CONCRETE LIBRARY OF JSCE NO.3. JUNE 1984

STUDIES ON DEFORMATION AND CRACK OF
REINFORCED CONCRETE FLEXURAL MEMBERS
UNDER LOW TEMPERATURE
(Reprint from Proceedings of JSCE, No.329, January 1983)

Ryoichi SATO Yukio AOYAGI

SYNOPSIS

A nonlinear analytical method of deformations as well as crack widths of
reinforced concrete members under very low temperatures, which is based on bond
stress—slip relationships and 1s capable of estimating systematically the
behaviours from the commencement of cracking up to the state of yielding in
steel without assuming predetermined crack spacing. In this analysis, basic
differential equations derived in the zone of acting bond stress is solved
numerically under the given boundary conditions. Comparisons of analytical and
experimental results show that the present method gives a good accuracy of
prediction. )

R. Sato is an associate professor of civil engineering at Utsunomiya University,
Tochigi, Japan. He received his Doctor of Engineering Degree in 1982 from Tokyo
Institute of Technology. His research interests include the analysis of
deformation and cracking behaviours, thermal stresses of reinforced concrete
members induced by temperature gradient. He is a member of JCI Research
Committee on cracking. He is also active in JSCE Research Committee on airport
pavement.

Y. Aoyagi is the head of material mechanics section at Civil Engineering
Laboratry, Central Research Institute of Electric Power Industry, Chiba, Japan.
He received his MS in 1964 and his Doctor of Engineering Degree in 1974 from
Tokyo University, Tokyo, Japan. His research interests include design and
construction of concrete containments for nuclear reactors, in—ground tanks for
strage of LNG, prediction of cracking and deformational behaviours of reinforced
concrete members under extremely low and elevated temperatures, creep, shrinkage
and thermal effects on concrete structures, etc.. He is a member of ACI and has
published several papers on the J Division of the proceedings of SMiRT
Conferences.

—109—



STUDIES ON DEFORMATION AND CRACK OF REIN-
FORCED CONCRETE FLEXURAL MEMBERS
UNDER LOW TEMPERATURE

By Ryoichi SATO* and Yukio AOY AGI**

1. INTRODUCTION

Cylindrical walls as well as base slabs of re-
inforced concrete (RC) tanks for liquefied natural
gas (LNG) are cooled down to as low as —50~
—70°C due to the effect of LNG which has the
boiling point of —162°C, even if the inside face
of the container is lined with thermal insulation.

It is well known that the mechanical behaviors
of water-saturated RC members under such
temperature conditions are markedly different
from those observed under normal temperatures
(N.T.), owing to the increased properties of con-
crete and bond strengths as a result of freezing®.
Especially, the rigidities of RC members have
been observed to increase remarkably because
the contribution of concrete between adjacent
cracks in carrying stress becomes conspicuous
due to the increase of tensile as well as bond
strengths of concrete under low temperature
(L.T.)»»,

When the limit state design, which is likely
to be adopted in Japan in the near future, is to
be applied also to RC structure exposed to L.T.,
the structures or members must be checked in
the light of deformational as well as cracking
behaviors. However, little has been investigated
quantitatively except for a few papers written
from a phenomenological point of view.

Several empirical formulas dealing with mo-
ment-average curvature relationships of RC
members have been proposed by Branson®,
Ban®, Yu et al.®, Beeby et al.”, Sakai et al.® as well
as Rao et al.®. With some modifications Branson’s
and Rao’s proposals are adopted in ACI'® and
CEB-FIP Codes!V, respectively. Although these
formulas are simple and practical in the case of
applying to RC members under N.T., more

investigations as well as modifications should be
made before they could be applicable to RC
members under L.T., because such influential
factors as bond and strength of concrete, which
affect the deformational properties of RC mem-
bers, have as yet not been fully clarified.

Muguruma and Morita'® as well as Tsimbi-
kakis'® developed methods of evaluation for
moment-average curvature relationships based
on hypothetical averaged sections which give
average strains in the reinforcements. Muguruma
and Morita calculated the average strains in
reinforcements of RC tension members not only
empirically but also analytically*®. This method
is, however, not intended for the analysis of RC
members under L.T.

As for crack widths of RC members, a number
of proposals have so far been made based on the
test results obtained under the condition of N.T.
For example, CEB-FIP Code!? as well as Morita's
formula!®» employ experimental equations in-
corporating crack spacings and average strains
in reinforcements as main parameters. How-
ever, the applicability of these formulas is re-
stricted to what is called ‘‘stabilized region”,
in which RC members cease to develop additional
new cracks. Whereas it rather frequently occurs
that although RC members under L.T. have a
very small number of cracks in “unstable region”,
the reinforcements are subjected to considerably
high stresses.

Having the above mentioned situations in mind,
in the framework of the present study, we propos-
ed a nonlinear analytical method of deformations
as well as crack widths of RC members, which
is based on bond stress-slip relationships and is
capable of estimating systematicaliy the behav-
iors from the commencement of cracking up to
the state of yielding in steel without assuming
preditermined crack spacings. In this analysis,
basic differential equations derived in the zone
of acting bond stress is solved numerically under
the given boundary conditions. The present
theory is only applicable to the cases, in which
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idealized RC flexural members are subjected to
constant bending along their axes. The main
features of the analysis are summarized as follows;

i) It can consider nonlinearity of stress-strain
relationships of concrete under both com-
pressive and tensile stresses.

ii) It can incorporate what is called “pre-
stress effect” which is caused by the dif-
ference of thermal contraction of concrete
and steel under L.T.

iii) It can take into consideration the softening
region of bond stress-slip curves as well as
bond failure.

iv) It can also deal with the problem of bend-
ing combined with axial forces.

2. MATERIAL PROPERTIES

In this secticn material properties are present-
ed, which were assumed for the analysis. Con-
crete was considered to be water-saturated as

was representative in the concrete of RC members.-

(1) Stress-Strain Relationships of Concrete

For the range of temperatures and concrete
strengths considered, stress-strain relationships
for uniaxial compression and tension were re-
presented as the following parabolic equations;

Compression: 0ece/Tou=1—(1 —€co/cou)®
R .1 o(1)
Tension: oafow=1— (1 —¢cf€tu)
where
Occ, Oct: compressive and tensile stresses
Ocu, Oeu: compressive and tensile strengths
€cc, €t compressive and tensile strains
€ou, €. compressive and tensile strains at

the maximum stresses (in the fol-
lowing refered to as compression
and tensile ultimate strains)
Compressive strengths under L.T. were deter-
mined as the sum of measured strengths under
N.T. and the incremental strengths does under
1.T. proposed by Okada ef al.

