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SYNOPSIS

The object of the research described in this paper is to proposed the design
method of ultimate strength for reinforced, prestressed and steel-reinforced con-
crete members of rectanglar and box section subjected to pure torsion, combined
torsion and bending.

The approach is based on a space truss model in pure torsion and dominant tor-
sional range, a skew-bending model in dominant bending range. The proposed equa-
tions are derived from considering both the equilibrium conditions and the com-
pativility of deformation, and also the stress-strain characteristics of steel
bars and concrete. The equations are capable of predicting the post cracking be-
havior of concrete members in pure torsion, combined torsion and bending.
Finally, the author proposes the design rule for structural concrete members in
pure torsion, combined torsion and bending.
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He received his Doctor of Engineering Degree in 1981 from Tokyo Metropolitan
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His research includes the uitimate strength of structural concrete members in
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test on light-weight prestressed concrete members", and YOSHIDA Prize in 1983,
with "Design method for structural concrete members under combined torsion and
bending in ultimate state".
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1. INTRODUCTION

Combined bending with torsion may be considered as a general case of transverse
bending when the plane of bending forces acting on the member is parallel to its
longitudinal axis but does not pass through the shear center of cross section.
Torsion arises as a result of the applied load acting normally to the longitudi-
nal axis of the member exactly as eccentric compression arises from an eccentri-
cally applied longitudinal force. Thus, axial compression is a particular case
of eccentric compression, just as simple bending is a particular case of com-
bined bending and torsion when the eccentricity of transverse forces to the
shear center of the section is egal to zero.

In the many researches, as changing of loading from pure torsion to pure bending
the failure modes vary remarkably. Although, there are the design codes that the
skew-bending theory(l) is applied to all loading cases. On the other hand, in
CEB-Code, the space truss theory(2), (3) is applied to all loading cases. Design
procedures which are based on rational models rather than empirical equations
are enable to develop a better understanding of actual structural behavior to
the engineers. In this research, from the results of tests, the modes of failure
attempt to divide into two cases, i.e.,applying the space truss theory to the
dominant torsional case. and to the skew-bending theory to the dominant bending
case. The autor shows the equation for the index of critical values of the domi-
nant torsional range to the bending range of failure, and also the design method
that in the dominant torsional range, the equations of space truss are applied
and in the dominant bending range, khe equations-of skew-bending are applied to
the concrete members in combined torsion and bending. Then, it is possible to
design for concrete members reasonably to coincide with the modes of failure.

In this research, main themes,

a) The equation for Ko which is the index of critical values of the torsional
failure to the bending failure at ultimate state is derived, and the applied
theory to each failure mode is clarified.

b) In the dominant torsional range, the equations based on space truss, and in
the dominant bending range, the equations based on skew-bending are given. The
equations are derived from considering both the equilibrium conditions and the
compatibility of deformations.

c) The equations for balanced reinforcement ratio in ultimate state, for the
deformations at ultimate torsion, and for the stress of bars in over-reinforce-
ment are given.

d) The interaction curve in combined torsion and bending at ultimate state is
shown.

e) The design method for concrete members in combined torsion and bending is
proposed.

2. EQUATIONS OF ULTIMATE STRENGTH IN COMBINED FORCES

The behavior of concrete members after cracking are divided into the two states,
i.e., the first, the dominant torsional range, and the dominant bending range.
In the first state, the equations based on space truss, and in the other, the
equations based on skew-bending are derived.

2.1 Equations Based on Space Truss

The analysis of torsional behavior of concrete members after cracking, is based
on the space truss(4) as shown in Fig.l.
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In the truss, the
diagonal concrete
struts in compres-
sive stresses are
around the section
of member at an
angle ( , and the
reinforced bars

are in tension.

The tangential com-
ponent of these
stresses is provided
the shear flow g
which must be equil-
ibrated the torsion.
The normal components
of the diagonal stress
result in a longitu-
dinal and transverse
compression force
which must be balanced
by the bars.

