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SYNOPSIS

The experimental work regarding the wultimate strength of fixed slabs is
initially carried out, including such variables as f£.', fg,, P, d, cross
sectional area of boundary beams and diameter of loading platé. Due to the
testing results, the theoretical equation is derived taking into consideration
the membrane effect, and practical equation of shear strength is proposed.
Unbalanced forces, which are experimentally recognized in the section such as
in-plane force, enhance the ultimate flexural strength and is more influenced in
slabs with a higher value of pfg,/f.' and larger restraints of lateral
movement. The calculation equation” regarding punching shear is induced in
consideration of such items as critical section at shear failure, in-plane force
acting as the cross section of slabs and influence of effective depth.
Finally, the following practical equation for the shear strength of fixed slabs
is recommended, in which B3 and By are the function of effective depth and that
of rigidity, respectively.

Ty = Bg (1 +Bg + By £y
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1. INTRODUCTION

Many experimental and theoretical research works have been so far carried out
regarding simply supported slabs. At the present stage it is possible to
calculate the ultimate strength of slabs with fairly good accuracy by way of
either the yield line theory([l] applicable for the flexural strength or the
equations for the punching shear proposed due to the experimental works.

On the other hand, few works have been done regarding fixed slabs. It might be
reasoned that in-plane force occurred due to the restraints of slab boundaries
complicates the analytical approach, the relationship between in-plane force
and ultimate strength of slabs is not clear, and the quantitative analysis of
the boundary restraints is difficult.

The reinforced concrete slabs, generally designed as £fixed slabs, are main
structural members of such port and harbour facilities as the upper element of
piled wharves and the caissons of breakwaters. These members in most cases are
subjected to concentrated load instead of uniform loads, and it is considered
necessary to evaluate the collapse mechanism and the ultimate strength with
regard to fixed slabs. The purpose of the present paper is to establish a
practical and rational design method applicable to slabs under the real loading
and supporting conditions according to the experimental and theoretical
approach. Experimental work is in this paper 1limited to the square slabs
without shear reinforcements.

2. REVIEW OF ULTIMATE STRENGTH REGARDING Table 1 Equations for punching

REINFORCED CONCRETE SLABS shear of slab

2.1 Punching Failure Researcher Proposed equation  (Unit: N, mm)
—0.075% Voo

Flat slabs and footings tend to Ps»...FM-M

fail in punching shear because of 1+o.435%§‘:%

large bending moment and shear 1

force acting at the areas jointed Moe(2) P"**:s’""(l—-a/l_“zﬁ)

with columns. Table 1 summarizes (free of corner lifting)

the main calculation equations of =8m;a/l
Ty

simply supported slabs deduced
from the experimental  works.
Kinnunen{10] proposed the cal-
culation method of shear strength  yithaki (3) Psn..r=d’(1——g-)(8.24+1.31pu,,)(1+0.5%)
based on the fracture model.

(restrain of corner lifting)
My=0eyqd*(1—q/2), b=by

Psnear= bdy/ 0c4(0.212+0.0575 pasy)

H; (4) -
In-plane force effect was initially erzo8 b=4(a+d), ps,y=53.9
pointed out[l11l] from the fact that R ). 6) Panear=0.300 bd(84.9 ocup)**
ultimate strength in  flexure coon ¥ b= by+3.5 d
remarkably exceeded the load posy
calculated by way of the yield line 0.211 bdv ”"‘(HI'S m)

: Pspear
theory. Hewitt[12] separated Kakutaete (7)| " H..Z%

in-plane force occurred at the slab _ —
boundary into the fixed boundary b=bt3 md paw/vocu 2104
action and the compression membrane Lower value among the following two equations

action. He assumed the failure Pm.,=1’lﬂ‘£(~l—:—°;jﬂ)— (flexural type)
model similar to the Kinnunen's 0.2—0.9

model and proposed the iteration Long (8).(9) Pany A8 bAIO0PIE y
method of shear strength. e 075442

[

b=4(a+d)




2.2 Flexural Failure

The yield line theory is mostly applicable to calculate the flexural strength
of reinforced concrete slabs. The ultimate strength of slabs subjected to
concentrated load varies with such factors as the yield line pattern and the
ratio of 2r/Q, if the yield line theory is introduced. Even if square slab is
assumed to be circular slab, the difference of the ultimate strength tends to
be minor in the region that 2r/% is 0.05 to 0.30. Therefore, the flexural
strength is in this paper calculated with the following equation.