(Cou) 7= {Tou) x.1. F AT oeerereersreserrencnnns (2)
Aoou=54—8.64T—0.0276T*
—10°CzT=~-100°C, 0.38sW/C<0.63

where

T: algebraic value of temperature, °C
The above equation was extrapolated down to
—120°C and no strength margins were added
above 0°C.

Ultimate compressive strains were assumed
according to the strength classes and the tem-
peratures investigated as follows;

high strength concrete (H S.C.)

eeu=23 000 x (N.T.)

normal strength concrete (N.S.C.)

eew=2 000 x (N.T.)
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Fig. 1 Comparison of experimental and as-
sumed stress-strain curves of concrete

under normal and low temperatures.

normal strength concrete (N.S.C.)
€ou=23 600 p (— 60°C)
normal strength concrete (N.S.C.)
eeu=3 350 p (—120°C)
Comparisons of the assumed stress-strain curves
with the experimentals are made in Fig. 1, which
shows a fairly good agreement between the two.
In this figure are also drawn stress-strain curves
for tension, which were assumed to be analogous
to those under compression. Tensile strengths of
concrete under L.T. were given by the following
equations'®;
{oou)r={0w)x.1. +40w, 0°C=ZT=—120°C---(3)
T=-8.17x10"*40:u*+0.015540:.*—0.36340°wu

Aow: tensile strength increments under L.T.

(2) Bond Stress-Slip Relationships

Bond stress-slip relationships, which are funda-
mental in the present analysis, were constructed
based on the measured strain distributions in
reinforcements along RC beams tested flexurally
under N.T. as well as —60°C'®. In this case
relative slips were obtained without subtracting
the concrete deformations at the level of rein-
forcements.

As a basis for bond stress-slip (rz—&z) curves
the following empirical formula proposed by
Muguruma, Morita and Tomita!” was adopted,
which seemed appropriate to express the descend-
ing branch of the 72—4&=x curve;
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Tz ln{(e— l)s:/amax"‘”
Tmax - (e—1)02/8max+1

The parameters determining the bond stress-slip
curves, that is, maximum bond stress 7Tm.r and
the slip at 7maz, Omaz, Were assumed as follows,
making reference to the results obtained by
Muguruma et al.'”, Nilson®® and also taking into
account the concrete strength classes, tempera-
tures under consideration'®;

H.S.C.(N.T.): Tmaz=80 kg/cm? (7.84 MPa),
820x=0.006 cm, §4=0.02 cm
NS.C.(N.T.):  7wmai=60 kg/cm? (5.88 MPa),

Omax=0.006 cm. 6u=0.02 cm

N.S.C.(—60°C): Twmux=180kg/cm?® (17.64 MPa),

Omaz=0.012 cm, du=0.026 cm

N.S.C.(—120°C) : Trmax =250 kg/cm? (24.50 MPa),

Omax=0.018 cm, 64=0.032 cm
du, the ultimate slip corresponding to bond
failure at which bond stress drops to zero was
assumed in this study on the supposition that
bond failure is caused by local deterioration in
the zone near the cracked section and the crack
development along reinforcement due to wedging
action of its transverse ribs®®,

In Fig. 2 the assumed curves for bond stress-
slip were compared with the experimental plots,
which were obtained by the tests of four cases of
RC beams with almost the same amount of
reinforcements but for the difference of the
diameters of bars (16 mm and 32 mm) under both
N.T. and —60°C as well as at the two different
levels of loading. Experimental values herein
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Fig. 2 Bond stress-slip relationships under
normal and low temperatures.

were those up to the 7m.z. The bond stresses may
be-regarded to be a function of only bond slip
values, independent of temperature conditions,
diameters of bars as well as stress levels in re-
inforcements, which suggests the validity of
adoption of equation (4).

The assumed curves in Fig. 2 seem to have
steeper tangents than those of experimental
values. This may be attributable to aforemen-
tioned negligence of concrete tensile deformations
between adjacent cracks. How to relate the
Tz—0z curves to the crack widths to be con-
sidered is a controversial problem in which the
out-of-plane deformation is to be taken into ac-
count. However, in the present study the as-
sumed 7:—dz curves may be regarded as related
to the crack widths averaged through the thick-
ness of beams.

3. PRINCIPLES OF NONLINEAR ANALYSIS

Basic equations were derived for the case of
RC beams with rectangular section reinforced
with two layers of tension bars.

(1) Assumptions

Following basic assumptions were made for
the analysis of deformational as well as cracking
characteristics of RC members subjected to
flexural moment combined with axial force.

i) Concrete is homogeneous along the mem-
ber.

ii) The principle of ‘‘plane section remains
plane” holds with respect to concrete in
compression and tensile reinforcements.

ili) Strain of concrete in tension zone is
proportional to the distance from neutral
axis.

iv) Widths and spacings of cracks are identi-
cal for all cracks in a beam. The crack
spacing is defined as the length obtained
by dividing the distance considered by
the number of cracks.

v) Axial force is assumed to be constant.

vi) Crack occurs when the strain in concrete
at the extreme tensile fiber reaches the
tensile ultimate strain of concrete.

vii) The stress-strain state of bond failure zone
is assumed to be the same as that of
cracked section and the effect of concrete
tension is neglected. In the case of two
layered arrangement of reinforcement the
lengths of bond failure for the two layers
are assumed to be identical.

viii) Bond stress-slip relationship of Eq. (4)
is available independent of locations
along reinforcement.

The signs of variables appearing in the follow-

—112—



ing equations are defined as minus when related
to compression or contraction, and as plus when
related to tension or extension.