The equations for geo-
metrical condition,
torsional moment and
twist in ultimate state
are,

Geometrical condition:

- ELCA+ Ec
tan (X / €v(PV/PO)+E, (1

Equation of depth of diagonal concrete strut(ab):

Fig.l Space truss model and equilibrium of forces

ab

1 {Av fsv_, Al 6’sl(1+C5)} (2)

k1T k3 6cu s C"1 c2+C3

Effective torsional area(Am), and Path of shear flow(Po) are,

Am (bo-ab) (do-ab)

Po

2 (bo+do-ab)

Shear flow(g) and torsional moment (Mt) are,

(3)

q= C"1 Av Hsv Al sl (1+C5)
s C2+C3

Mt = 2Am g (4)

—117—



Stress of the longitudinal bar is given as follow,

Go1 = L [[Ecs Es(2-ﬁc)}2 _ 2 &cs Es Am Gcu Bc(C2+C3)k1 k3
( 2c4 C4 Po AL(1+C5)

&cs iséj— c) (5)

Torsional stiffness of reinforced concrete member after cracking(GcKcu) is,

GeKeu = 4Am { av(sv Al §sl(1+C5) } ©

Ecs k1 k3 Bc &cu s C2+C3

In the dominant torsional range, as shown in Fig.l, at ultimate state the cracks
occur on the four surfaces of member. Supposed that the bending moment (M') is
resisted by the longitudinal bars only, in the case, neglecting the tensile
strength of concrete, the tensile stress in longitudinal bars is,

Mt M' .
6’sly— TAL DT + s ysi (7)

and then, from Eq(7), M' is,

M' =

Is Mt
v (0 - oaee) ®

The equation above is the general form for bending moment (M'). It must be
changed in accordance with the different arrangement of reinforced bars in the
member.

2.2 Skew-Bending Equation

The concrete members with rectangular section under combined torsion and bending
in dominant bending range, fail in the mode of skew-bending at ultimate state.
Assuming the failure surface of skew-bending as shown in Fig.2, in formulating

C=(tanp
A ;
o  ckkb,
jﬁkﬁb‘ { ——— |y '
: X[A- ‘;{r/‘7‘-"/*\'”77’777"7‘{:7":’J b
g S| T
TR L o steed [ irebb
- S M0 O XU Y Z—
e o f I e
' ] 0
b 0 Av a

?[‘dtan)'

Fig.2 Skew-bending model and equilibrium of forces.
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the condition of equilibrium in the general case in question, the same assump-
tion have been made as for the particular case of simple bending, i.e., the
tensile strength of concrete is neglected , also, it is assumed that all of the
reinforcing bars crossing the crack reach their yield points with the formation
of the plastic hinge. It is, furthermore, supposed that within the failure
region, there are no local loads and there is no change in the reinforcement.
The torsional center is unchanged in all stages of loading.

The derivation is based on equating the moments due to external forces and those

due to internal forces about the axis of rotation which is inclined at an angle
to the axis of the member. The following assumption are made,

1) when cracks open, the compression hinge is formed at an angle to the longi-

tudinal axis of the member.

2) Concrete is completely ignored in tension.

3) The transverse reinforcement is uniform over the length under consideration.

4) There are no concentrated loads within the failure zone.

5) All reinforcements passing through a’failure crack reach yield at failure.

6) The reinforcements are consisted by the longitudinal and transverse bars.

7) The ultimate moment is reached by yielding of the tension bars and or by

crushing of compressive concrete.

8) The-dowel action of longitudinal and transverse bars are neglected.