2mmy (1 + i)
Pflexz = 1= 2r
o

3. LOADING METHODS AND TESTING RESULTS

3.1 Testing Procedures

Main factors which affect the punching shear strength of slabs might be
properties of structural materials, dimensions of slabs, supported conditions,
loading conditions and amount of shear reinforcement. In this paper, the slabs
and the testing conditions are 1limited because port facilities are in
consideration. The proto-type specimens adopted are square slabs restrained
with the supporting concrete beams along the boundary. Main variables consist

of strength of concrete (f.' = 24 to 40 MP,), yield point of reinforcements
(fs = 293 to 409 MP,), depth of slab (d = 0.043 to 0.161 m), reinforcement
ratio (p = 0.72 to 2.06%), degree of restraints at boundary (cross-section of

boundary beams (0.20 x 0.26 to 0.60 x 0.38 m)), and area of concentrated load
(mainly, ¢0.05 to ¢0.30 m). Table 2 indicates the dimensions of specimens and
the testing conditions. Square slabs have 1.0 x 1.0 m. Boundary beams of fixed
slabs are jointed with the testing bed by way of nuts. The items of
measurements are strain, deflection, deformation of boundary beams, cracking and
failure load. Strain and deflection at slab element are measured at the
direction of both the center lines of slabs and the diagonal lines of slabs.
Data of vertical and lateral movement of boundary beams are obtained. Fig. 1
illustrates the loading test.

............ 235 kN
----- 54.9 kN
--—-— 86.2kN
failure (117.6 kN)

Fig. 1 Loading apparatus Fig. 2 Crack pattern



3.2 Cracking Table 2 Test conditions

E)_ _qr_ag_k.. Ea_tt_e_l_f-l'l Dimension of specimen Properties of materials
Fig. 2 shows the crack
paztern Though slabs No. of u?“ Slab Boundary | Comp. Reinforcement
. condition beam strength
failed in shear have in- specimen (mm) if;:;five Bar arrangement (Widl.\tig):\t) of . Yigl:i Elongation
" concrete | poinl
complete flexural crack (mm) | Main bar | Reinforeement } )™t (N/am) | (N/mart) | (%)
pattern, the yield pat- 1 - 6 146, @6 | 0.99 [350x260| 31 | 33 31
tern of slabs failed in 2 | #3 7 |#s, @6 | 1.0 |asoxze0] 39 | 293 26
flexure (specimen No. 17 3 5 [$6, @6 1.05  |350%260 | 24 | 362 30
and No. 18) is similar 4 8 |$6, @6 0.99 |350x260| 28 335 31
to the shape of circular 5 47 |46, @6 1.01 350260 | 29 394 24
or octagon inscribed in 6 4 |6, @6 | 1.8 |350x260| 38 | 293 26
a square slab. 7 45 |46, @6 1.05  |350x260 | 38 | 293 2
. 8 43 (46, @6 110 |350%260 | 39 | 203 26
b) _Crack width 9 | 0 | M [#e @9 om ymoxae] 30| a0 16
Lower surface of slab 10 46 |46, @3 | 2.06 [3s0x260| 30 | 409 16
has larger crack width
oo dg i th . 1 45 |46, @6 1.5 |200x260 | 30 | 409 16
mpared with upper sur 12 w7 |s6 @6 | 1.01 |sooxze0| 20 | 409 16
face. Average ~ crack 13 53 |#6, @6 | 0.89 |350x260 | 33 | 293 26
width (average{of larger 14 71 |49, @9 1.00 600x290 | 27 367 30
three data) is 0.7 to 15 103 [#9, @6 | 1.3 |e00x320| 29 | 367 30
1.0 times as large as
maximum crack widtr? and 16 11 [$13,@9 | 0.92 |e00x380 | 28 | 415 20
is  less tha 0 lé to 17 4190 41 |46, @6 1.16 350%260 | 31 293 26
0. 20 h Yf % b 18 | #300 | 45 |6, @6 | 1.05 [350x260| 31 | 293 26
-20 mm at half of shear 19 6 |#6 @6 | 1.05 |soxa0| 25 | 362 20
failure load. In this 20 6 |#6 @6 | 1.03 |3s0x260| 29 | 293 26
case, then, there is no Unifom
concern to confine crack 2 | oad 4 |46, @6 1.08  |350x260 | 39 | 362 30
width from the int of 22 45 [46, @6 1.05  |200x260 | 28 409 16
durability[13] po 23 45 |46, @6 1.05  |600x260 | 27 409 16
ity * 24 $ 100 43 |46, @6 1.10 350260 | 39 293 26
25 |Unifom} 45 146, @6 1.05 |350x260| 36 | 293 26
3.3 Deformation of 26 $ 100 45 146, @6 1.05 - 33 293 26