(2) Formulation of Basic Equations

The internal mechanisms of cracked RC mem-
bers subjected to bending moment are basically
classified into four cases indicated in Fig. 3, ac-
cording to the combinations of presence and
absence of perfectly bonded zone as well as
bond failure zone, that is;

( I ) Presence of perfect bond zone (PBZ) and
absence of bond failure zone (BFZ).
(CASE I)

Presence of both PBZ and BFZ. (CASE
1II)
(III) Absence of both PBZ and BFZ. (CASE
II1)
(IV) Absence of PBZ and presence of BFZ.
(CASE IV)

Stresses and strains of the sections in PBZ as
well as BFZ can easily evaluated by the con-
ventional analytical procedures. Therefore,
estimation for the deformation of RC members
is only possible when the distribution of curva-
tures in the active bond regions is accurately
evaluated.
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Fig. 3 Four internal mechanisms of RC flex-
ural member.

The distributions of stress related strain, stress
as well as resultant forces in concrete and steel
at the section located at the distance of 2 measur-
ed from the section at which bond stress begins
to act (#=0) are illustrated in Fig. 4 together with
those at the section of x+dx within the range of
active bond zone. The stress related strain eco(z)
in compression zone and €e(2) in tension zone as
well as the pertinent stresses ow(z) and oc(2)
at the distance z (always positive) from the
neutral axis, together with stresses in steel os
and os, for the section x, can be expressed as
functions of three variables e, & and ¥, using
the conditions of strain compatibility of Eq. (5)
and stress-strain curves of Eq. (1).

o Compatibility conditions;

_ €c—€0,d7 _ _ €ce(z) _ €s2—€ec,ar
v z ds—y
_. €Es—é&€g, a7
R

(Assum. ii)

€(2) _ €ur—€e, 47 _ €t—Ec,uT
z di—vy d—y

(Assum. iii)

where
€s2, €51 Total strains in lower and upper
layers of tension steel due to axial
force, temperature drop and bend-
ing moment
Total strains in concrete at ex-
treme compression fiber, and at the
same levels of lower and upper
tension reinforcements, respectively,
due to axial force, temperature
drop and bending moment
Free contraction of concrete and
steel due to temperature drop,
6o, ar=0a0dT and es,ar=c:dT, o
and as: averaged thermal contrac-
tion coefficients of concrete (10.38 X
107%/°C at —60°C, 9.29x107%/°C at
—120°C) and steel (12.25x107¢/°C
at —60°C, 11.26 x 10-%/°C at — 120°C)
from room to low temperature con-
sidered®, AT: temperature drop
from room to low temperature con-
sidered
distances of centroids of lower and
upper tension steels from the ex-
treme compression fiber
y: distance of the extreme compression
fiber from neutral axis at the sec-
tion z
E;: Elastic modulus of steel
At the section with the coordinate z, the follow-
ing equilibriums are satisfied with respect to
axial force and bending moment;
P=C+Tc+Tss

€e, €¢, €2

€c, 4T, €3,4T .

d. da:
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residual forces for an length of dx.

M=Mc+Mrc+Mrs—Pe’
where
P: Axial force (in the case of absence of
axial force, P=0)
M: Acting moment
C: Resultant compressive force in con-
crete
To: Resultant tensile force in concrete

Tss: Resultant tensile force in reinforce-
ments
Mo: Resisting moment of C about the
level of the lower reinforcement
Mzc: Resistng moment of T¢ about the level
of the lower reinforcement
Mrs: Resisting moment of tensile force in

the upper reinforcement about the level
of the lower reinforcement

e’: Distance between the point of action
of axial force and the centroid of lower
reinforcement

The above force and moment can be written as

follows;

C =bS: e 2)dz=Qor(y)es? + Qe ¥ )es+ Qes(y)

h—
Tc=bSo ! Ga2)dz — Aseld—y)— Anoal(di—1)

=Qroi(y)e* + Qro(¥)e:+Qros(y)
Tes=Ts+Te:=As0s+ As205:
=Qrs1(¥)es+ QrsAy)

Ma=bS:oco(z)(d—y+z)dz=Pm('y)e.’
+Pox(y)es+Pos(y)

The functions of Qai(¥), Qoz(¥), etc., do
not have any physical meaning, but indi-
cate the function of only “¥”. About
the details of these functions, see refer-
ence'®),

Based on the equilibrium conditions of
(6) and (7), es and & may be determined
if the value of ¥ is given, which means
both ¢s and e are the functions of ¥, as
follows;

H;(y)es‘+Hz(y)e.’+Ha(y)es’

+Hi(y)es+Hs(y)=0 -(8)

a= [ —Qrex(y)

Qro:(y)—4Qrai(y) {Fi(¥)
+\/( ‘es*+ Fa(y)es+ Fa(y)) )]/[2@1‘01(1/))

The above equilibriums must also hold at the
point of x+dx, that is, infinitesimal dx apart from
the point of . Therefore, the following equili-
briums must be satisfied with respect to infinitesi-
mal increments of force and moment related to
dxz;

AC+dTo4+dATgg=0 +eroreverreerrreescieeinininn (10)
AMo+AdMro+dMrg=0 -cococeererrenniniines (11)
Each increment is written as follows;
ac ac
dC= 3y dy+ s des
dTq dT¢
aTo= ER dy+ %6 dec
0Tss 3Tss

T oe
oMo dMa
ay S ay+ s
OMzc

oy dy+—F—

dTss=—F— —=——des

dMo=

des
OMro

de
de
ers—"gM—rid + 9Mzs
dy Oes
All the above incremental values are also con-
sidered to be the function of y. Substituting
these increments into Eqgs. (10) and (l11), the
following two incremental equations with the
coefficients of the function of ¥ are obtained;

al(y)des+oa(y)dy +as(y)de=

dMro=—"F—

—5——des
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Bi(V)des+B(y)dy +Bo(y)der=0 -veoveeeren (13)
where