Equation for equlibrium of forces at the failure surface, from Fig.2, is,

C +yAl' Gl cosIB+ZAv'Gsv' sinIB =Y Aap Osp coslg +3A1Gs1 cos B+
SAvGsv sinp
(9)
The equilibrium condition of moments can be deduced from the external moment
equal to the internal moment around the axis running through the center of com-
pression zone, and then bending and torsional moment can be calculated by,

Mp + ML + Mvs - M1' +(Mv-Mv')tanp
1+ K tan/S

(10)
(Mp + M1 - M1'- Mvs)cotB + Mv = Mv'

Mt = 1+1/K cotp

The coefficient concerning to the hight of compression zone of concrete section
is,

S Ap Gsp + JA1661 - JAL' §sl'+(nv Av(sv - nv' Av' bsv')tanf

ku = k1 k3 Gcu bl 4 sec"B

(11)

The reinforcement ratios for the supposed surface shown in Fig.2 are the longi-
tudinal ratio(pbl) and the transverse ratio(pbv). The strains of reinforcement
are generally given by Eq(12), taking [ an angle between the tensile crack and
the face perpendicular to the longitudinal axis of member. For simplicity, the
strain of concrete is neglect, Eq(l) is,

c4

“Bv/Po_ (12)

cot? [ = ————2‘];

The strain at the position of tensile longitudinadl bar ( élp ) along to the
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direction angleﬂ (5) is,

E1p = ¢l cos’8 + Ev sin’/s + Tlb sin2g (13)
and then, the relation to E:H@ and £] are,

E1p = £1 cos’B {1+ C4 C10 kp tan’§ (2+C10 tan'g )} (14)

From the balance of forces, the balanced reinforcement ratio for surface'B is,

_ k1 k3 fcpu’ , k61 ( £lgu* _ bl' flgu + £lgy
B2 T KT Tepu'tiigy Pkl \Epy T BI T fw *
1 k 6P ( cgu' _ bp fcgu' + Elgy ) (15)
PEP 6T Ugey T ol Elpy

From Eq(l4) and equation for equilibrium of forces, the balanced reinforcement
ratio for longitudinal direction to the member (plb) is given. When the member is
over-reinfoced, it is necessary to know the stress of bars for the calculation
of the ultimate torsional strength of members with concrete strain at ultimate
state. The stress of bar is given by,

6sl + a6 + b'6sl + "= 0 (16)

The equation for the angle B is,

__ M [ M )7 Fl
tan g = e J\me/ Y R (17)
76— 40

30

o
a |a /
5
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Fig.3 Relations between ﬁ and 1/K, Fl/Fv.
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The relations between angleIB to Mt/M, Fl/Fv are shown in Fig.3.

3. EQUATION FOR Ko WHICH DIVIDE INTO THE TORSIONAL RANGE AND BENDING RANGE

In the dominant torsional range, the cracks occur in all surface of concrete
member at ultimate state, it is resonable to apply the space truss theory to the
member. In the dominant bending range the cracks occur in three surfaces without

compression side, it can apply the theory of skew-bending for the member. See,
Fig.4.

upper face

side face

bottom face

side face

K=1.52
Bending failure Torsional failure

Fig.4 Cracking after failure.
Therefore, it is necéssary to find the value Ko which indicate the critical
point of different failure modes for concrete members. The value of Mt/M which
is characterized by the condition of zero stress in the upper longitudinal bars,
is the index of critical point of different failure modes, as shown in Fig.4.

The compression stress ( Gslb') in upper reinforced bars by bending moment is,

M

! = ceev————
6s1b TAL' Db

(18)

The tensile stress ((@'slt') in upper reinforced bars which is given by the space
truss theory is,

e Mt
fslt' = SAT DT (19)

and then, the stress in upper bars is zero,
Gs1' =(QGslt' - §slb' =0 (20)

From relation to equations of (18),(19) and (20), Ko which indicate the stress
in upper bars being zero, is,
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Ko = Mt/M = Dt'/Db' (21)

In accordance with the equation (21), the application of the equation(4)and(10)
are as follows.

The eguations of space truss, when;

Ko < Mt/M (22)
The equations of skew-bending, when;

Ko 2 Mt/M ' (23)

The relationship between Ko
and the failure modes of hAt
concrete member in combined
moments is shown in Fig.5.
The values of Dt' and Db'
are given by the shape of
cross-section of member,

by the contents of rein-
forcement, by the displace-~
ment of bars, etc..
According to avove, Ko is
mainly determined as the
values characteristics of
the member.