Boundary Beams and Slabs

Note: C) Dimension of slab element 1,000 x

No vertical deformation 1,000 mm

of boundary beams oc- () Supporting conditions are fixed slabs
curred with the limits of for No. 1 to No. 25 and simply sup-
measured accuracy. Lar- ported slab for No. 26, respectively.
ger lateral movement to- C) Uniform load means the sixteen points'
ward outward direction is loading.

observed in smaller

boundary beams. Lateral
deformation tends to increase in accordance with increase of applied load, as
might show the occurrence of in-plane force in slab area.

After cracking, the deflection calculated with the elastic analysis does not
agree with that measured. The change of flexural rigidity (denoted as k) is
defined for the slabs failed in flexure as follows, in which k is considered to
be the ratio of §. (calculated deflection of circular elastic slab) and Gmea
(measured) .

P
k=s
Gmea
where ) ) 2 )
S=M(r—log-2—[;~—3£ +9'_)
4mEQ3 4 L 16 16



At the failure stage, k is 0.146 for specimen No. 17 and 0.143 for specimen
No. 18, respectively.

Fig. 3 shows the strains of slab

center-line both at upper surface
200 comp.stress

and at lower surface where no crack
is observed. These strains do not “ “"ﬂkgfﬂ"hce
coincide with the value calculated —~ 150F ﬂ}>\ T4
with the elastic analysis. The z s"ﬁm at RN /
; | = ower surface !
axial stress at center line of o 100 \ Ti
slab, which is obtained from strain 3 stress !
at  center line and strain = 50HN/mmiE_0 i
perpendicular to center 1line, is (5:'1‘3_2’ +00 0 -100 \!
also indicated in the figure. It is 0 comp. _tens. LS.

likely from the figure that in-plane

Specimen No.14 (270mm from slab center)
force occurs even at the lower stage

of loading and increases in

accordance with increase of applied Fig. 3 Measured strain and calculated
load, this phenomenon being similar axial stress at slab surface

to the test results of boundary

beams.

3.4 Punching Shear Failure

Three fracture patterns are observed in the loading test, such as the flexural
failure, the shear failure at the joint between slab and boundary beam, and the
punching shear failure near the 1loading plate. Specimens, in which the
diameter of loading plate is over 19 cm, fail in flexure. Specimens loaded at
16 points are suddenly pushed down at slab area from boundary beams.

In most specimens, the center upper part of slab area is punched at the diameter
of loading plate, when crack pattern is incomplete and no sign of failure is
observed beforehand. The inclined angle of the truncated cone measured after
loading test ranges from 25° to 30°. As the inclined crack occurs at the
neutral axis of cross-section of members[2], it is considered the critical
section is in the region of 0.71d to 1.07d from the loading plate. In this
paper, the critical section is defined at 1.0d from the loading plate.

Index p x fsy is adopted as the influential factor of reinforcement because of
Kakuta's research results[7]. It is likely that final shear failure occurs
nearly at the flexural failure stage for flexure type of Long's equation and
for lower p x f., of Moe's equation shown in Table 1. In fixed slabs tested,
no clear influence of index p x fsy is observed.

