moreover in the monotonic
loading condition, the failure envelope indicated by stresses is little influenced by the
stress paths (See Section 2.2.5.).

The data of peak stresses failed in crushing and strain-softening mode on 60— 7,
space are shown in Fig. 15 and Fig. 32. Coefficients @ and p were determined so that the
envelope where the values of the equivalent stress are constant may envelope those peak
data with acceptable accuracy as shown in Fig. 32, where

a=060/fc b=130/fc ' (14)

Using Eq.(13) with Eq.(14), the stress level can be evaluated in all the biaxial stress states.
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Fig. 32. Failure envelope and the equivalent stress with reported data[2],[16].

3.3.2 Strain measure function
The total strain vector { gij} is divided into the elastic and plastic strain vectors in the

form

{eis} = {eeist Hepis) (15)

where €.;; : elastic strain tensor’ep;; - plastic strain tensor. (Green’s tensorial expression is

adopted for the strain tensors.)

This research deals with the short-time strains and the time dependent deformations
are ignored. Accordingly, delayed elastic and delayed plastic strains in the short-time
loading are included in elastic and plastic strains in Eq.(15).

In order to formulate the degrees of elastic, plastic and total strain vectors, authors
define the strain measure function with the same procedure as the equivalent stress by

F = F(85) = V/(céo)*+(dy.)

— 2
€0 = ﬁsurx'zi'b\yy, ,)',0 — ﬁ\/(axxz 3yy> +8§:y (16)

where §;;: 2D tensor’ &y, 7,: the mean and deviatoric components of tensor Oij
The coefficients ¢ and d in Eq.(16) can be determined as

¢ = 0.62/e20 d = 0.98/¢e20 (17)

by the same method as in the case of coefficients a and b, because the failure envelope
representing the crushing or strain softening mode on the total strain space as shown in
Figs. 16 and 33 seems not to be influenced by the strain paths under monotonic loading

(See Section 2.2.5.).
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Fig. 33. Failure envelope and the strain measure function with reported data[2],[16].

3.3.3 Equivalent elastic strain

When the deformation is limited only in the reversible process where the plastic
strain is idealized to be constant, the stress and elastic strain relationship is likely to be
linear. Accordingly, the biaxial stiffnesses and Poisson’s ratios in the reversible process can
be calculated by Eq.(2) and Eq.(3) with the experimental data in Section 2.3.

The ratio of the biaxial stiffnesses under the uniaxial stress conditions is approxi-
mately equal to unity as shown in Fig. 34, therefore, the isotropic stiffness in the
reversible process can be assumed within acceptable accuracy. The ratio of the diagonal
components in the stiffness matrix E,vi12/Ezv21 (See Section 2.2.), is approximately

equal to unity at any strain level as shown in Fig. 35.
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Fig. 34. Ratio of the biaxial stiffnesses in  reversible process.
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Fig. 35. Symmetry of stiffness matrix in reversible process.

These results as shown in Fig. 34 and Fig. 35 indicate that the stiffness matrix in the
reversible process, in other word, the secant stiffness matrix between total stresses and
elastic strains is symmetric and isotropic, and that the relationship between stresses and
elastic strains do not depend on the coordinate transformation. Then, as the relationship
between stress and elastic strain is not influenced by the strain paths, the equivalent
elastic strain E¢ which represents the degree of elastic deformation can be described by
the integrated form including the strain invariant parameters as in case of the equivalent
stress. Therefore, the definition of equivalent elastic strain is

Ee = F(8; = €eis) = F(aijlaij = g4~ €pij) (18)

The value of the formulated equivalent elastic strain in Eq.(18) is not dependent on the
effects of strain paths but uniquely determined by the update elastic strains.

Let us now consider the criterion of reversible and irreversible processes. According
to the basic model of deformation, the yield criterion of concrete as the composite
material is equivalent to the yield criterion of each constituent element. From the theory
of plasticity, the yield criterion, in other words, the irreversible criterion should be formu-
lated as Eq.(19) with the element stress g.;; and the loading (or yield) function of each
const_ituent element Q in the form

Q(geij) = O'.emax(Ep) aa_Q dGei; > 0 (19)

Oeij

The maximum stress level of constituent element, &e max, has a meaning of the plastic
potential which is determined by the effective plastic strain in the theory of plasticity.
Gei; and Q are the imaginary values and cannot be measured directly from experiments.
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However, the value of the plastic potential of each constituent element is equivalent to
the maximum value of element stress level in this elasto-plastic and fracture model, there-
fore, using Eq.(9) we find

Gemax = Semax = Fo Ee max (20)

Similarly, loading function Q is theoretically indicated by the function which formulates
the value of element stress level S,, where

Q(Geis) = Se = Eo Ee(€eis) \ 1)

Substituting Eqs.(20) and (21) into Eq.(19), as the irreversible criterion of elasto-plastic
and fracture model, we have

Ee(gij = Eeij) = FEe¢ max (22-1)
_ dF. -
dEe = 30105 = Eeud68ij >0 (22-2)

The definition of irreversible process in Eq.(22) gives the envelope on the strain space
mathematically as the boundary of reversible area (Reversible area is defined as the elastic
area on the strain space where the plasticity and the fracture do not proceed.). This
boundary expands and kinematically shifts due to the strain-hardening in the strain space
as illustrated in Fig. 36.

T8

Shifted and Expanded
Boundary of Elasticity

€eij
! ‘ Fig. 36.
2 T3 £ Kinematic shift and expansion of
1 . & T2 boundary of rerversible area (elasticity
0 Irreversible Process -T5 , T7-T8 boundary).

————— Reversible Process T5-T7

In order to confirm the applicability of irreversible criterion by Eq.(22), three types
of stress paths as shown in Fig. 37 — Fig. 39 were applied to concrete. Stress and strain
paths under uniaxial compressive stress condition are shown in Fig. 37. The stress and
strain paths when the tensile principal stress was applied under constant principal com-

—213—



The Deformational Behavior and Constitutive Equation of Concrete

pressive stress are shown in Fig. 38. In Fig. 39 are shown the strain path corresponding to
the stress path including the rotation of the direction of the maximum principal stress.
The incremental stress-strain relationships in the reversible area (E.< E.pax) are

Ee=0.85 /

Fig. 37. Biaxial strain path under uniaxial cyclic compressive loading.
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Fig. 38. Biaxial strain path under compression-tension stress state.
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Fig. 39. Biaxial strain path under bi-directional cyclic loading.
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practically linear and, when the strain state reaches and passes the reversible boundary
E.=E,max (in the irreversible process), the nonlinearity in stressstrain relationship
appears, and the plastic strains flow and the plastic potential expands and shifts as shown
in Fig. 37 — Fig. 39. These experimental results verify that the definition of the equiva-
lent elastic strain is a reasonable one for the index of elastic deformation.

3.3.4 Equivalent plastic strain

The equivalent plastic strain £, should be given so as to represent the level of plastic
deformation with mechanically reasonable definition. The plastic strains are influenced
by the stress and strain paths, therefore, the equivalent plastic strain cannot be defined
only by the integrated plastic strain €pi; in the total format. The effect of the strain paths
must be taken into consideration in the definition of the equivalent plastic strain. From
the basic model in Fig. 27, the plastic deformation of concrete composite is equal to the
plastic one of each constituent element. In the classical theory of plasticity, there are two
types of definitions to evaluate the degree of plasticity.

In strain hardening rule,

Epis = fde_pzs, dEpis = V' depij depij (23)
In work hardening rule,

- _ _ _ Oeij

Eptw = fdeptw, d€pzw = E‘dEm'j (24)

where €p0, €ps are equivalent or effective strains. .

At first, let us now consider the strain hardening formulation. The effective plastic
strain of the strain hardening rule indicates the total tracing length of the plastic strains
on the strain space. The values of &p;scalculated by Eq.(23) in the plane stress condition
are shown in Fig. 19, where the increasing rate of &, to the increment of uniaxial com-
pressive stress and that of €psto the increment of the tensile principal stress which was
applied in the direction normal to the uniaxial compressive stress are given.

The strain hardening rule in the theory of plasticity requires the one-to-one relation-
ship between the effective plastic strain and element stress level S,max (or maximum
value of the equivalent elastic strain E,max, because E.pax is in proportion to S,max.) in
all the cases of stress and strain paths. The calculated values of plastic flow rate using the
data in Fig. 19 are shown in Fig. 40. There exists large difference of the plastic flow rate
between the uniaxial stress and compression-tension stress states. Therefore, when the
effective plastic strain &, is used for the index of plasticity, it is difficult to formulate
this characteristic of plastic deformation with the unified approach such as the strain-
hardening rule.
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This rapid plastic flow advanced by the increment of the tensile stress (See Section
2.3.3.) is characteristic of concrete and is considered to be introduced by the fracture due
to the extension of microcrackings in the direction normal to the tensile stress. Therefore,
it is not physically reasonable to expect that the fracture due to the extension of micro-
crackings introduces the strain-hardening.

Let us now consider the case of the work hardening formulation. The definition of
the effective plastic strain e€pw in Eq.(24) evaluates the value of the plastic index as
smaller in case of the high compression-low tension stress state. Because, if the applied
stress is low, the plastic strain work is small even when the larger plastic deformation
proceeds. Accordingly, this work-hardening rule does not evaluate the effect of the plastic
deformation which is introduced by the fracture as by-product and is considered to be
reasonable in this deformational basic model. However, the stress of each constituent
element de;; is the theoretical value and is not directly measured by experiments.