)= 2t LoD g () Aot Mrs)
a)=2CE g’;’*’ Ta5) g,y =2 0+J:31;'0+MM)

as(y)=0To/de: B(y) =0Mr0/de;
Solving Eqs. (12) and (13) simultaneously,
they are reduced to the following simple form;
des=Q(y)dy
de:=G(y)des
where
Qy) = 2W)B(y) —ex()Bs(v)
(%) Bs(v) —as() Br(¥)
Gly) =2XWBY) ~(v)Be(y)
a3(¥)B(y) —a2(y) Ba(v)
Because the Egs. (14) and (15) are obtained cor-
responding to a infinitesimal distance increment
dz along member axis, they can be divided by dz;
des)dz=Q(y)-(dy/dx)
detjdz=G(y)-(des/dx)
On the other hand, infinitesimal bond slip
between steel and concrete at the level of lower
bar dé: for the length of dz can be expressed as
the difference of strains between the two materi-
als at the same level®;
déz=(es—e)dx ddzjdx=€s—e;
Further differentiating both sides of the above
equation with respect to x, we obtain;
d*0zjdx*=des/dx —dejdx
Applying the relationship of Eq. (17) for desfdz
and de:/dx, the term dec/dx can be eliminated ;
A202)d 7= (L —G(Y)) des]dm ++vereereeereseere (19)
As tensile stress in steel is transfered to con-
crete through bond stress, equilibrium condition
must be satisfied between the changes of bond
and steel stresses for infinitesimal length of dx;
Asdos=Ustzd= doefdx=Us/As 7=
Aes)AT=UslAsEgrTa-woveerernenienreanne {20)

where
Us: Total perimeter of lower bars

Substituting the relationship of Eq. {(20) into
(19) we obtain the following basic differential
equation;

A202/Ax = Usf AsEs{L—G(Y)) Tarer-rrvererers (21)

As the formation of this equation implys, it
holds for arbitrary type of function of 7:—8z
relationship. The above equation is also con-
sidered to be a ‘basic bond equation” for flexural
members as compared with that for bond speci-
mens or axial tension members!®, which does not
retain the coefficient function of G(¥).

Since as mentioned previously, bond stress-
slip curve proposed by Muguruma et 4l. is adopted
in the present study, putting Eq. (4) into Eq.
(21), the following nonlinear differeintal equa-
tion of second order is obtained;

E5e_ o (1-Gey) BL=DS=+1) |

dz?

(e—DSz+1  ...(22)
=9(y, Sz) I
where
U max
Kn=—t- ;Te Sz=0z/80ux

However, Eq. (22) can not be solved even when
the necessary boundary conditions are given,
because it contains two unknown valiables Sz
and y. Therefore a relationship must be establish-
ed between the valiables.

Integrating the Eq. (16) from 0 up to &, the
steel strain at the point of #, which is also obtained
from Eq. (8), can be written as follows;

Via
{€s) zax= (Gs]r-o‘l'gy :Q(y)dy
za
Since strain in concrete at the same level of steel
is also given as a function of ¥ as is indicated in
Eq. (9), we can connect S: with ¥ through the
following relationship;
dszld.r:(e‘_e‘)/ama::f(y) .................. (23)
Consequently, Eq. (22) can be solved so that y
satisfies Eqs. (22) and (23) simultaneously.

(3) Boundary Conditions

Although only two boundary conditions suffice
to mathematically solve the Eqs. (22) and (23),
one more condition is needed to reflect realistical-
ly the phenomena peculiar to RC members.
More specially speaking, as was shown in Fig. 3,
in the case of perfect bond zone (PBZ) present,
the distance ““‘a’”’ which spans between the start-
ing point of active bond and the nearest cracked
section must be determined based on the bound-
ary condition of the cracked section. The condi-
tion of bond failure must also be added when
such type of failure is to be considered.

When there is no PBZ, in order to determine
the depth of neutral axis at the middle section
between adjacent cracks yx=0, corresponding to
the crack spacing obtained by the calculated
number of cracks, similar boundary conditions
as mentioned above are necessary.

As will be described in the next paragraph (4),
the length of bond failure zone (BFZ) a" is
automatically calculated by satisfying the con-
dition below. Mathematical description for
boundary conditions governing the internal
mechanisms prevailing in RC members can be
made in Fig. 3 according to the combination of
presence and absence of PBZ and BFZ (see also
Fig. 3).

Here. suffixes I and II refer to PBZ and BFZ
including cracked section.

(4) Numerical Analysis
Basic equations were numerically solved by
the following Runge-Kutta's recurrence formulas;
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{Sz) ta1= (Sz} 1 +H( K1+ 2 K2+ 2K+ Ku)/6 l
{ﬁ} = Iﬂ} (L1 4+2La+2Ls+L0)/6
41 t

dzx dz
{%L“ =f(y““) (:1=1,2, :-n)
.................................... (24)

where
Ki={(dS:zldx}iAx

w5 Jae

wom( [ G) +g e

Ke=[}252) 4r]as

dz )t
Li=g(y1,{Sz})dx
La=g(y1+4Y/2,(Sz} ¢+ K1f2)Ax
La=g(y:+A4¥/2,({Sz) 1+ Ks/2)4x
Li=g(y1+A4y,{Sz} 1+ Ks)dz

and

4z length of each segment (4z=a/n), n: num-
ber of segments divided (i=1 indicates the section
at =0 and i==n-+1 the cracked section), 4y:
change of neutral axis depth corresponding to 4x.

The procedures of numerical analysis for
deformational and cracking behaviors of RC
members based on Eq. (24) are enumerated
below, together with a flow chart shown in Fig. 5.
In the following analysis, the method of average
curvature increment was applied to pursue the
successive cracking behaviors occuring in the
RC beam.

®: Read geometric valuables and material
properties etc..

@: Calculate stress-strain conditions and
curvature @i» induced by ‘‘prestress
effect”.

®: Calculate moment-curvature relationship
for given curvature before cracking and
then cracking moment.

@®: Calculate stress-strain conditions at cra-
cked section for assumed magnitude of
moment.

Calculate stress-strain conditions at per-
fectly bonded section under the afore-
mentioned moment.

Calculate stress-strain conditions at the
middle section between adjacent cracks.
Solve the basic equations in the form of
recurrence formulas expressed in Eq. (24).
Judge whether bond failure has occurred
or not in the region up to cracked section.
Judge whether the boundary condition
at cracked section is satisfied or not.
Judge whether calculated average curva-
ture is equal to that given at the start of
present step.

Judge whether new crack develops or not.

©

® 9o @

® @

®

Cer: Strain on ten. fider
Ner : Nuster of cracks

Lgv: Averaoe crack
snacing
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Fig. 5 Flow chart of analytical procedure.