Tensile strength of concrete expresses with more accuracy the shear failure of
slabs instead of compressive strength of concrete(7], as might be reasoned that
the final failure mechanism is similar to diagonal tension. In this paper,
tensile strength is calculated from the equation £y = 0.438 /?;T. Test results
show that the effect of f,, toward punching shear is not evident because of
the limited range of concrete strength.

Moe indicated the area of loading and the effective depth of slab as the index
of a/d. However the index a/d is not adequate, as is shown by Kakuta(7], to

express two factors simultaneously. Test results in this paper are mainly
arranged with effective depth of slab, this method being similar to the



research work of Kakuta[7], Kani(l14] and Kennedy[15]. As is shown in Fig. 4,
shear strength of fixed slabs decreases in accordance with increase of
effective depth.

3.5 Comparison with Present Design Methods

Design shear strength is calculated with such codes as Reinforced Concrete Code
of JSCE (1980), CP-110 (The structural use of concrete, 1972) and CEB-FIP Model
Code (1977). Table 3 shows the calculated results in which the ratio of the
failure punching load and the calculated load varies in wide range. On the
contrary, the specimen No. 26 and Kakuta's slabs([7], which are simply supported
slabs, have the lower ratio by 1.0 to 1.5 compared to the fixed slabs tested in
this paper. Though the failure load in punching shear is in excess of the
calculated results based on the present codes, it is likely that the design
load of fixed slab tends to be underestimated compared to that of simply
supported slabs.

Table 3 also indicates the calculated results based on the proposed equations.
The ratio of the failure load and the calculated load ranges from 1.6 to 3.0,
precluding such cases that specimen has larger effective depth (No. 16) and
Hewitt's equation is applied with the restraint factor Fr = 0.5 to 1.0. All
proposed equations except Hewitt's are deduced based on the experimental and
research work of the simply supported slabs.

Therefore, there remain some problems in adopting the present design methods.
It is considered that this discrepancy comes from the effect of in-plane force
which is attributed to the horizontal restraints of boundary beams. This
phenomenon is partially estimated from Hewitt's equation, in which the failure
load depends on the boundary restraint.

Test result (fixed slab)
o (£-2r)/2d=94~102

8 : a (¢-2r) /24=64
4 o o ({-2r)/2d=44
° o ({-2r)/2d=28
oy eRRTMEE L
— Koni(/-2r/2d=10) _ Kgkyta f; =294 N/'n'lﬁ'#,'f’ﬁf:“ébs" 10

Kani :fc =294 N/mmp fgy=2.9
Kennedy : fc =29.4 N/mm?p = 00|
| Kennedy(f—2r/2d=2.0)

Shear strength 1, (N/mm?)
w

oni \bs(\\'f"““\“’ 0 ACI({-2r/2d=100)
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Fig. 4 'Influence of effective depth toward shear strength of slab



Table 3 Comparison between testing results and
calculation values regarding punching shear