The formulation of the work hardening plasticity cannot be directly applied to the
concrete including the nonlinear factor of the fracture. Accordingly, a new definition
which evaluates the plasticity must be introduced for the elasto-plastic and fracture
model. Defining the increment of the equivalent plastic strain by the inner product of

oF

incremental plastic strain vector and the strain measure vector defined as {————

38 Oi =

eel-j} which is normal to the boundary of the reversible area, we have

Eo= [dEn  dE, =2 -depis, F = E.

- 0010 = €eis 0ij = €eij
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_ 0o = a)’o < 0€o a'}’o)
SF :C€o 35u+d 058;, _ Eo Cansu'Fd 033,J
00105 = €eis F Oy = €eij E.E. |’5'ii = €eyj
(Eo E.)dE, = Eo(Ceo S+ dy 3)70) ~de pi; (25)
0 fe)alip FENRISLLFT | N

Compared with Eq.(24), the first term of the right hand side of Eq.(25) corresponds to
the constituent elements’ stresses &,;;.
In another form, the increment of equivalent plastic strain is

cos fo = "3%15

where, 0, represents the angle between strain measure vector and incremental plastic

N de pi; dE p1s*COS Bo (26)

8u=seu|

- " ED

Sy=¢ey

strain vector. The equivalent plastic strain can be also understood to be the modification
of the effective plastic strain in the strain hardening rule.

3.3.5 Equivalent total strain

Equivalent total strain £, which represents the degree of the total strain vector{ eih
should be given by the summation of the equivalent elastic and plastic strains from the
basic model of deformation as follows.

By substituting Eqs.(22) and (25) into Eq.(27), the following incremental equations
concerning the equivalent total strain are obtained.
In the reversible process, de p:;; =0, then

dE = dE.+dE»

_ oF
- aaz’j

‘(dsu deﬂw) aF

Sg=€ey aau dEz‘j (28)

Sy=€ey

where E= E, + E, S E.max + E, = Emax (reversible criterion)

In irreversible process, de p:; %0, then

oF oF

dE = dEe+dEp == 835,‘ %:ew(dGu dep”)+88,, su= ewa’s‘pij
_dF g
= oultu-en de i (29)
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where dE = dE. + dE, > 0 (30)

and E = E. + E, = E.qnay + E, = Eqax (irreversible criterion).

The equivalent total strain is calculated by the unique equation without classification
between the reversible and irreversible processes. The criterion of reversible and irrevers-
ible processes is also formulated by the equivalent total strain with simple forms as
Eq.(29) and Eq.(30). This equivalent total strain is formulated by the total strain tensors,
therefore, this criterion can be also used in the strain softening area, where the classical
theory of plasticity cannot be applied. It is very useful in the nonlinear finite element
procedure.

The equivalent total strain is experimentally calculated by

E =234E

AFE = %A&j = F(846:5 = e+ deij—€pij)

—F(Si,-l&j = Eij—‘EPz'j) (31)

3.4 Rate of the plasticity

The state values of E,, E. and E can be calculated from the uniaxial and biaxial tests
by Egs.(18), (27) and (31). The relation between the equivalent plastic strain E, and the
maximum value of the equivalent total strain ‘Emax’ is shown in Fig. 41. The equivalent
plastic strain is considered to be uniquely determined by the maximum value of the
equivalent total strain under arbitrary strain paths including uniaxial and biaxial stress
states. The relationship between the equivalent plastic strain and the maximum level of
the equivalent elastic strain ‘Eqax’ are shown in Fig. 42. There exists unique correlation

e Uniaxial Compression
0.3 [
c o Compression-Tension
‘© £
s g
@ @
o 03 e
Z s
i a
a -
= 021 H
o 2
E g
o
S0 a
w
a
w
| i 1 e n 1
o 0.5 1.0 1.5
Emax  Maximum Equivalent Strain — L
Q 0.5 1.0
Eemax
Fig. 41. Progress of plastic deformation under Fig. 42. Relation between equivalent
biaxial stress states. . elastic and plastic strains.
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between E, and E,max from experiments and E,pyax is proportional to the element
stress level S.max from Eq.(9) in arbitrary loading paths. Therefore, there exists unique
relation between the equivalent plastic strain and the element stress level. This means that
the equivalent plastic strain is suitable for plastic index of the elasto-plastic and fracture
model. In taking the numerical merits of FEM analysis into account, the equivalent
plastic strain is indicated by

Ep = Ep(Emax) = Emax_g7g(1'—exp(_0.35 Emax)) ’ (32)

3.5 Rate of the fracture

From the definition, the fracture parameter K is directly measured from experiments
as the ratio of the secant stiffness in the reversible process to the initial stiffness in the
concept of the elasto plastic and fracture model. The reversible stiffness is verified to be
isotropic in Section 3.3.3, therefore, the fracture parameter is suitable for the state value
of concrete. ‘

The secant stiffness E, K is calculated by Eq.(10) and uniquely determined by the
maximum stress level of each constituent element (See Eq.(10).), therefore, the value of
E,K must be expressed by the function of E, max or Emax such as the definition of the
equivalent plastic strain.

Fracture Parameter

Fig. 43. Progress of fracture under

L . L biaxial stress states,
o 0.5 1.0 1.5
Emax Maximum Equivalent Strain

K

The relationship between the fracture parameter K and maximum equivalent total
strain Emax which were calculated from the biaxial experimental data is shown in
Fig. 43, where exists a unique correlation between X and Epmpax. The mathematical
indication of the fracture parameter is

K = exp(—0.73 Enax(1— exp( —1.25 Emax))) (33)

The existence of the unique relation means the practical applicability of the concepts
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of the plasticity and the fracture to the model of concrete under biaxial stress states. The
strength distribution P can be inversely calculated by solving the definition of the fracture

parameter as

P (Eo(Emax_Ep)> = _(dK/dEmax)/{Eo(l_dEp/dEmax)} (34)

Strength distribution P is numerically obtained from Eq.(34) as shown in Fig. 44. Then,
the coefficient E, is set to be 2.0 so as to make the value of K at Ey3x=0 equal to unity.
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gm i Fig. 44. Calculated fracture strength
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3.6 Relations of the equivalent stress and the equivalent strain

From the basic modellings of deformation, the equivalent stress is

S = EoK(E—Ep) (35)

where K and E, are the functions of Epyax.

The calculated values of S and E from the experiments are plotted together with the
analytical prediction by Eq.(35) in Fig. 45. This equation, which is defined as the elasto-
plastic and fracture constitutive equation, can predict the macroscopic stress-strain

relations with reasonable accuracy.
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The elasto-plastic and fracture constitutive equation can be applied to the reversible
and irreversible processes with the same mathematical format, accordingly, it is very con-
venient to be used in the cyclic loading analysis.

Let us consider the case of biaxial and proportional loading®. In the monotonic
loading condition where the increment of the equivalent total strain is always positive,
the equivalent total strain is practically given in the form

E=f§7i

The derivation of Eq.(36) is explained in Appendix |

dei; = Fey) (36)

Sy=€ess

The experimental relations between the equivalent stress and equivalent strain in
biaxial compressions and the predicted relations by Eq.(35) are shown in Fig. 46. The
monotonic equivalent stress-strain relations can be easily obtained by substituting £ into
Emax in Eq.(35), because the maximum level of the equivalent total strain Ep,y in the
monotonic loading condition is always equal to the update equivalent total strain E. The
integrated form of equivalent total strain in Eq.(36) corresponds to experimental fact of
the path-independency discussed in Section 2.2.5.
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3.7 Concluding remarks

In order to express the investigated deformational behaviors of concrete mathemati-
cally, the concepts of equivalent elastic, plastic and total strains were introduced for
representing the levels of elastic, plastic and total deformations. Moreover, the concept of
“fracture” was newly introduced for indicating the irreversible nonlinear behavior and
formulated by a fracture parameter. ,

Organizing these scalar values, authors succeeded in deriving a simple formed
constitutive equation as follows.

(1) From the experimental results, it was verified that the relationship between
stress and strain under unloading condition in compression - tension stress states can be
expressed by the isotropic and symmetric secant stiffness matrix. Based on this experi-
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mental result, the equivalent elastic strain was introduced for representing the “length”
of the elastic strain vector. By using this equivalent elastic strain, the elasticity criterion
under biaxial stress states could be derived, and its applicability was checked by the
various types of stress paths. With acceptable accuracy, this criterion can be used in any
deformational process even in the strain-softening area, where the theory of plasticity can
not be applied theoretically.

(2) The equivalent plastic strain, the path-dependent scalar invariant, was newly
introduced by modifying the theory of plasticity to express the progress of biaxial plastic
strains.

(3) Together with the equivalent plastic strain, the concept of fracture was intro-
duced to express the nonlinearities of concrete. It is idealized as the dissipation of elastic
strain energy due to the disappearance of a part of volume which constitutes concrete,
such as the local buckling in concrete. In order to formulate the fracture of concrete, the
fracture parameter was defined as a.state value to represent the degree of accumulated
damage in concrete. The fracture parameter is successful in expressing the decrease of
unloading stiffness of concrete.

(4) Organizing the concepts of elasticity, plasticity and fracture, authors succeeded
in deriving the elasto-plastic and fracture constitutive equation which gives the invariant
of stress vector under arbitrary strain paths. The mathematical form of the derived con-
stitutive equation is very simple and easy to be used in the numerical analysis, because it
was formulated by the unified philosophy to concrete mechanics.