@: Judge whether the condition of presence

of perfect bond zone is satisfied or not.

As was described in the analytical procedures,
¥+ and {Sz)¢ at the section ¢ within active bond
(ABZ) at the stage when RC member attains the
prescribed average curvature can be obtained by
solving the Eq. (24). Using the computed y¢ and
{Sz}+ in the Eqs. (4), (8) and (9), the distribu-
tions of bond stresses, strains in the lower re-
inforcement as well as the strains in concrete at
the same level of the lower bar along the axis of
the member. Moreover, substituting {es}s, (e}«
and y: into Eq. (5) and then Eq. (1), the distribu-
tions of stresses and strains in concrete in the
depth of the member may be calculated at arbi-
trary sections. Based on their values flexural
moment can be obtained using Eq. (7). Curva-
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ture ¢« at arbitrary section can be calculated as
follows; @i=({es}i~eo,47)[(d—¥1). In the case
of considering ‘‘prestress effect’” bending mo-
ment induced curvature corresponds to the above

value deducted by the contribution due to that
effect.

After the stress and strain states as well as
curvatures at arbitrary sections of RC members
have been determined through the preceeding
procedures, average curvatures gav as well as
average crack widths wao are calculated according
to the four cases defined previously as follows;

CASEI;
. {¢'a‘+% é}l(¢t+¢t+x)_4:l7} /(a‘+a)
wao= 3 {[{es)e= (6 1+ {ed wam el 42
CASE II;
dao= 1¢‘a'+% "E (Gt punda
+¢1a] [(at+a)

Way= "tgl {[{es) = (e} el +[{es) 141

— (e ]} Az +2(es" —€c, a7)a™
CASE III;

heyes [% i}i:l(¢¢+¢t+,)Ax] /a

B ?:% (Les) 4= (e} ) +L {es} e — ler) saa]) A2
CASE IV;

oo [—;— "g' (¢s+¢c+|)dx+¢"a"} /a

e = ":gl' ([{es) = () 1+ T es} 101 — (e} smal} A2
+2(€s"—€c..ﬂ‘)a"
where

nu: No. of station between two segments
at which bond failure starts to occur

@".¢'": the curvatures in the zones of PBZ and
BFZ, respectively
a',a: the half lengths of PBZ and BFZ,

respectively (see Fig. 3)

For the numerical analysis the number of
segmental division was selected to be 500. Al-
though, rigorously speaking, es'=e' must be
implemented in the boundary condition for PBZ,
numerically negligible value of e'—e'=0.1x
10~ was assumed for the sake of numerical anal-
ysis.

4. COMPARISONS OF ANALYTICAL AND
EXPERIMENTAL RESULTS

(1) Basic Features of Present Analytical
Method

As an example to show the basic abilities of

authors’ analytical method, the calculated distri-
butions of stresses and strains in concrete as well
as steel, bond stresses as well as slips, curvatures,
position of neutral axis, etc., are illustrated in
Fig. 6. The calculations were made on a flexurally
tested RC member with percentage of steel p=
1.139, (diameter of bar: 32 mm) and uniform
axial compressive stress of opr=50 kg/cm?
(4.9 MPa) under —60°C. As can be seen from the
figure, the present analysis is possible to evaluate
rather quantitatively internal stress and strain
distributions in RC members.

In Fig. 7 are also presented, examples of calcul-
ations for developments of stresses in steel as
well as bond stresses along the axis of RC beams,
which were tested under N.T., —60°C and
—120°C, together with calculated average crack

spacings. The fact that all the crack spacings
:tso'c o ¥

1
3
.

(unit;kg/ca?

otf tkg/ea')

°g 8
Stress

{kg/cat)

°g 8
Bond Stress Tx

#lusen)

Curvature

g

.6 An example of analyzed stress, strain,
slip and cuvrature distributions along
longitudinal axis of RC member under
—60°C.

p*1.133(0R), cpre0 \w: section between two cracks

&aglq section.

Cracked secti

—120°C_ o= He10.67
—P l (t-a)

{t-a)
|

Bond Failure !

1
19 x(en) 8 ® x(ea) °

Fig. 7 Typical analyzed distributions of stresses
in reinforcing bar and those of bond.
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happened to be the same for the above three
cases does not necessarily reflect the inability
of the proposed method to predict the tempera-
ture dependent crack spacings, as is clear from
Table 1.

As was anticipated by the characteristics of
input bond stress-slip curves, the lower the
temperature, the rate of increase in reinforce-
ment stress along with the maximum bond stress
becomes larger. Under N.T. and —60°C, descend-
ing branch of bond stresses can be observed.
Especially, under N.T., although defining bond
failure as an amount of slip is not necessarily
true to actual phenomena of bond, it may be
said that at least the zone of bond failure can be
displayed by inputting appropriate data for
bond stress-slip curves.

(2) Cracking Moment

To accurately compute cracking moment is not
only important in the light of confirming the
load resisting properties of RC beams but also
in view of the fact that cracking moment plays
an decisive role in determining deformational
behaviors when estimation is to be made such
code procedures as ACI and CEB-FIP. In the
following characteristics of cracking moment for
RC beams are discussed by comparing test
results with those obtained by a few varieties of
analytical procedures.

As can be seen in Fig. 8 (I), elastic analysis
tends to underestimate cracking moment of RC
beams under L.T. even if tensile strength increase
of concrete due to freezing effect is taken into
account in the -calculation. Since the trend
seemed attributable mainly to nonlinearity in
stress-strain curves of concrete as well as what
is called "‘prestress effect”, calculation was per-
formed incorporating the nonlinearity, the results
of which are presented in Fig. 8 (II). The fact
that the gradient of regression line for the ratios
between measured and calculated cracking mo-
ment (M.) with respect to reinforcement ratio
is almost halved as compared with the former
case (Fig. 8 (I)) indicates an essential role of non-
linearity of concrete. However, the discrepancy
between the two values seems still unsatisfactory,
which inferred the necessity of considering the
second factor, i.e., ‘‘prestress effect”. Fig. 8 (III)
shows the analytical results when both non-
linearity of concrete and ‘‘prestress effect’” are
taken into consideration. Although Me is a
little below unity, the value is almost constant
with the changes of reinforcements ratios as
well as temperatures, which confirms the validity
of the analysis. For instance, the prestress at
the extreme tensile fiber were calculated as 17.5
kg/cm? (1.72 MPa) for the beam reinforced with

O: T=-60°C oprsd
®: T2-120°C Gpe=0
A2 Te-60°C OpreS0 kgfea?