Interaction

4. INTERACTION CURVE FOR Curve

TORSION-BENDING IN THE

ULTIMAT STATE ////////

The interaction at ultimate () ‘
state of concrete member C)
subject to combined torsion
and bending has been studied .
by Elfren, Thiirlimann, Kuyt Beﬂdlng Moment
and Collins. Author proposed
the equation of interaction
curve for combined torsion
and bending based on the stress of longitudinal bars and equation (4).

2
1 Mt B" M
A" ( Mtu ) + = 1.0 (24)

Torsional Moment

Fig.5 Failure modes in combined torsion
and bending.

A graphical representation of the equation (24) is shown in Fig.6.
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Fig.6 Interaction of combined torsion and

bending at failure.
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5. EXPERIMENTAL WORK(6)

The 15 beams with square section (40cm x 40cm; 3m70cm. span ) were divided into

two series ( reinforced

concrete,

steel-reinforced concrete ),

the beams within

each series being similar. Details of the reinforcement are given in Fig.7.
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For the concrete used in this investigation 328 = 27.4 MPa and all reinforced
steel was SS41 grade, round bars and steel plate for joist having yield strength
of most steel being closed to 293.5 MPa.

All of the beams were tested by loading arms as shown in Fig.8. They were simply
supported over a span of 3.70m. on a special type of saddle which allowed free
rotation of the ends. Two cantilevered loads at the two points center to center
2.10m applied the combined torsion and bending moment. F3

The results of the experiments are
summarized in Table.l. In Fig.4, the
crack pattern after failure of beams
are shown.

6. COMPARISON OF RESULTS

Fi_# SUPPORTS

The comparison of test results and
theory are given in Table.l. From

author's tests results, there are

the discrepancy between the tests Fig.8 Loading system for combined
results and theory, but it is able torsion and bending.

to calculate the Ko, M', Mt and M

at ultimate state clearly.

Table.l Tests and results

STEEL| K=Mt/M |MODE of | ULT' MOMENT
BEAM GROUP ;?g; RATIO[ Ko | K |FAILURE | TEST|CALCUL ) | NOTE
(2)
(1) (2)

0 |bending|75.4 [78.4 |0.95

.27 Y 66.6 [74.6 ]0.89 Eend%ng

24.1 (20.1 1.19 |torsion
b 81 ) 65.6 |60.1 |1.09
R-1.0 R C | squ- 1.0 [0.72 53.4 |48.7 |[1.10
are . 38.2 |35.5 1.08
.52/ torsion oo 1453 |1.28
oo " 79.6 |71.9 [1.10
0 |bending]| 235 [ 232 [1.01
324 | 337 |o.98
-21) o« 69.1] 70.5 |0.98
222 | 108 [2.04
) 124 | 142 |0.88

0.56|torsion

245 | 102 |2.40
SR-4.9 SRC Sgﬁ; 4.86 |0.49 137 149 0.92
151 | 109 |1.38
155 | 141 {1.09
021w 155 | 107 |1.44
159 | 143 [1.10
> “ 204 | 211 |0.96
Average 1.19

7. DESIGN PROCEDURES

Design procedures for structural concrete members subject to combined torsion
and bending moment are not yet fully developed and codified. This paper sets out
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what is believed to be a reasonably conservative design procedure for concrete
members subject to combined torsion and bending moment. It is based on the
author's evaluation of studies for combined moments behavior so far completed,
and the equations proposed by author. In Fig.9, the outline of flow chart for

design procedures are shown.
START

guess cross section, reinforcement,
materials.

| eq' of space truss NO

{eq‘ of skew—bendingl

i

guess gfrom K, Fl/Fv ]

Lpalcu' of Am,Pol

calcu' of
reinforcement ratio

calcu' of rein-
forcement stress

._____._._..J\____.J calcu' of rein-
forcement ratio

recalcu' of

ab,Am, Po —-No—
calcu' of rein-
YES focement stress
| e _
{ box section] {full section| I
Ifull sectionl box section
NO
£ 2 ex €2 ku b1 N0
YES YES

calcu' of q,Mtu,Mu]
I

NO Mu 2 Mud NO

calcu' of Mu,MtJ
T

MtuZMtud
YES . X .
Iiﬂj NOTE, Mud:Design bending moment.
Mtud: Design torsional
moment.