4. Formulation of Flow Rule

In Chapter 3, the relation between the degree of the stress vector (equivalent stress)
and the level of the strain vector (equivalent strain) was derived by the unified concept,
named the elasto-plastic and fracture constitutive law. However, if there is no constitutive
equation other than the elasto-plastic and fracture law, the stress vector under an arbi- -
trary strain path can not be determined, because the numbers of the unknown values are
more than those of the constitutive equations which are independent of each other.
Therefore, another constitutive law which formulates the directional correlation between
the stress vector and the strain vector is necessary for deriving the complete plane stress
constitutive equations. In this paper, this type of constitutive law is named as ‘flow rule’.

There exist some flow rules for concrete, such as, normality rule in the theory of
plasticity !9, compression field theory ?” , hypo-elasticity model (See Section 1.) and
so on. However, these modellings are not careful for the anisotropy of concrete under
compression-tension stress state.

The main objective of this section is to formulate the flow rule in taking the
anisotropy of concrete into account.
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4.1 New system of flow rule

Differentiation terms of higher orders are disregarded in formulating flow rule equa-
tions, therefore, formulated differential equations in this paper are first linear differential
ones. Three dimensional plane stress vector {a,vj}'can be expressed by two dimensional
stress invariant vector (0-0, 7o) T and the principal stress direction ‘§° which indicates the
direction of the maximum principal stress to the X-coordinate in the form

o ) 1 cos26
{O'ij}:[c(a)][_} [c(8)] = —=|1—cos28
tols vz 0 sin24

{O'z'j} = (622, Oy ozy)"

6 = T(8: = o:5)

|2\f(8" 3”) + 0%+ Szx— By

T(Bu)— —— 51gn(8f.y)tan 6 =5 37
where, counterclockwise direction is defined positive.
The differentiation of Eq.(37) takes the form
déo d Go
{do'ij} = [C(ﬂ)] +%[C(ﬂ)] dé (38)
dfo ‘Eo

where, the first term of the right side of Eq.(38) represents the increment of the stress
vector caused by the increment of the stress invariant vector under the condition where
the principal stress direction is fixed, say d#=0, and the second term corresponds to the
component of the increment of the stress vector due to the rotation of the principal stress
axis under the constant stress invariants.

In this paper, the system of the flow rule is composed of equations to determine the
direction of the stress invariant vector and an equation to determine the principal stress
direction under an arbitrary strain path. When this mathematical approach is adopted,
the direction of two dimensional stress invariant vector can be formulated in using the
biaxial loading tests with the loading paths of the fixed principal stress direction.

The principal stress direction can be formulated by using the experimental data
which were carried out under the stress conditions with the rotation hysteresis of prin-
cipal axis reported in Section 4.3. This approach can make the experimental loading paths
coincide with the loading hysteresis used in deriving the constitutive equations. More-
over, the experimental data are not used only for determining the material coefficients in
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the constitutive equations already constructed, but can be directly used for deriving the

flow rule.
The previously reported theories as to the flow rulesS), 7), 8), 11), 12), 20) were in

general formulated in considering the simplicity of mathematical treatment and were
difficult to be checked whether these models could describe the behaviors of concrete or
not, because plane stress state is described by three or six dimensional vector. Taking
these problems into account, authors took up this mathematical approach of deriving
the constitutive flow laws, where the plane stress state is described by the two dimen-
sional invariant vector and one dimensional stress direction.

In the first place, the direction of stress invariant vector is formulated under the
loading paths where the principal stress direction remains constant, say 46=0.

In the second place, applicability of flow rule equations in case of the loading paths
with the principal axis rotation are verified by a series of principal stress rotation tests
reported in Section 4.3. )

In the third place, the flow rule equation which predicts the principal stress direction

‘9” is derived from the principal stress rotation tests.

4.2 Direction of stress invariant vector

The objective of this section is to formulate the directional correlation between the
direction of the stress invariant vector (g,, 7,)" and the strain vector {¢;;} under the

loading paths where the principal stress direction remains constant.

4.2.1 Flow rule No. 1 and determination of isotropic stiffness
As the stiffness matrix becomes isotropic and symmetric in the reversible process
(See Section 3.3.3.), we have

A
Ee2 E —y* 1]l o2

According to the isotropic and symmetric form of secant stiffness matrix in Eq.(39),

the relation of the elastic strain vector and the total stress vector does not depend on the
coordinate transformation. Therefore, using Egs.(11), (12) and (16) in any coordinate
system, Eq.(39) becomes

m_ 1{1—,;* 0
70 E* 0 1+V*

This constitutive equation which formulates the directional correlation between the

Go

} ... Flow Rule No. 1
0ij= €eis (40)

7o

stress and elastic strain invariant vector is named as flow rule No. 1 which was experi-

—224—



K. Maekawa and H. OKAMURA

mentally determined.

The flow rule No. 1 includes two parameters, reversible Poisson’s ratio y* and revers-
ible stiffness E*.

The reversible Poisson’s ratio is the most important material parameter+o control the
flow rule No. 1. The relationship between this isotropic Poisson’s ratio in the reversible
process and the experimental maximum value of the equivalent total strain is shown in
Fig. 47. This relationship was obtained from the data of the compression-tension loading
tests under the reversible process (See Chapter 2.).
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When the maximum level of deformation in the strain history is low, say Eqax < 0.5,
the reversible Poisson’s ratio is nearly constant and equal to the initial value. When the
maximum equivalent strain Ey,x exceeds 0.5, it increases linearly.

As shown in Fig. 47, the unique relationship between the reversible Poisson’s ratio
‘y*’ and maximum level of deformation £y is observed in the low level of E 35 How-
ever strictly speaking, the assumption of linearity of stress-strain relations in the reversible
process is not correct and the value of the isotropic Poisson’s ratio ‘y*’ changes a little
within the reversible process, especially when concrete has the hysteresis of large defor-
mation in the strain paths (Epax % 1.0) as shown in Fig. 47. Then, the reversible Poisson’s
ratio is also influenced by equivalent total strain. But, the scattering of the experimen-
tally obtained reversible Poisson’s ratio is small compared with its sensitibity to the
change of the maximum equivalent strain, so that the unique relationship between the
reversible Poisson’s ratio and the maximum equivalent strain is assumed at any time of
the reversible process for simplicity as

V* = VYo EmaxéO.S
v* = vo(1.8( Emax—0.5)+1.0) 0.5< Enax 41)
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where v* <0.5 vo = 0.17

The data of the reversible Poisson’s ratio in case of the large deformation level, such
as Eqmax > 1, are lacking, therefore, for the time being, the value of v* is limited within
0.5 as Eq.(41), where the volume expansion is idealized not to occur in the reversible
process even if the uniaxial compressive stress is applied.

The coefficient E* controls the scalar relations of the stress and elastic strain in-
variant vectors. Therefore, the reversible stiffness £ * can be obtained by solving this flow
rule No. 1 and the elasto-plastic and fracture constitutive equation simultaneously. Sub-
stituting Eq.(40) into Eq.(35), we find that E * must satisfy

S 57)

T—7 % 1157

= K(Emax)EoEe(€0, 70)65=¢es (42)

0 =€eij

Using the function S and F (E.=F) given in Eq.(13) and Eq.(16) respectively, the
reversible stiffness E® can be explicitly solved as

v (c€o)? +(d70)* |

V(7 + ()

EOEeK(Emax) I
S(l—eov*’ 111*)'3-':’:6«.».5 (43-1)

E* =

: EOK(Emax)

0y =¢€eis

E* — J(c(1— v*)60)* +(d(1+y*) %)’
V(aée)*+ (bto)?

Let us now consider the reversible process. In this condition, the plastic strains are

EoK(Emax) (43-2)

idealized constant, that is, the increment of the elastic strains are equal to the increment
of the total strains. Accordingly, when the values of stresses and strains at time t are
known and the values of the total strains at time t+dt are given, the stress invariant
vectors at time ¢ +dt can be calculated by the flow rule No. 1(Eq.(40)). The flow rule
system in the reversible process is constructed only with the Flow rule No. 1.

4.2.2 Flow rule No. 2 and No. 3, and directions of stress and strain invariant vectors in
irreversible process

In the case of the reversible process, the fracture parameter and equivalent plastic
strain are constant and independent of the strain paths, so that, the flow rule No. 1 can
be explicitly formulated in the integrated form of stress and strain vectors. But, in the
case of the irreversible process, the fracture parameter and the equivalent plastic strain are
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not constant, moreover these values are evaluated by the path-integration, therefore, it is
impossible to formulate the flow rule with the integrated stress and strain formats in the
irreversible process.

Accordingly, authors chose the approach to construct the system of the flow rule in
difference forms from the experimental data and next, to generalize the difference
system to the simultaneous system of differential constitutive equations.

Increment of the stress invariant vector (4&,, 47,) in the irreversible process can be
calculated from experimental data using Eq.(11) and Eq.(12). In this process, the finite
difference of stress increments were 2—5% of the uniaxial compressive strength.

c(t+at)

Stress Invariant Space

"g s=Const.
e /’//’ Fig. 48.
- Direction of incremental stress invariant
o vector and component vectors.
(¢] Co

The increment of the stress invariant vector can be divided into two vectors, say,
V1 which does not change the equivalent stress and V3 which increases the value of the
equivalent stress as shown in Fig. 48. The component vector V1 is defined to converge
the tangent vector which touches the envelop at the stress point (g, #¢) where the
equivalent stress S is constant and equal to S(5¢, 7¢{) when the stress increment be-
comes infinitely small. V7 is defined as the component vector at point B on this envelope
as shown in Fig. 48. In this paper, this dividing rule of stress invariant vector is named-as
flow rule No. 2.