1.5
{1}€E1astic Analysis {ag=aced) 0/0/
[
1.0} %‘ 040,877
only for -60°C)
0.5 N—

0% T4 1.5 2.0 2.5
Rstio of Reinforcenent p(%)

1.5
{0} Inelastic Analysis (ag=ag=0)
1.0 -'o”__‘, —'___—_-—q‘—q""
© ° Rer=0.102p40.856
1y for ~60°C
0.5

0 0.5 1.0 1.5 2.0 5

fatio of Reinforcement p(3)

{m)nefastic Analysis Considering
. Prestress Effect

e g
0) .\ Rere0.036p40.868
only for -60°C)

2.5

Ratfo of Tested Cracking Moment to Calculated one Rere(Nerlex/ (Mardaal’

0.5

o $ 1.0 1.5 2,0

Ratio of Reinforcement p{3)
Fig. 8 A comparison of cracking moments
under low temperature calculated by

three methods.

1.139, steel tested under —120°C and as 16.8 kg/
cm? (1.65 MPa) for the beam with reinforcement
ratio of 2.269, under —60°C.

(3) Distribution of Strain along Reinforce-
ment

Typically, Fig. 9 shows comparisons of analyti-
cal distributions of strains along reinforcing bars
with those obtained by the tests of RC beams
with reinforcement ratio of 1.029, subjected to
two stages of loading under —60°C.

The above figure indicates that the present
analytical method fairly well reflects the rate of
strain increase towards cracked section, the
number of cracks with the stages of loading, etc.
However, some discrepancies may by observed in
terms of the manner of strain distributions in the
vicinity of cracks and the absolute values of
strains. The reason for the former may be
explained by the facts that, in this analysis,
properties of bond stress-slip curve such as
maximum bond stress, slip at bond failure and
softening degree of bond stress beyond maximum
bond stress, etc. are assumed invariable at every
location of reinforcement between adjacent two
cracks and that lead wires attached to bars may
have deteriorated bond to some extent. The
probable explanations for the latter may be that
in the analysis contribution of tensile concrete is
neglected at the cracked section and that experi-
mentally observed crack spacings were not
necessarily uniform. Incorporation of ‘‘prestress
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Fig. 9 Typical comparisons of measured and
analyzed strain distributions along re-
inforcement under —60°C.

effect’” brings analytical results closer to the
experimental values if the comparison is to be
made only at the cracked section.

(4) Moment-Average Curvature Relationship

In this section measured moment-average
curvature relationships are compared with those
calculated by the present method of analysis
along with those predicted by ACI as well as
CEB-FIP Codes. For the case of CEB-FIP Code,
909, of the strain at cracked section, which is
obtained by the authors’ method without con-
sidering ‘‘prestress effect’’, was assumed in
calculating the average curvature. Also, the
first cracking moments, which are predicted by
the present method without ‘‘prestress effect”,
were used in applying both of the Codes. Such
measures were taken because, as was mentioned
in section (2), according to elastic calculations as
such provided in the Codes, cracking moments are
apt to be partially underestimated for the purpose
of comparison.

In Fig. 10 comparisons are made of the two
beams with identical reinforcement ratio except
for the diameters of bars, 16 mm and 32 mm,
which were tested under — 120°C.

It can be seen from the figure that all the
three methods enable to indicate clearly the
contribution of tensile concrete to flexural
rigidities, showing a fairly good agreement with
test results in terms of tendency. As construc-
tions of the formulas adopted in both Codes imply,
it is impossible for them to reflect the phenomena

-0 ——

<o : Experizent =+~ : Analysis(ogeag)
—-— 1 CEB-FIP Code

—= ¢ ACT Code 2= malystslagag)

— : Cracked Section

[ T=-120°C, cz'ﬂ

Hoaent M{t-n)

120 © 140

20 40 60 8o 100
Average Curvature ¢4 (W/cn)

Fig. 10 Comparisons of measured and cal-
culated moment-average curvature
relationships.

Manent a(t-n)

0 20 40 60 80 00 120 140

Average Curvature ¢y (u/ca)
Fig. 11 Comparisons of measured and cal-
culated moment-average curvature
relationships.

of distinct drop of moment every time a new
crack appears.

In contrast the present method can take into
account the effect of cracks one by one, being
perfectly controlled by deformation, as in the
actual test deflection control loading was adopted
at the loading points of the beam as shown in
Fig. 14. Therefore, it pursues the up-and-down
of measured curves fairly well. In terms of
quantitative evaluations, however, inclusion of
“prestress effect””, is found to improve the degree
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of agreement, especially when temperature is
lower.

Fig. 11 corresponds to the cases for RC beams
subjected to combined moment and axial force
under —60°C. As is shown in this figure, CEB-
FIP Code tends to underestimate the moment
with increase in curvature for the cases investi-
gated and the tendency is more pronounced as
the reinforcement ratio becomes smaller. In
applying ACI Code, since no mention is given as
to the cases in which axial force is imposed on
moment, transformed cracked section moment
of inertia obtained from combination of moment
and axial force was assumed. It can be seen that
ACI Code predicts the test results specifically in
this case. The present method, on the other
hand, evaluates the deformational behaviors of
RC beams with axial force with almost the same
accuracy as those without axial force.

(5) Average Crack Spacing

In Table 1 average crack spacings in stabilized
crack state obtained by the present analysis were
compared with those of experiments as well as
those calculated by Morita!® and CEB-FIP
Code'>, for 20 specimens out of 25 tested in the
framework of the present study (excluding J, K
series and A-3, see Appendix).

Of the three methods investigated CEB-FIP
Code gives the fittest results with experimental
results under N.T. However, the discrepancies
of analytical results among the three methods
are not so conspicuous that the authors’ proposal

‘may evaluate the crack spacings with almost
the same accuracy as those predicted by Morita's
as well as CEB-FIP Code in terms of absolute
values and scatters.