Fig.9 Flow chart of design procedure.
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The design equations above are complicated with many parameter, and then, it is
convienient to use the computor for the design of strucures.

8. CONCLUDING REMARKS

The space truss and skew-bending models are capable of predicting the post-
cracking behavior of concrete members in combined torsion and bending in the
ultimate state. Some of the capabilities of the study are listed below;

1. The modes of failure predicted by the proposed equation(2l) are in agreement
with those observed in author's tests, and then, the equation Ko shows the appli-
cation range of the equation(4), (8) and equation(10).

2. The combined torsion and bending strength of under-reinforced, partially~-over=-
reinforced and completely-over-reinforced concrete members can predicted by the
equations proposed by author.

3. The equations can be applied to concrete members (reinforced, steel-reinforced
and prestressed concrete) having a rectangular and box section.

4. The stresses of steels between post-cracking and ultimate state can be calcu-
lated by the equation(5) and (16).

The reasonable and integrated design of concrete members in combined torsion and
bending moment are carried out by applying the equations proposed by author. The
equations presented in this paper are applicable only to St'Venant torsion and
hence can be treated the response of sections where warping torsion dominant by
approximate procedures.
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NOTATION

A" = ( gsv 6sl)/( 6svy Gsly)

Al,Al'= area of longitudinal reinforcing steel in bottom, in upper, respectively

Am = area enclosed by shear flow.

Ap, Ap'= area of longitudinal prestressing steel in bottom, in upper, respec-
tively. .

Av, Av'= area of one transverese steel in bottom, in upper, respectively.

Avs = area of one transverse steel in sides.

ab = equivalent depth of compression strut.

B" = Gsv/(6svy (1+C5)).

b = width of cross-section

bo = smaller center-to-center dimension of closed rectangular stirrup.
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C"1l = 1+b/2d (k11 k13 + k12 k14)

C2 = 1/2 (kll (ki3d-tx(1+k13))+b)
C3 = 1/2 (k12 (k1l4d tx(l+kl4)}+b)
c4 = 2(C2+k € C3)/(po C1")
c5 = (Al' Gsl')/(Al Gsl)

Cl0 = do/(2(b-x)+d)

Cp" = Ap Gsp/ Al' Gsl’

d = depth of cross-section

do = larger center-to -center dimention of closed rectangular stirrup

Cl tanzﬁ tan’o
2C3

bp
' = ] -
Db cp" ( Bl k2 ku) bl +

bl'
(1-k2 ku)bl""ﬁi’ - k2 ku)bl+

(d-2dc- 7d )Dv
Dv = coefficient of reinfocement in sides

C1 C"1(1+C5)
1] =
Dt’ = Am tano‘fc3 C5 (C2+C3)

Es = modulus of elasticity of steel
Gc = modulus of rigidity of concrete
K = Mt/M

Kcu = torsional stiffness of reinforced concrete at ultimate torsion

kKE=E1'/EL

s = transverse steel (stirrup) spacing

Ot = angle of diagonal cracking

P = an equivalent rectangular stress block factor, or angle between the compres-
sion face and the face perpendicular to the longitudinal axis of member

= angle between the tensile crack and the face perpendicular to the longitu-

dinal axis of member

fc= concrete diagonal strain at the position of the resultant shear flow

o= concrete diagonal strain at the surface

f1= strain in longitudinal steel

£y= strain in transverse steel (stirrup)

Gcu = compressive strength of concrete

6 sl, Gsl' = stresses of longitudinal. steel in bottom, in upper, respectively

G'sv = stresses in transverse steel (stirrup)

Gsly, Gsvy = yield point of longitudinal, transverse steel, respectively

a", b", c" = coefficients of the equation of §sl
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