The mathematical definition of the flow rule No. 2 can be written in the form

46, A6 on ¢+ déon
V= = Vit V.= + ai (44-1)
Aty Afon 6+ Adton
) ... Flow Rule No. 2
S(G5+dGon, T4+ dGon) = S(&5, 74) (44-2)

where, the position vector of point B on the stress space is defined as (¢ + dgon, 76+
A7on), accordingly the vector V3 is defined to be parallel to the position vector of point
B. A% is proportional coefficient.

In the biaxial experimental data, incremental stress invariant vector are given values,
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therefore, unknown values 45,,, A7, and AL can be easily and uniquely determined by
solving Eq.(44-1) and Eq.(44-2) simultaneously.
In the irreversible process, the incremental strain invariant vector ( 4¢,, 47%,)” which

indicates the degree of the incremental total strain vector is

&8 = &8y = eeis) (45-1)
76 = 7o(8i = €bis) (45-2)
Aéo = Eo(8i; = ebij+ deii)— €6 (45-3)
470 = 7o(8i; = ety T deu) = 7o (45-4)

Similar to the case of vector V, authors considered to divide the strain invariant
vector X =( 4&,, A)"O)T into component vector X1, which does not change the equivalent
total strain and X2, which increases the value of the equivalent total strain.

If the constitutive equations, which indicate the directional correlations between X1
and V1 and between X2 and V3, are formulated, the system of flow rule is completed

under an arbitrary strain path in the irreversible process.

Strain Invariant Space

c' (tat)

Fig. 49.
Direction of incremental strain invariant
vector and component vectors.

F=Const.

o £ (0 =¢ei)

According to this consideration, it is reasonable to define the component vector X1
as the tangent vector which touches the envelope at point ( &{, 73 ) where the equivalent
strain E is constant, when the strain increment becomes infinitely small as shown in
Fig. 49. The mathematical definition is written as

| déon
— = X1+ X, X. = (46-1)
A)_’o A)—’on
F(el+déon, 7E+A70n) = F(E§, 75) (46-2)

where, the component vector X3 is still unknown.
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Let us now consider the condition where the stress incremental vector V is indicated
only by the component V1. This stress path corresponds to the hysteresis in which the
equi'valent stress remains constant, therefore, the corresponding incremental strain vector
must be divided only with X1 due to Eq.(35). This loading path exists on the boundary of
reversible area whose functional corresponds to the irreversibie criterion in Eq.(30). (This
loading hysteresis is defined as ‘neutral process’). In this case, the flow rule in the irrevers-
ible process must coincide with that in the reversible process (the requirement of continu-
ity condition). Therefore, the directional correlation between stress and strain invariant
vectors in this neutral process must be described by the flow rule No. 1 as

—¢ — — —
€0+ déon o‘(f-f-do‘on

) 0 1+v*

7

1 [1—'1/* O

76+ AFon T4+ Aton

The values of v* and E* in Eq.(47) are determined by Eq.(41) and Eq.(42). From
this continuity condition, authors define to apply the flow rule No. 1 (Eq.(47)) to the
flow rule equation which formulates the directional correlation between the stress com-
ponent vector V1 and the strain component vector X3 not only in this neutral process but
in the general irreversible one.

Accordingly, the strain component vector X1 is calculated from the stress component
vector Vi, and the other component vector X9 can be experimentally obtained by
Eqs.(46-1) and (45). The formulation of the direction of the strain component vector X3
completes the system of flow rule as the directional correlation of total stress and strain
vectors mathematically.

The component vector V3 on the point B in the stress space (Fig. 48) and the cor-
responding strain component vector X3 on the point B’ in the strain space (Fig. 49) are
respectively plotted in each strain level as shown in Fig. 50(a) — Fig. 50(e), where the
coordinate of point B’ is defined as (&¢+d€on, &+ A70n). The arrows in these figures
represent the directions of V9 and X3 respectively, points B4—B6 and B4’—B6’ corres-
pond to the stress and strain points B and B’ in biaxial compression stress states, and

points BI-B3 and BI’-B3’, the compression-tension stress states on the stress and strain

1.0 [e] 01 02 03 04 05 08

o 05
fc =
%/ €0/ €20

(a) S=0.19 Ee=0.098:
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/fc

~To

X2

o 0.5 1.0 1.5 o 5 1.0 1.5

(e) $=0.99 Ee=0.913.

Fig. 50. Direction of component vector X3:

spaces respectively. In the irreversible process at the low equivalent elastic strain levels,
vector X3 is almost parallel to the position vector of B’ (e¢+déon, T+ A7on) atall
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the ratios of the principal stresses (B1-B6, BI’'~B6°).

However, as the equivalent elastic strain level becomes larger, the directions of the
vector X9 become non-parallel to the direction of the position vector B’ as shown in
Fig. 50(c) — 50(e). Then, the following interesting fact is observed that, the extensions of
vectors X3 on B’ converge to the common point Z; on the mean stress axis in biaxial
compression stress states (B4—B6, B4’~B6°), and to the other convergence point Z; in
case of the compression-tension stress state (B1—B3, BI’-B3’).

According to this indication, convergence points Z; and Z; coincide with the origin
on the strain space when X is parallel to the position vector of Point B’. Therefore, the
direction of the vector X3 can be unifiedly formulated using the coordinate values («, )
of these convergence points without any stress component in the form

€_(§+A€on_a »
Xz'= Adm

75‘*’4170'1“‘/?

(48)

Substituting Eq.(48) into Eq.(46-1), we can find the direction of the strain invariant
vector in the irreversible process and flow rule No. 3 is defined by

Ae_on €_cf+A€Ton_a
7(§+A(;on_l8

... Flow Rule No. 3

4Gon

In this newly proposed flow rule system, proportional coefficients m and £ are the
unknown values, which control the “lengths” of stress and strain vectors (See Section 3).
Therefore, the scalar relation of the parameter m and £ should be determined by the
elasto-plastic and fracture constitutive law which formulates the relations between the
scalar invariant vector of the stress and the strain vectors.

Stress increment ===V e{Flow Rule No.2 }%bﬁ H Vgl
{dow;} A
1
1
Flow Rule Flow Rule Elasto~Plastic
No.l No.1l and Fracture
! Equation
[
|
v
Strain increment ——a. x Flow Rule No.3 [ x4 Xz |
{ag;;} ’

—————— : reversible process only
————— : irreversibe process only
: common process

Fig. 51. System of flow rule for predicting the direction of stress invariant vector.
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As a result, the flow rule system to predict the direction of the stress invariant vector
is organized with flow rule equations No. 1 — No. 3 as shown in Fig. 51.

Let us now consider the case where (¢, ) = (0,0). From the flow rule No. 1, No. 2
and No. 3, the isotropic relationship similar to the flow rule No. 1 is also ferived in the
irreversible process as
66+ 460

&5+ 4 (50)

_1,+Am_1_[1“v* 0
TFALE |y 14,0

7é+ 470 7§+ At
which describes the direction of the stress and strain invariant vector at time t+At.
But, when the convergence points Z; and Z; shift from the origin in the strain space,
the isotropic relationship as Eq.(50) in the irreversible process does not hold, but the
anisotropic and non-symmetric matrix of tangent stiffness is derived from the system of
the flow rule (Mathematical derivations of general anisotropic constitutive equations will-
be discussed in Section 4.3.5.). Therefore, the parameters (a, §) represents the degree of
the anisotropy of concrete. When these parameters are nearly zero, the behavior of con-
crete is nearly isotropic, and the larger values of these anisotropy parameters describe the
level of the anisotropic behavior of concrete.

4.2.3 Formulation of the anisotropy

The kinematic shift of these convergence points Z: and Z represents the relatively
large strain in the maximum principal stress direction compared with the strain in the
minimum one, and corresponds to the anisotropy in the large deformational level. The
existence of two convergence points concerning the ratios of the principal stresses reflects
the characteristics of the more anisotropic behavior of concrete under high compression
tension stress state. According to Fig. 52, the anisotropy parameters (&, §) in biaxial
compression stresses are given by

C-T,T-T area

7 — Fig. 52. Formulation of component vector
'—Q—f&/ €o i =cai) X3 and focus points Zc and Zt.
1
(a,B) =(gE./c, 0) (s1)
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The compression-tension convergence point Zi is located on the line between point
Z; and the uniaxial compression point on the envelope where equivalent total strain is
constant. Therefore, the coordinate values of point Z{ on the strain space in biaxial
compression-tension, tension-tension stress states is

—F

(a,B) =|gEc/cth £ ———gEc/c\, h ——
’ 1+y 1=v 2 (52)
\/C2+<1—V* ) \/( Y C) +d

These coefficients g and h which are named as ‘flow rule parameters’ are shown
in Fig. 53, where those coefficients were calculated by the authors’ biaxial test data
(Chapter 2) and Kupfer’s one?. The values of g and k can be formulated with reason-
able accuracy by the equivalent elastic strain as

T T T T T T
o
0.5 —
i 1.of
{ o ® g Ld Y
0.4 == * o — ] v .« .
—_— °s £ .. L .
H ®  bypaper strain gauge o o © s . .
a O by Psl type transducer| Py o ] H
€0.3 Analytical Mods! See —E o .
@ o’ & o %
& : ] & 051
E
'3 0.2 o
-4 w Analytical Modet
H
2 = .
[
0.1 ' . . ‘ . ,
o ] 01 ‘02 03 O04 05 06 07 08
0 fe—et + Ee Equivalent Elastic Strain
X 10
| |
|
R R I