. Piest/ Peay
No. of ia;;“re Prest | Prest | Prest | _Pren Hewitt
Specimen | Prest P | Prca Per | Pesn-rir| Moe | Yitzhaki | Herzog Regan | Kakuta | Long
(kN) Fe=0.00| F,~0.50| F,=0.75| F,=~1.00
1 8.0 4.65 3.38 2.58 4.22 1.91 2.03 2.33 2.16 1.45 2.09 2.72 1.00 0.76 —
2 9.6 5.23 3.70 2.96 4.20 2.16 2.58 2.68 2.42 1.77 2.48 3.30 1.04 —_— —
3 10.8 5.27 3.713 3.35 4.71 1.84 2.29 2.40 2.84 1.69 2.66 3.70 1.64 1.27 1.04
4 13.0 5.84 3.80 3.47 4.81 1.96 2.57 2.62 2.96 1.92 2.75 3.88 1.60 1.23 “1.02
5 9.5 4.39 2.83 2.60 3.49 1.40 1.83 1.78 2.20 1.31 2.04 2.74 1.18 0.90 0.74
6 10.4 4.70 2.96 2.87 3.71 1.62 2.35 2.08 2.35 1.64 2.26 3.40 1.20 0.93 —_
7 12.0 5.27 3.30 3.23 4.22 1.81 2.64 2.35 2.63 1.86 2.56 3.79 1.33 1.02 —
8 9.5 4.02 2.72 2.70 3.38 1.49 2.20 1.90 2.17 1.52 2.12 3.18 1.10 0.85 —_—
9 10.4 4.70 3.29 3.58 4.43 1.78 2.42 2.39 3.01 1.80 2.58 4.16 1.46 1.1 —_
10 12.0 5.13 3.58 2.63 3.26 1.58 1.81 1.93 2.12 1.36 2.16 2.79 1.27 1.00 0.84
11 9.0 3.95 2.77 2.59 2.98 1.36 1.81 1.68 2.16 1.25 1.98 2.85 1.16 0.88 0.72
12 10.0 4.62 2.99 2.73 3.67 1.47 1.91 1.85 2.33 1.35 2.16 3.01 1.25 0.95 0.78
13 9.6 3.4 2.27 2.29 2.86 1.26 1.72 1.73 1.82 1.32 1.74 2.46 0.93 0.72 —_—
14 18.0 4.72 3.4 2.54 3.94 1.61 1.85 2.06 2.15 1.47 2.27 1.97 0.98 0.78 0.65
15 25.0 3.87 2.47 1.91 3.1 1.38 1.36 1.60 1.51 1.17 1.77 1.12 0.64 0.53 0.45
16 37.4 2.89 1.88 1.38 2.58 1.26 0.92 1.21 1.07 0.94 1.39 0.80 0.46 0.38 0.32
24 10.5 4.4 3.01 2.98 3.37 1.66 2.44 2.10 2.40 1.68 2.35 3.52 1.22 0.94 J—
Average 4.54 3.05 2.73 3.70 1.62 2.04 2.04 2.25 1.50 2.20 2.91 1.14 0.89 0.73

4. ESTINATION OF SHEAR CAPACITY IN FIXED SLABS

4.1 In-plane Force

center line of slab (d/2) might be the
functions of the deflection of slab
and the rigidity of boundary beans.
Fig. 5 indicates the idea explained
above. 1In this chapter, circular slab
is examined ‘instead of square one Fig. 5 Deformation and stress
because that the final failure pattern distribution of slab

is similar to the circular shape, as is

mentioned in 2.2 and 3.2, and the

stress state near the concentrated load is nearly equal to that of circular
slab.

It is considered that the neutral axis § g
of a slab section is determined £from =" T{iin o
the geometrical deformation of bent _fenﬁiiﬁir ________ &
strip rather than the equilibrium of d i heutral axis . — r&“”
distributed stress in the section, ‘%:?-———¥ 1 o
providing that free deformation at the - 4! v, ~
slab boundary is restrained. Then the
unbalanced forces exist in the section (1) Deflection ond change of neutrol oxis
such as in-plane force. _ Q;EJ

T2 —} Ry !
Though the shape‘of the 'neutral axis ‘LL—&J‘;‘I o “"-—xlfﬂ
can not be easily decided at the FIEN o -
flexural ultimate stage, the distance Ca ol pN L
of the neutral axis (Ax) from the 440: —g—-r . I'

! L
{

(2) Stress distribution at center and
at boundary



4.2 Analysis of Flexural Capacity

It is assumed that the stress distributions and the distances moved from the
neutral axis (Axj and Axp) are those shown in Fig. 5(b) at the center slab
and at the circumference of slab, respectively.

(i) Relation between in-plane force and Ax: The force acted at unit width of
slab center area might be written as follows.

c1 = k3 £co' K1 ‘% - Axy) (1)
T) = fgy Pd (2)
Fp=C - Ty (3)

k3 expresses the ratio between concrete strength of members and that of
specimens, and k; means the ratio between maximum compressive stress and
average compressive stress. It is likely that k; is 0.7 to 0.9 and k3 is 0.85
to 1.0, respectively. The value of 0.85 is adopted in this paper. fco' is the
compressive strength at the bi-axial stress state, and is defined as f ,' = 1l.11
fo'[16]. Eg. (1) and (2) are substituted into Eq. (3), and in-plane force of
slab center area F; is expressed as follows.