On the contrary under freezing temperatures,
the ratio of experimental results to those calculat-
ed by Morita's as well as CEB-FIP Code indicate
standard diviations of about 0.4, which are,

Table 1 Comparisons of average crack spac-
ings obtained by experiment with
those obtained by Morita, CEB-FIP
code and proposed method.

. . CEB-FIP Proposed
T ﬁ‘;’ﬁf Morita Code Method
(°C) | Speci-
mens 3 L7 z oz X (73

N.T. 10 0.77 { 0.20 | 1.10 | 0.11 0.79 | 0.18

—60 | 8
—~120 2}10 1.15 } 0.42 | 1.71 } 0.39 | 1.02 | 0.23

N.T. | 10
—60 8} 20| 096 | 038 | 1.41 | 0.41 | 0.91 | 0.24
-120| 2

¥: Average ratio of measured average crack spacings to
calculated ones
os: Standard diviation

respectively, 2 and 3.5 times larger than those
obtained under N.T. Moreover, CEB-FIP Code
estimates average values of crack spacings about
70% smaller than those obtained by experi-
ments. This may be taken as granted, because
these practical methods have been so derived
based on the experimental data under N.T,,
that they are not suited for application to the
freezing temperature conditions. In the case of
present method, however, average values of
analytical results almost coincide with those of
experiments and the scatters of ratios between
calculated and experimental results were reduced
to about 1/2 compared with those obtained by
Morita’s and CEB-FIP Code. The fact that the
accuracy of analysis for our method is not almost
influenced by temperature conditions may be an
indirect evidence for the favorable features of the
present method, which is possible to take into
account the mechanical as well as bonding pro-
perties of concrete independently and also in
accordance with the temperature conditions.

(6) Average Crack Width

As a typical example shown in Fig. 12, the
crack widths measured in the experiments of RC
beams with thick bar of 32 mm, the reinforce-
ment ratio of which was 1.139,, are compared
with the analytical results under the tempera-
tures of —60°C. It is clear that Morita’s method
tends to overestimate crack width. This is due
to the fact that Morita’s method is apt to over-
estimate crack spacings when the effective con-
crete tensile area per a piece of reinforcement
Act/m exceeds 100 cm? and that the tendency
is extrapolated to the cases of freezing tempera-
tures.

On the other hand, CEB-FIP Code under-
estimates the experimental results even when the
condition attached to average steel strain €sav2
0.4¢s' is observed. The tendency becomes more
marked under low temperatures'®. The main

0.4,

0.3

0.2t

Analysis(og>oc)

/'\ CEB-FIP Code

(313

Average Crack Width Wav(m)

0 w oo 0 do0 s

Stress of Reinforcesent og(kg/ca®)
Fig. 12 Typical comparisons of measured and
calculated relationships between ave-
rage crack width and stress of rein-
forcement.
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reason for this, as is indicated in Table 1, may be
attributed to the fact that according to the Code
procedure average crack spacings are also under-
estimated. Another reason may be due to the
fundamental nature of the Code formula, by which
average strains in reinforcements are likely to be
evaluated smaller because the tensile stresses in
reinforcements immediately after first cracking
are too high.

The authors’ method, however, as was the
cases with average crack spacings, gives a good
correlation between analytical and experimental
results of crack widths, irrespective of tempera-
ture conditions, notwithstanding that the method
predicts a little larger values than experimental
ones. Also, the influence of ‘‘prestress effect”
can be seen only marginal and therefore may be
disregarded in the calculation of average crack
widths for the sake of safer evaluations.

Although, as was stated in reference (2),
average crack spacings are generally wider at
L.T. than at N.T., judging from not only experi-
mental but also analytical considerations, average
crack widths are likely to be smaller as the tem-
perature drops, as is indicated in Fig. 13. These
phenomena can be expressed by the authors’
as well as the other two methods investigated.
However, the latters, as contrast to the authors’,
can not calculate the average crack spacings ac-
curately enough to estimate the average crack
widths closer to experimental results in quantita-
tive terms.

The summary of comparisons among the three
methods of estimations for average crack widths
for 20 RC beam specimens tested is tabulated
in Table 2.

The above mentioned advantages of the
authors’ method over the other two procedures
are confirmed even under N.T. for the ranges of
parameters investigated. In the cases of freezing
temperatures the two conventional methods show
considerably large scatters as against to the
authors’. Moreover, while CEB-FIP Code under-

Table 2 Comparisons of average crack width
obtained by experiment with those
obtained by Morita, CEB-FIP code
and proposed method.

Num- : CEB-FIP Proposed
T | berop] Mot Code ‘Method
(°C) | Speci- = = =

mens | F oz | N| Floz| N| F|oz| N

N.T. 10 [0.92}0.29| 56 [1.26/0.29| 49 |0.99|0.26| 56

-60 8 -
120 2]»10 1.16{0.62| 55 {1.71]0.54{ 40 [1.21{0.29| 55

N.T 10
-60 8} 20 {1.0410.50] 111 {1.46/0.48] 89 }1.10{0.30} 111
-120 2

Ly

Average ratio of measured average crack width to
calculated one
gz: Standard diviation

N: Number of measured values compared with calculated
ones (0,11=500~yield at intervals of 500 kg/cm?)

estimates experimental values to extremely large
extent, the degree of underestimation by the
authors’ is far smaller, which seems to give higher
credibility to the authors’ method for the predic-
tion of crack widths in the extended ranges of
temperatures.

5. CONCLUSIONS

The authors derived a new rational analytical
theory for the prediction of deformation as well
as cracking behaviors of RC flexural members
based on the bond stress-slip relationships be-
tween steel and concrete. The following conclu-
sions were drawn from the comparisons of analyti-
cal and experimental results;

(1) The following governing differential equa-
tion was formulated in the bond active zone of
RC members. This equation is able to include
such valiables as reinforcement ratios, bar diam-
eters, axial forces concrete strengths and tem-
perature conditions;

d*Szldxt=Us[/AsEsbmax (1 —G(¥)} 1=
dSzldz=f(v)
where Sz=02z/0mz, G(¥) and Q(¥) both are func-
tions of only ¥, which is the depth of neutral axis.