Ee  Equivalent Elastic Strain

Fig. 53. Flow rule parameter (a): for biaxial compression stress states : (b) for compression-tension
stress states.

g=0 E. <0.46
=0.3(2.6 E.—1.2) 0.46 < E.
g=03 (53)
h=0 E.=0.28
=5FE.—14 0.28 < E.
h <09 54)

4.2.4 Differential forms of flow rules
In this section, the linearization of the nonlinear flow rules No. 1 — No. 3 is carried
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out to generalize these flow rule equations mathematically, and the constitutive equation
which predicts the stress invariant vector under general strain paths shall be formulated
by solving these flow rule equations and the previously formulated elasto-plastic and
fracture equation simultaneously. :

The flow rule No. 2 is linearized by disregarding differential terms of higher orders as

i : S ][] [_as
déo dj FrE Go déon Fr)
=[S1] , [S1]= S , = s dj (55)
. 0 _ _ [e)
d'l'o dl 5(‘;; To dTan a_O-:o

where dj, dl : proportional coefficients
[S1] : stress transformation matrix
Similarly, we can write the differential form of the flow rule No. 3 as

dé, dk A
870
= [M] , M]= . ,
d7o dm TS_«) To—# 0= €eis
_ oF
ol | o7
=| oF dk
d}'on d€o Su=con
1 1 0
déo V2 /2

[ } = [D){de ) [D] = (56)
d70 31.1:_8yy ayy_axx 231:1/
2% 2% Yo 18ii=€eis

where, dk, dI : proportional coefficients

[M]  :strain transformation matrix

[D]  : strain matrix
Incremental stress and strain invariant vectors are linearly transformed into the local
coordinate systems which have the origins at (&5, 75) and (€¢, 7) on the stress and
strain space respectively. (dj, /) and (dk, dm) represent the local coordinate values and
two columns of stress and strain transformation matrices are the base vectors of each
coordinate system as shown in Fig. 54.

The flow rule No. 1 at time ¢ +d¢ is described in the differential form
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Stress Invariant Space Strain Invariant Space

tocal Coordinate

A1

o Zc g di=¢e)

Fig. 54. Local coordinates and base vectors on the stress and strain spaces.

§0+d€on

1—1/* O'_(f+d0—'on 7 (57)
70+d70"

Su=cby 1+ v* 76+ dzon

Similarly, the flow rule No. 1 at time t is

1=y

€o —
= - =y
3,;;'—'62,7 1+ )J* To

7o
Therefore, when the neutral loading path is chosen as the differential path, as the general

form of flow rule No. 1 in the irreversible process, we have

d (‘?‘) - d{(35 22 (59)

Eq.(55), Eq.(56) and Eq.(59) are the generalized flow rule equations. Solving these with

(58)

the elasto-plastic and fracture constitutive equation simultaneously, we can get the con-
stitutive equation which gives the stress invariant vector in the form
de
d&o rav
| [[S 1][S 21)[M 1 [D]+[S 1][S 22)[M T [D]]| dey (60)

To
de zy

[521]=[P1 0} [522]:[P1 0
0 P2 0 PB}

where, the process of the mathematical derivation and the functional forms of P1, P2,P3
are given in Appendix II.

4.3 Loading hysteresis including principal axis rotation and flow rule No. 4

The stress invariant vector under an arbitrary strain path can be determined mathe-
matically by Eq.(60), but its applicability has been verified only by the experimental data
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in the loading paths under fixed principal stress direction. The application of Eq.(60) in
the irreversible process to the more general cases including principal axis rotation requires
the following conditions.

(1) The elasto-plastic and fracture constitutive equation is independent of the rota-
tion of the principal stress axis. Similarly, the criterion of the irreversible process is not
influenced by the strain paths of axis rotation.

(2) Flow rules No. 1 — No. 3 hold even when the rotation of the principal axis
occurs, in other words, flow rule parameters & /# and reversible Poisson’s ratio must be
independent of the effect of axis rotation for the more general cases.

In the first place, this section discusses the applicability of the elasto-plastic and
fracture law and the flow rules No. 1 — No. 3 to the case of the principal axis rotation.

In the second place, this section proposes a flow rule which describes the maximum
principal stress direction in the general strain paths. The predicting precision of the prin-
cipal stress direction has not been verified in the previously reported constitutive models
because of lack of experimental data, and because their mathematical forms are in general
not suitable to take the deformational characteristics concerning the direction of the

principal stress axis into the mathematical description.

4.3.1 Experiments

The loading paths including the rotation of the principal stress axis was introduced
by the following method.

(1) Uniaxial compressive stress was monotonically applied to a certain strain level
and unloaded completely (the first loading).

(2) A concrete piece was cut off the uniaxially compressed concrete plate in (1) and
re-shaped as shown in Fig. 55.

02

Y ,capping

cutting line
] thatettets

Fig. 55. Principal axis rotation and coordinate Fig. 56. Method of cutting concrete by splitting.
system.

(3) Uniaxial compressive stress was applied to the cut-off concrete specimen (the

second loading). In this case, the direction of principal stress was different from that in
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the first loading.

Fig. 57. Cut concrete and capped concrete specimens.

Table 2. Specimens and loading program of principal axis rotation tests.

Exp. No. v (deg.) Mix. Type* F¢ (Mpa) €, , (micro) Emax (First)
RT1 15 B -27.4 -2100 0.46
RT2 25 B -27.4 -2180 0.41
RT3 45 B -28.0 -2200 0.46
RT4 65 B —28.0 —-2200 0.46
RTS 15 B -26.9 —2100 0.58
RT6 25 B —-28.0 —2200 0.56
RT7 45 B -26.9 —2200 0.66
RTS8 65 B -27.7 -2200 0.55
RT9 21 A -34.4 : —2350 0.95
RT10 28.4 A -35.1 -2350 0.85
RT11 45 A -34.0 —2350 0.95

* See Table 1

The mixture of concrete plates used is shown in Table 1. Four faces of the cut-off
concrete plates were recapped by the super high early portland cement mortar whose
uniaxial one-day compressive strength was almost equal to the strength of concrete used
as shown in Fig. 55. In the process of cutting, the concrete plate was splitted statically
with round steel bars as shown in Fig. 56. The diamondcutter was not used because it has
the possibility to introduce the extra microcracking by its hard vibrations. The cut con-
crete plates and recapped one are shown in Fig. 57. The same procedures in chapter 2
were applied for elimination of contact friction and for measurement of stress and strains.
In order to check the method of cutting, the uniaxial stress-strain curve was measured
using the cut-off concrete plates from a vergin concrete specimen. The stress-strain

diagram of cut-off concrete practically coincides with that of the original one. The com-
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pressive level at the first loading and rotation angles are summarized in Table 2.

4,3.2 Experimental verifications of elasto-plastic and fracture law and the flow rules
The experimental results of principal axis rotation tests are given as shown in Fig. 58.
The coordinate system used is set as shown in Fig. 55. When the compressive stress was
. reloaded within the maximum experimental stress of the first loading, there exists the
practical linear relationship between the increments of stress and strain even in the
hysteresis including stress axis rotation. However, when the concrete was compressed to
the level of the uniaxial strength, the stress-strain relationship in the reversible process
becomes nonlinear and the peak strength at the second loading decreases due to the effect
of cyclic loading, regardless of the axis rotation. The effect of cyclic loading to the stress-

strain relationships will be discussed in cher papers.
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Fig. 58. Stress-strain diagrams of rotation tests: (a) RT1, (b) RT2, (c) RTS, (d) RT7 and (e) RT9.
The equivalent stress-strain diagrams of the test series in Table 2 are shown in Fig. 59.

Concrete subjected to the loading hysteresis where the maximum equivalent total strain
is approximately 0.46 behaves linearly when the equivalent total strain £ in the second
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loading is smaller than the maximum value of the equivalent total strain Emax, but the
nonlinearity in the diagrams in Fig. 59(a) appears when the value of E exceeds Emax in
the first loading, where this process satisfies the irreversible condition.
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©)
Fig. 59. Equivalent stress-strain relationship of rotation tests: (a) RT1 — RT4, (b) RTS — RTS8,

(c) RT9 — RT11.

From the experimental results, the constitutive equation of the elasto-plastic and
fracture model in Eq.(35) and irreversible criterion in Eq.(30) is successful to predict
these nonlinear behavior of concrete quantitatively. It is observed from these experiments
that the equivalent stress-strain relationship is independent of the hysteresis of principal
stress rotation. '

In case of the loading history where the maximum level of the equivalent total strain
is 0.6, the similar facts are observed from the experiments as shown in Fig. 59(b). When
the high deformation level was applied to concrete, say Emax=0.9, the influence of the
principal axis rotation on the equivalent stress-strain diagrams is observed in Fig. 59(c).
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However, the difference between the experimental data and the predicted values is not so
large to discuss the effect of stress axis rotation, moreover, the experimental data are not
sufficient to formulate this small effect of the hysteresis of stress axis rotation. Accord-
ingly, the elasto-plastic and fracture law can be applied to the nonlinear behavior of
concrete in the general condition including principal axis rotation.