Fl = ~0.8 fc' Axl + A (4)

where
A= 0.404 £ ' - fsy pa

Unit in-plane force acting at the boundary of slab, denoted as w, is derived
with the similar manner.

w=-0.8 £f,' Axy + A (5)

(ii) Relation between in-plane force and
lateral movement at boundary: As in-plane
force acting at the circular slab is w shown
in Fig. 6, unit forces acting at boundary
beams (denoted as wy and wy) are written as
wy = w cos® 6 and wy, = W sin © cosze,
respectively. Then, the total force Wy and
W, at half span of boundary beams comes to
Wy = V2 wi/4 and Wy = (2 - v2) wl/4. It is
considered because” of simplification that
uniform load v2 w/2 acts to boundary beams
instead of wy. The lateral movement at the

center span of boundary beams is expressed Fig. 6 Force acting at
as follows; boundary beam
Ao = Rw
where

K: coefficient of flexural rigidity

_ vt a2l
T6BEI = 328G

(iii) Relation between in-plane force at slab center area and that at slab
boundary: If the fan-shaped slab element, in which radius is r and (%/2 - r)



and angle is d9, is considered, rF; does not equal to %w/2 though F; acting at
radius r and w at radius (/2 - r). This might be reasoned that in-plane force
w' also occurs at the circumference direction of slab. It is however difficult
to analyze the value and distribution of w'. On the assumption that w' is
average of Fy and w, the following relation is derived.

Fi=w ; (6)
(iv) Relation between ultimate moment (m,) and Ax: If m,; is defined at the

plastic centroid of cross section, ultimate moment at slab center area m,; is
written as follows using the signs of Fig. 7,

my; = C1 {9 - k2 (g - Axy)} + Ty (@ - 9)

Eq. (1), (2) and kp = 0.85/2 are substituted
into the above equation.

F
myy = -0.34 £5' Axy2 - BAxy + C -
here =]
! N 5 Cr =
-] :l o
B= (0.8g - 0.344d) f.' 1 - s (N
4 -w)j —
N losti troid <
C=0.40d £ (g-0.212d) + £ 0d (d=-g) 3 oo 2
T o
0.425 h + 4 o, £
g = %, qp = sy, P = pd ;
0.85 + q¢ t 71011 £t h . .
Fig. 7 Cross-section of slab

Similarly at slab boundary,
my2 = -0.34 £o' Axp2 - BAxy + C

(v) Relation between flexural capacity (Pgjey;) and ultimate moment (m,): If
the ultimate moments at the circumference of slab are my; at slab center area
and m,, at slab boundary, the flexural capacity Pgp.,) can be calculated by way
of the yield line theory.

. 2m 2 32
Prrex1 = T oy ((F G Mal ¥ (52 1) magd

(vi) Relation between flexural capacity (Pgjey) and deflection (Sc): The
central deflection of circular slab inscribed in a square slab is written as
follows,

s
8o = X Pfiexl
where

12 (1 - v?

53 2r 32 &E

l — o —

+
47 ER3 9% - 16 16
k = 1 means the elastic solution. The reinforced concrete slab has actually
the coefficient k less than 1, and it is assumed that k nearly equals 0.15

based on the result of 3.3. Then

_0.15
Pflexl1 = —g  Sc



(vii) Ax, lateral movement (ALg)  and deflection (§g): The relation of three
values Ax, A%, and 8o can be induced in consideration of the geometrical
condition of the neutral axis. As it is difficult to make clear the shape of
neutral axis line in the slab element, the experimental approach is adopted in
this paper. It might be considered that Axj increases in accordance with the
increase of AR, and §c and the increasing ratio of Axl/Alc decreases in
accordance with the increase of §./(2 - 2r). Then it might be possible due to
the quantitative consideration to express Ax; as follows.