(2) The above equation was solved based on
the mathematical boundary conditions, which
were classified into the four cases defined by the
distributions of the internal bond stress-slip con-
ditions along RC beams. This analytical method
was confirmed to be able to predict systematical-
ly the deformation as well as cracking behaviors
and also the stress-strain states at arbitrary sec-
tions of RC beams for the loading stages before
first cracking up to yielding in steel.

(3) The authors’ developed a rational analyti-
cal method to calculate the first cracking mo-
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ments of RC beams loaded under freezing tem-
peratures, taking into account the nonlinearity
of stress-strain curves for concrete as well as
the what is called “prestress effect’” which is
caused by the difference of thermal contractions
between concrete and steel under extremely low
temperatures.

(4) By applying the proposed method, strain
distributions along RC beams can be predicted
fairly truly to the experimental evidences when
external moments or average curvatures are
given, without previously setting the positions
of cracking. This method can also deal with the
descending zones of bond stresses and bond
failures as well by controlling the types of input
bond stress-slip curves.

(5) Comparisons of analytical data with
experimental results concerning moment-average
curvature relationships showed that the authors’
method gives almost the same accuracy of predic-
tion as ACI as well as CEB-FIP Codes, except
for that CEB Code tends to underestimate mo-
ments of RC beams subjected to axial force under
low temperature as curvature proceeds towards
the point at which the steel begins to yield. More-
over, the proposed method of analysis was found
to be able to represent fairly well the unstable
up-and-downs of moment-average curvature re-
lationships, which is especially peculiar to RC
beams loaded under low temperature and can not
be expressed by the practical formulas such as
those adopted in ACI and CEB-FIP Codes. It
was also recognized that incorporation of ‘‘pre-
stress effect’”” improves the accuracy of estima-
tion especially when the reinforcement ratios are
higher and the temperature is lower.

(6) As for crack spacings of RC members
under normal temperatures, the present method
is able to evaluate the experimental results with
almost the same accuracy as Morita's method and
CEB-FIP Code. On the other hand, the authors’
method can express the fundamental property
of widening crack spacings under lower tempera-
tures so realistically that the accuracy is not im-
paired even under the condition of freezing tem-
peratures. The above two empirical methods,
because of their inability to take into considera-
tion properly the effects of changes of material
properties under low temperatures, showed ex-
tremely large scatter when compared with ex-
perimental results.

(7) Concerning average crack widths, the ac-
curacy of prediction of the authors’ method was
found to be none the less inferior to Morita’s
and CEB-FIP Code. As was the case with crack
spacings, adaptability of the proposed methed to
the cases of predicting crack widths under low
temperatures was also confirmed superior to the

two comparative method in terms of scatters of
the ratios between analytical and experimental
results. Also, it was recognized that in assessing
crack widths as accurately as possible it is im-
perative for the analytical methods to evaluate
crack spacing realistic to phenomena observed
in the experiment.

(8) In order to improve the proposed analyti-
cal procedures in terms of accuracy, more investi-
gations are needed on the fundamental input data
such as the types of bond stress-slip curves includ-
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Table 3 Properties of RC members.

Properties of Conc.
» D |ope | T under N.T.
(kg/ Oeu Obu ainl 5’ £)1
%) {(mm)| cm®)| °C) (ke (ke “‘%’,,,.)E :::)
A-1 |0.57] 16 0 [N.T.) 274 | 45.2 | 23.3 | 21.2
2 |0.57] 16 0 |—60| 295 | 52.1 | 27.4 | 32.6
3 1057} 16 0 | —60| 451 | 44.3 | 33.2 | 32.6
B-1 [1.13( 16 0 |N.T.| 368 | 40.6 | 33.6 | 31.9
2 |1.13] 16 0 | —60| 346 | 46.7 | 31.0 | 20.7
3 |1.13) 16 0 |—120( 348 | 49.4 | 32.7 | 30.5
C-1 {1.99] 16 0 |N.T.| 256 | 49.0 | 23.6 | 18.8
2 [1.99] 16 0 |—60| 301 [ 46.5 | 28.0 | 26.0
D-1 |1.13] 32 0 |N.T. 383 45.2 30.8 30.0
2 |1.13] 32 0 | —60]| 303 | 41.6 | 29.3 | 31.9
3 1113 32 0 ;—120f1 315 | 41.2 | 31.3 | 27.8
E-1 {2.26| 32 0 |[N.T.| 324 | 38.6 | 26.7 | 3L.9
2 12.26| 32 0 | —60| 342 | 33.5 | 29.0 | 30.5
F-1 [0.57] 16 0 |N.T.| 684 | 49.0 | 44.2 | 38.7
2 |13 16 0 |NT.| 634 | 50.5 | 44.8 | 36.8
G-1 1057 16 | 50 |[N.T.| 347 | 48.1 | 36.1 | 29.2
2 10.57{ 16 50 | —60 378 41.9 26.7 33.0
H-1 |1.13] 16 | 50 |[N.T.| 358 | 48.6 | 25.5 | 31.5
2 |13 16 | 50 | —60| 386 | 43.6 | 35.7 | 31.8
1-1 1113} 32 | 80 |N.T.| 292 | 36.1 | 25.9 | 29.3
2 |1.13] 32 0 |—-60f 35 | 35.0 | 23.1 | 38.9
J-13]11.02| 16 0 |N.T 327 | 34.4 | 26.8 | 25.2
2211.02| 16 0 |—-60| 355 | 36.8 | 30.4 | 25.6
K-1311.02| 32 0 |N.T.| 313 | 358 | 28.4 | 25.8
2% )1.02( 32 0 |—60| 299 | 34.0 | 26.4 | 28.0

1: 1/3 Secant Moduls 2: Size of Specimens $10x20cm
3: Instrumented Bar is used
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ing the characteristics of descending branch of
bond stress and definition of bond failure as well
as contribution of tensile concrete at cracked
sections.
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7. APPENDIX: Outline of Experiment'®

Typical configurations as well as dimensions
of RC beams are indicated in Fig. 14. Properties
of RC beams tested are listed on Table 3.

Metric Conversion Factors

1kg/cm*=0.098 MPa (=N/mm?)
1t-m=9.8kN-m
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