In the next step, let us discuss the applicability of the flow rule equations which
formulate the directional correlation of stress and strain invariant vectors. The relation-
ship between the reversible Poisson’s ratio y* in the second loading and the rotation angle
v are shown in Fig. 60, where the value of the reversible Poisson’s ratio at y=0 is the
predicted one by Eq.(41).
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<
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ot » Fig. 60. o
ac Poisson’s ratios in the reversible
. L , } . ! ) . process under the principal axis
o 10 20 30 40 50 60 70 80 rotation }

Y Rotation Angle (degree)

The Poisson’s ratio in the reversible process seems to be dependent only on the
maximum equivalent total strain Epax, not on the degree of the stress axis rotation.
Therefore, in case of these experiments, the directional relationship between stress and
elastic strain vector also satisfies the flow rule No. 1 with acceptable accuracy.

At any time of loading, the stress condition are under uniaxial stress state, that is, the
direction of the stress invariant vector (45, 47)" is constant and equal to the direction
of the stress position vector (Go, 7o)T (See Section 4.2.2.). Asa result, the component
vector V1 always becomes a zero vector, so that, the corresponding incremental strain

invariant vector (4€,, A47,)” is indicated only by the component vector X2 according to
the definiton of the flow rule No. 3.
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The direction of the vector X3 in the irreversible process is determined by the flow
rule No. 2, or actually by flow rule parameter g. Then, the value of g, when the equivalent
total strain coincides with the maximum level of the equivalent strain in the second load-
ing (E=Epax, irreversible process), are plotted from experimental data in each test as
shown in Fig. 61. The value of g when the rotation angle is zero is the predicted value by
Eq.(53) which was derived from the data with the fixed principal stress direction, say
7=0.

As far as the test results are concerned, the correlation between the rotation angle of
the principal stress direction and the flow rule parameter can not be observed. Within the
range of experiments in this report, it is reasonable to assume that the flow rules No. 1 —
No. 3 can predict the direction of the stress invariant vectors even in case of the stress

axis rotation.

4.3.3 Flow rule No. 4 for the direction of the maximum principal stress

The objective of this section is to find the flow rule No. 4 which determines the angle
of the maximum principal stress direction under arbitrary strain paths. In the case of the
reversible process, the principal stress direction must coincides with that of the elastic
strain, because the secant stiffness matrix in the reversible process is isotropic and sym-
metric. This deformational behavior of concrete is verified by the experimental data (See
Section 3.3.3.). The difference between the principal stress direction 8 and the principal
elastic strain direction 6 are shown in Fig. 62. Here, strain component &;;—¢e5h; was
used for calculating the angle ¢ with the function T in Eq.(37). ¢}); indicates the
plastic strains just before the second loading.
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Fig. 62. The difference between the principal stress direction and the
principal elastic strain direction.

In the reversible process of the second reloading, the increment of plastic strain is
practically equal to zero, so that the plastic strain in the reversible process coincides with
the plastic strain at the beginning of the second loading. Therefore, e represents the
direction of the principal elastic strain. Actually, the deviation of stress and elastic strain
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direction is certainly almost equal to zero.
§—6.=0

§ = 0. = T(8:;; = €ei;) in reversible process '(3))

Differentiating Eq.(61) under the condition where depi; = 0, we obtain

_T| ey T
T 98il0u=¢eei (deys—depis) = 005 SU:eeﬁ.deﬁ (62)

de

On the other hand, the principal direction of total strain does not coincide with that
of the total stress. However, even when the equivalent strain E exceeds Empax in the
irreversible process, the deviatoric direction of principal stress and principal elastic strain
‘) — B¢’ is almost equal to zero (See Fig. 62.). Therefore, the following flow rule which
describes the principal stress direction is derived in the difference forms

— 4t t
0t+4t = T(&-j = Eﬁf _€pij)
or

40 = T(8:;5 = éf’j+A€ij—€faij)— T(0i = efi—ehis) (63)

Linearizing Eq.(63) into the differential equation, we find

oT
dg = T(8:; = Efj_efn'j)‘i‘bafij aﬁ:eeij'deij_ T(8: = ebi—ebij)
_oT e
T 38|05 =¢eis deis

which has the same mathematical form as Eq.(62). Accordingly, authors assume that the
flow rule No. 4 is given by Eq.(62) in all the case of the strain paths. The precision of this
flow rule has been verified in the loading paths where strain moves from the reversible to
the irreversible cases. However, the applicability of flow rule No. 4 is not completely
verified because of the lack of experimental data in the irreversible process where the
principal axis rotates®”>?? . This problem should be sloved by an experimental approach.
The matrix form of flow rule No.4 is

di = [Q]{deij}
[Q] = [sin28, —sin268, —2cos26]/A

A = 2(ceyy— €exz)c0s 20 —2€ czy Sin 26) ' (64)
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4.4 Concluding remarks

From the experimental approach in Chapter 2, the anisotropic behaviors of concrete
were quantitatively made clear in compression-tension stress states. However, previously
reported flow rules do not take the investigated anisotropy into account.

In order to formulate the anisotropy of concrete systematically, four flow rule equa-
tions concerning the directional correlation between stress and strain vectors were newly
derived from the experimental data.

As the reported flow rules are described by 3 or 6 dimensional tensors and con-
structed in taking the simple mathematical treatment into account, it is difficult to verify
their applicability and to include the experimental results into the previously constructed
mathematical frames. Then, authors represented the direction of stress vector by the ratio
of two stress invariants and the direction of the maximum principal stress. ‘

By adopting this type of formulation, it became easy to use experimental data direct-
ly for deriving the mathematical forms as to the stress invariant vectors as follows.

(1) The experimentally investigated isotropic relationship between stress and elastic
strain vectors was mathematically expressed by flow rule No. 1. In this formulation, it
was made clear that the isotropic (reversible) Poissons’s ratio is not constant but changes
under high compression-tension stress states, moreover, influenced by the strain paths. By
adopting the equivalent total strain as the index of strain hysteresis, the flow rule No. 1
could successfully describe the isotropic relationship in reversible process.

(2) The anisotropic behavior of concrete in the irreversible process was systematical-
ly formulated by flow rule No. 2 and No. 3. In these formulations, the anisotropy para-
meters were newly introduced. In using these parameters, it became possible to express
the effect of strain paths on the degree of anisotropy. ‘

(3) Based on the newly developed experimental data on the rotation of principal
stress direction, it is made clear that the direction of principal elastic strain coincides with
that of the principal stress, but the direction of principal total strain does not coincide
with that of principal stress. According to these results, the direction of. principal stress

was formulated by flow rule No. 4.

5. Linearized Differential Equations under Plane Stress State

Linearized plane stress differential equation can be obtained by solving the
constitutive equations derived in Section 4.2 and 4.3 in the matrix forms. In reversible
process, the plastic strain is assumed to remain constant and stress-strain relationship
is described explicitly in the integrated format. Substituting Eq.(40) and Eq.(61) into
Eq.(37), we find
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{o’ij} = [De]{eij“ €Pi.i}

[De] = EV*Z v 1 0 ‘ (65)

where E*, ™ are determined by Eqs.(41),(42).

In the irreversible process, the behavior of concrete is path-depéndent, accordingly,
the plane stress constitutive equations can be formulated in the differential equations.
The effects of strain hysteresis to the stress-strain relationship is introduced mathematic-
ally by the integration paths. Substituting Eq.(60) and Eq.(64) into Eq.(37), we obtain
the stress increments under arbitrary strain changes, where

{doi;} = [DepWde s}
[Dep] = [Dp)+[Df]+[Dr]
[Dp] = [C(OI[S 1][S 22](M ][ D]
[Df] = [C(DI[S 1][S 21][M]'[D]
d Go
[Dr] = lC] |lQ] (66)
dé z
The constructed constitutive law in this paper does not formulate the relations
between the plastic strain and total stress, such as the formulation type of the theory of
plasticity, but between the total strain and total stress. Accordingly, this constitutive
model is classified as a differential total strain theory. In order to proceed the calcula-

tion, the plastic strain must be calculated in each integration step for the next step.
Integrated plastic strain can be easily calculated by

{eris} = {ews}—[Del {o:) 67)

6. Numerical Integration and Experimental Verifications
Generally speaking, the step-by-step integration method of differential equations

with certain time intervals accumulates the numerical errors. Especially, if equations to be
integrated numerically express the high order nonlinear behaviors, the disregarded differ-
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ential terms of higher orders are directly connected with the integration errors, therefore,
the integration intervals should be selected to be as small as possible within the acceptable
calculation cost.

Fortunately, the constitutive equations in this paper were originally formulated in
the nonlinear difference equations, so that, in the nonlinear finite element method, it is
reasonable and desirable not to use the linearized differential equations but to adopt the
original nonlinear difference equations directly derived from the experimental data for
the stress estimation. Moreover, this model is easy to be programmed in the nonlinear
iterative routine such as Newton Raphson Method and Modified Newton Method, which
require the true stress evaluation corresponding to the assumed finite strain increments
in the program. These methods have a merit that the integration error is not accumulated
during the load steps when the true stress is given corresponding to the inputed finite
strain increments.

The process flow how to calculate the stress at t+4¢ with the information of the
values at time t, where o, €%, €pis, E* and Eqax’, is shown in Appendix 1. This type

%) as r-minimum

of calculation method in Appendix III was originally given by Yamada

method. Authors applied this method to the numerical integration of the derived plane

stress constitutive equations.

The material coefficients used in this modelling are compiled as follows.

(1) a b : weight constants which represent the influences of mean and deviatoric
stresses on the equivalent stress function S.

Q2) c,d : weight constants which represent the influences of mean and deviatoric
strains on the strain measure function F .

(3) K(Emax) : fracture parameter which represents the rate of the fracture.

4) E, : equivalent plastic strain which represents the rate of the plastic defor-
mation.

;) v* : Poisson’s ratio which controls the flow rule in the reversible process.

6) («,B) : coordinate values of the convergence points which controls the flow rule

in the irreversible process.

Material parameters (3) and (4) represent the macroscopic behavior of the plasticity
and the fracture. (5) and (6) are the main parameters which contol the flow rules. (1) and
(2) make it possible to apply the basic concept of the plasticity and the fracture to two
dimensional problems. In order to check the constitutive equations, typical examples and
analytical predictions by FEM (Appendix III) are given as follows.

Stress-strain diagrams under biaxial compressive loadings 2 and analytical results are
shown in Fig. 63. The accuracy of the prediction concerning the ultimate values of biaxial
stresses and strains is dependent mostly on the precision of the material parameters (1)
and (2). The predicted ratio of biaxial strains ¢,/ ¢2is mainly influenced by the flow rule,
that is, the material parameter (6). According to the good fittness between the experi-
mental and analytical results, it is verified that this system of the constitutive equations
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has the ability to express these behaviors.
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Fig. 63. Stress-strain diagrams under biaxial 8 state

compression.

The strain paths on the biaxial total strain space under the uniaxial cyclic loading are
shown in Fig. 64. The dotted lines in this figure represent the strain paths when the com-
pressive stress is completely unloaded. In this analysis, the value of equivalent plastic
strain (parameter (4)) and the Poisson’s ratio in reversible process (parameter (5)) have
much influences on the analytical results. According to Fig. 64, this model is successful to
predict the kinematic movement of the biaxial plastic strains. But, the nonlinearity in the
reversible process is not included in this modelling. This problem should be studied from

now on.

o./ft
- to

experiment s
------- analysis

Fig. 65.

Relations between tensile principal stress
and incremental biaxial strains of concrete
with compression histories.

:
-1.0 o 1.0 2.0 3.0 4.0 5.0
—Ae,/ €20 —Ae, /€20

The incremental stress-strain relationship is shown in Fig._65 when the tensile prin-
cipal uniaxial stress is applied to the concrete which has the loading history of compres-
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sion in the direction normal to the applied tensile stress. In this case, material parameters
(3) and (5) have large influences on the results of the analysis. The stiffness under the
tensile stress decreases as the preloaded compressive level becomes higher. This constitu-
tive equations express the decreasing stiffness quantitatively with reasonable accuracy.
However, as shown in Fig. 65, this model does not especially take the plasticity and the
fracture under the tensile stress into account near the cracking failure, so that, the
predicting accuracy near the cracking failure decreases a little. The difference of deforma-
tional mechanics under tensile and compressive stresses should be investigated and more
experimental data are necessary. ‘

The analytical results of concrete behavior under the stress paths including the prin-
cipal axis rotation are demonstrated by the dotted lines in Fig. 58(a). There exists a good
coincidence between the analytical and experimental results. Accordingly, this fact is one
of the verifications of the applicability of the flow rule related to the direction of the
principal axis, and the accuracy of material parameters (5) and (6) is confirmed.

© €2/%20
o 0.5 1.0
T T T T T T T T T T
-0.1 HINAN
H TSN
1 N \‘\
- 61 H ) \\
t PR
-0.2 — \ .
2 lj az I“ i
) L Vo Fig. 66.
\ \ . . . . -
@ ‘ \‘ ) Biaxial strain paths under biaxial
-0.3 h : :
W compression tension stress states.
- ‘|\ lI \\
[RIERAY
[RIY
1]
-0.4 — experiment '
T mmeeee analysis

The strain paths on the biaxial strain space are shown in Fig. 66 when the uniaxially
compressed concrete was loaded by the orthogonal tensile principal stress. The results
of both the analytical and experimental data indicate the characteristic behavior of
anisotropy under compression-tension stress state. The analytical results of strain paths
are much influenced by the system of flow rule in the irreversible process or the precision
of material parameter (6). According to this figure, the flow rule equations in this re-

search have acceptable ability to predict the directional correlations between the direc-
tion of stress vector and that of strain vector. ‘
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7. Conclusion

The biaxial loading tests under various types of stress paths were carried out and cor-
responding strain paths were precisely measured. Adopted stress paths were summarized
as
(1) ‘Monotonic non-proportional and compression-tension loading where the ratio of
principal stresses is not constant.

(2) Cyclic non-proportional and compression-tension loading where unloading stress
paths were included in the loading programs.
(3) Cyclic uniaxial compression loading where the direction of principal stress rotates.

By chosing three types of loading paths, it became possible to verify the following
_deformational behaviors of concrete which have been qualitatively predicted but not
quantitatively described.

(1) Anisotropy of biaxial stiffnesses.

When the deformational level is low, concrete behaves isotropically. But under high
compression-tension stress state, the biaxial stiffnesses do not coincide with each other
and the stiffness in the principal tensile direction decreases rapidly.

(2) Isotropic relation between stress and elastic strain.

Biaxial stresses and elastic strains are linked by the isotropic stiffness matrix in
the integrated form. Accordingly, the stress-strain relationship in the reversible process
(elastic condition) is not influenced by strain paths.

3) The direction of principal elastic strain and total strains.

The direction of principal elastic strain coincides with the direction of principal
stress. However, under high strain level, the direction of principal total strain does not
coincide with that of principal stress. ‘

Moreover, these biaxial loading experiments were successful in making clear the
following characteristics of concrete newly and quantitatively.

(4) Non-symmetry of biaxial stiffness matrix.

When the deformational level is low, the tangential stiffness matrix is symmetric, but
under high compression-tension stress state, the stiffness matrix becomes non-symmetric.
(5) Plastic flow rate.

Under high compression-tension stress states, the increment of principal tensile stress
accelerates the plastic deformation more effectively than that of principal compressive
stress. '

(6) Direction of plastic flow.

Under high compression-tension stress states, the plastic strain in the principal tensile
stress flows more rapidly than that in the direction normal to the principal tensile stress.

In order to formulate the investigated deformational behaviors above, the equivalent
stress and strain (equivalent elastic, plastic and total strains), fracture parameter and
anisotropy parameters were introduced under arbitrary strain paths. These invariant
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values were successful in indicating the degrees of plasticity, fracture and anisotropy of
concrete. Moreover, with these values, the elasto-plastic and fracture constitutive law and
new flow rule system could be organized in simplified mathematical forms.

By solving these two types of constitutive laws, plane stress constitutive equations
could be derived. Then, the effective numerical integration method of derived equations
were given for FEM analysis and analytical results were checked by experimental data.
From experimental verifications, it was confirmed that the formulated constitutive laws
are able to express the nonlinear deformational behavior of concrete with reasonable

accuracy.
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Appendix I Derivation of Equivalent Total Strain in Monotonic
and Proportional Biaxial Compressive Stress Paths

— Derivation of Eq.(36) —

Using the strain measure function in Eq.(16) and the definition of equivalent total
strain in Eq.(28), we can calculate the increment of the equivalent total strain in the form

d70 870
F aau

C€o 860

F EE D dej (A-1-1)

dE = -ds ij = ew

Eq.(A-1-1) holds in any coordinate system. Taking the coordinate axies in the principal
stress directions (Principal directions are constant.), we find

85—0 860 A-l-
EYWE de” T=d€zz+/—d€yy 33;, deu (A-1-2)
where, €ry = gezy = 0
370 . Ozz— Oy . 23:ty .
3_8;’6“ deu - 270 3“:6&:’_ (de:c.r deyy)"— 8ij:€e de Y
o 311:"33/1; .<i __l__ ) 23.:5' . .
= —————70 Sy=eey \ 2 dezx ) deyy +——70 3u=€,;;‘dexy (A 1-3)

Let us now consider the uniaxial stress state, one of the ultimate condition in biaxial
compression stress states. When E is less than unity in this condition, the direction of the
total strain vector is approximately equal to that of the plastic strain vector as shown in
Fig. Al, that is

o

€1/€20 0.5 1.0
L

-0.5
- Fig. Al.
- ==—— Total Strain Vector Total and elastic strain vector under
r ~e—— Elastic Strain Vector  monotonic uniaxial compression stress state.
o . Plastic Strain
(€ezz, €evy) = ky (€xz, €4y) (A-1-4)
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Otherwise, in the case of the biaxial isotropic compressive stress state, another ultimate
condition, where exrx = €yy, €exx = €ewy, the directions of total strain and plastic strain

vectors satisfy Eq.(A-1-4) strictly. Therefore, it is reasonable to use Eq.(A-14) in the

biaxial compressive stress state.
Substituting Eq.(A-1-4) into Eq.(A-1-2), we have
9% vde,; = Oxz— 8w (L _1 ) 201y
005105 ="¢ei des; = Yo 10u5=eis\2 dez 2 dews |+ Yo 3u=€ij.dsxy
— 97 ede s
 3ildu=ey deis (A-1-5)

Similarly, Eq.(A-1-6) and Eq.(A-1-7) are derived as follows.

& SR — - &
Flos=cees  [(ce)?+(d70)105= s /(ceo)?+(dyo)? 105 krew
(A-1-6)

SN 1 W o —
kl\/(Ce—o)2+((]‘)“/o)2|3iJ - €j Fli=¢s

2o _ %

Flos=ces  Flou=ceu (A-1-7)
Substituting Eq.(A-1-2), Eq.(A-1-5), Eq.(A-1-6) and Eq.(A-1-7) into Eq.(A-1-1), we
obtain

'_—__C__Qago . 3 4—& 870 N aF
dE - F aa;‘.is €ij deu+ F aaz’j Sijzeij'deij = (93;,' gij:eij.deij
(36)

‘dEij, = /dF = F(ez'j)

£= 5

al'j =€
which is the strict solution in the isotropic biaxial compressive stress state.
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“Appendix II = Derivation of Constitutive Equations to Predict the Stress
Invariant Vector in the Irreversible Process

— Derivation of Eq.(60) —

In differentiating Eq.(59), the neutral loading path (dE=dEmax=0) is chosen for
integration path. As the reversible Poisson’s ratio remains constant in this integration

path, we have

a’(l_”:) =0 | (A-2-1)

Therefore, Eq.(59) is

Fodéon—EodTon = 13 25( L) (£udiaon— odzon) (A22)
on 1+* o 0ld0on 0dTon

Substituting Egs.(55) and (56) into Eq.(A-2-2), we find the unique relationship between

jand k as
dj=P 1 dk
_aF -
* —=T7
pl= 1+u/> °9¢o °ay (A23)
—v*\ 7o _aSHaS :
09t0 = 9Gei0u=€eis

Differentiating the elasto-plastic and fracture equation (35) with the irreversible criterion
in Eq.(30), we have

ds = EO{K(E)(l—%) + 9K p—B)|dE (A-2-4)

According to the definitions of the equivalent stress and the equivalent strain in Eq.(13)
and Eq.(28) with definition in Eq.(45), the differentiations of these values are

dS = ‘9{3 doo+ 22 24z, (A2-5)
=2 ' oF A-2-
dE = 0018 =¢€eis dei; = < dé 0+ v d}lo) Su=¢€eis (A-2-6)

Substituting Eqs.(A-2-5) and (A-2-6) into Eq.(A-2-4) with the flow rule No. 2 and No. 3
in Egs.(55) and (56), we obtain
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dl=(P2+ P3)dm

(-a)2E Er(r-m2E
dK a7y
PZ — EO(E EPIdE _ aS R aS
Oa‘ T ano Siy=€eis
e oF
; B dEp (€0 a) +(}’o ﬁ)a}, (A2-7)
P3=ER\1=up,) -&;-as
o __+o'°a)’o 8= ¢€eij

Local coordinate values (df, dm) can be determined by solving Eq.(56) under the arbi-
trary strain paths as

, _ , _oF co—a :
dl | de ay ;
[d ]= [M]"[d_o}. (M] = az«f \ (A-2-8)
m 7 o 5 :
° aETo 70 ﬂ 6{j=€eij -

As the envelope where equivalent total strain is constant or in other word, E.=const. is
convex in the strain space (See Fig. 50), two base vectors X1 and X3 are independent
of each other when the convergence points Z; and Z¢ exist within the envelope (See
Fig. 54). The formulation of points Z¢; and Z; satisfies this condition. Accordingly, strain
transformation matrix [M] whose column vectors are X1 and X7 become regular and the
inverse of strain transformation matrix exists.

Parameter j and { are given by

4l [P1 0
al Lo P2+P3

The strain invariant vector is calculated by Eq.(56) under an arbitrary strain path and

(A-2- )
dm :

parameters k and m are obtained by Eq.(A-2-8). Parameters j and £ are determined by
Eq.(A-2-9) and stress invariant vector is uniquely determined by Eq.(44).
These process is summarized in Eq.(60).
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Appendix III Numerical Integration Method of
Derived Plane Stress Constitutive Equations

(r-minimum method)

Mathematical forms of constitutive equations in the reversible process is different
from those in the irreversible process. Therefore, we must determine the integration
ranges where reversible and irreversible constitutive equations can be applied in an inte-
gration step in the case where concrete is deformed from the reversible (elastic) to the
irreversible process. The similar problems exist in the integration of the constitutive

. equations in the theory of plasticity.

This paper adopts the r-minimum method by Yamada'’ which was formulated in
the stress space to the numerical analysis in the strain space. Let us consider the case
where a strain point at time ¢ (point A in Fig. A2) in the reversible area shifts to a new
strain point at time t+ 4t (point B in Fig. A2) in the irreversible area due to the strain
increment e ;;. It is assumed that the strain state changes straightly from points A to B
in the strain space as shown in Fig. A2. Point D is defined as an intersecting strain point
between the reversible boundary (elasticity boundary) and the strain path from A to B,

therefore, the strain state at D is expressed as e/ ™' with the strain at A ¢f; and strain
increment de;;in the form
elf™ = e+ rdes; ' (A-3-1)
The strain at B is
€fj = efj+A€ij - ef;n“‘f‘(l—?’)AEij (A'3'2)

where 0 S r< 1.

Parameter r controls the integration interval. At the first stage, the stress aff”"
which corresponds to the strain at D can be calculated using the reversible constitutive
equations with the strain increment r/e;;. At the second stage, the stress at time t+At
can be calculated by the irreversible constitutive equations with the strain increment
(1-r)dei; .We have ‘

oF -vde i;

y = Puldy=ees "0 ETH—F (A3-3)
oF ae. | 4E
(981‘,‘ 0ij = €eij v

From the definition of r as shown in Fig. A2, the integration parameter is

Eh—rdt = Erimx .

—256—



K. Maekawa and H. OKAMURA

_ Ebax—E* _ Efax— E* A-3-
"= AE  F(8y = ebij+dei;)—Ee ( 4

Irreversible Area

et

Reversible Area €
Fig. A2.
Definition of control parameter
for numerical integration.
A 0:1
Total Strain Space Reversible Boundary

[¢]

The calculation flow of integrating the plane stress constitutive equations for FEM
analysis is shown in Fig. A3 and Fig. A4. When the strain increment de;; is given as input,

— No
= 1
Initial Set Time = ¢ t
l Sfj, €f>ii. dzlj, E(. Efex l Yes
] el = el
b = efiy
Etax = Egad®
[ % = E'+ 4E by Eq. (3D |
of = glpm
B4 < B 0 E* = Eg*
Yes [ < B Poul =1
'Yes
r=1 I .- Elax— E* dei; = (1—r)des;
4E
by Eq. (A-3-4) Fig. Ad get G, g2
I
6% = T(eh+deiy—ebis)
elf ™ = eli+ vdei;
S = eby (Eq. (37))
Efat® = Efax
cea cearyy [t
‘ {aff*} = [c(8 )]{ —:ut}
To
oty ™) = LDel( ;) [ ®eon
(bt} = {elf “}~[De] Hatr*)
‘ (Eq. (67)
Endt = Et+»
Next Step ? No
Yes
L t=-t+4t time reset —l END

Fig. A3. Calculation flow of evaluating stress vector.
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| de;; and E* input l
| déo, 47 by Eq.(45) l
[

(a, B) by Eq.(51)—Eq.(54) | Efalt = EU*
Eo+dAéon. Fo+ d¥on from Eq. (49) St = B K (Efat WE ¥ — Eo( Erad') by Eq. ('35)
{
st aemt _ 1H Y EF Do _
B = R i Ay, = 2
1L

S(6%. #5°%) = S*"* = given

G5/ = z = given

Stadr

so (65°*, #5"*) determined

Fig. A4. Calculation method of evaluating stress invariant vector in the irreversible process.

t+4t
oij

process in Fig. A3 and Fig. A4 is equivalent to the simultaneous solution of the elasto-

. t
can be calculated as output using o, e, epis, £ and Emaxt. The general

plastic and fracture constitutive equation (35) and flow rules No. 1 — No. 4 in the
difference forms of Eq.(40), Eq.(44), Eq.(49) and Eq.(63).

When the strain increment de;; is inputed, the equivalent total strain at time ¢+ 4t is
calculated by Eq.(31). If E**+ 4! is smaller than Epax!, this deformational process is the
reversible one, therefore, the plastic strain at time s+ 4! is equal to the plastic strain at
time ¢, and the stress at time t+4¢ is determined by Eq.(65).

If Et*4t is larger than Emax!, integration parameter r is calculated by Eq.(A-3-4).
The stress point D at time 7 +r4¢ which corresponds to the strain increment rde;;is calcu-
lated with the same flow as that in the reversible process. By resetting the strain incre-
ment (1-r) Ae;; as the strain increment in the irreversible process, the stress invariant
vector at time t+4¢ can be determined according to the calculation flow in Fig. A4. Then,
the direction 0 is calculated by Eq.(63). With the stress invariant vector and the direction
of the maximum principal stress at time ¢+ 47, the total stress at time t+ 4¢ is calculated
by Eq.(37).

The method to calculate the stress invariant vector in the irreversible process is
explained in Fig. A4. According to Eq.(49),(A§an,A7on)is calculated in arbitrary strain
paths. Solving Eq.(44) and Eq.(47) simultaneously, the direction of the stress invariant

vector is

0_'({+Al — 1+ U* €0+A€_0n
fé*At l—V* 70+A}-/0n

(A-3-5)
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From the elasto-plastic and fracture equation (35), the equivalent stress at time ¢+ 4¢
is determined as the length of the stress invariant vector. Using the calculation processes
above, we can get the direction and the degree of the stress invariant vector. Then, using
the definition of equivalent stress, we can determine the stress invariant vector uniquely
as Fig. A4. '
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