L -2
Axy = a 5. 2 Mg +BSc +Y (7N

When A%, equals zero, that is, completely fixed slab, neutral axis line does not
alter. In this case, the sum of Axj; and Axp coincides with §g. Due to this
relation and the equations (4) to (6), B comes to 1/2 and Y to zero,
respectively. Then the equation (7) can be rewritten as follows.

£ - 2r S
= o 22— 2L Ag _c
Axl (o4 'Sc c t 2

(viii) Summary: The following simultaneous equations are derived from (i) to
(vii).

Mo
w=-0.80 £.' Ax; + A, W= 7
4mm
u 0.15
Pflexl = T =3, Prlex1 = — 5 Sc

myy = -0.34 £.' Ax32 - BAxj + C

Axl

L]
Q
>
=

[¢]

If properties of materials and dimensions of slabs are known, we can obtain the
unknown (w, Ax3, A%cr my1s Ser Prlex)) by determining the factor a.

It is necessary to determine the factor o with higher accuracy based on larger
number of data in which slabs fail in flexure. o is approximately 3.0 due to
the test results of specimens No. 17 and No. 18, though lower accuracy.
Table 4 indicates the ratio of the testing failure load (Piegt) and  the loads
which are calculated with yield line theory (Pfjex2) and with the proposed
method (Pgjoyj) including in-plane force. Pflexl/PfleXZ ranges 1.5 to 1.7.

Strain and deformation of boundary beams are shown in Fig. 8. 1In-plane forces
acting toward the beams are 129 N/mm for No. 17 and 168 N/mm for No. 18,
respectively, by solving the simultaneous equations of a). Though the
calculated value more or less exceeds the measured value, it might be possible
to estimate the deformation of boundary beams.

4.3 Analysis of Shear Capacity

It might be difficult to analyze the failure phenomenon of punching shear
strictly. Then, the following assumptions are in consideration so as to obtain
shear capacity.



Table 4 Comparison of ultimate capacity
and shear strength between experimental
results and calculation values

N ¢ Ultimate strength Shear strength
0. O .
Specimen Psrears Prest Piest _ﬁfi‘,_ mec: Ul’:d ‘;Zmd' ¢ Et'
Pﬂexl Pinears PElexl T, outwa etformahion
4 strain ‘
1 0.51 1.03 0.52) 1.01 }
2 0.58 1.06 0.61) 1.16 . 2 'S 2 [ JJ
3 0.64 1.29 (0.82) 1.30 inner —-#———$— ——7
4 0.68 1.22 (0.83) 1.35 f
5 0.62 0.97 (0.59) 1.00 ou,e,_Q_____M;____l
6 0.83 0.86 (0.71) 1.02 § :
7 0.83 0.97 0.81) 1.15 g 000 |
S :
8 0.85 0.77 (0.66) 0.93 £ ool o
9 0.84 1.00 (0.84) 1.14 ° ¢, ° e
o E o)
10 0.34 1.62 (0.55) 1.25 §.§ o Oley
1 0.63 1.07 0.67) 0.99 3 oo
12 0.59 0.98 (0.58) 1.05 —
13 0.73 0.70 (0.51) 0.83 ?9
1 0.40 1.20 (0.48) 1.24 =
15 0.29 1.08 0.31) 1.10 .§
»
16 0.20 0.99 (0.20) 0.98
17 1.26 ©.78) 0.98 — sosured o :inner
measur :i
18 1.57 (0.64) 1.01 —_ X ‘outer
24 0.86 0.87 0.75) 0.85
Note:(@ Failure pattern is Specimen No. 18
No. 1~No. 16, No. 24 punching shear failure
No. 17, No. 18 flexural failure
@ Regarding the specimens failed in flexure Fig. 8 Calculated and measured
No. 17, Pexi=129kN, Priexs=84kN, Pieg=126 kN, data of boundary beam

No. 18, Priegs =178kN, Bies=107kN, Puést =180kN
@ =R 1 +8,+8) b

The cirtical section is at the distance of d from the circumference of loading
plate based on the consideration of 3.4. In-plane force is in proportion to the

applying load. Tensile strength of concrete is written as 1.11 x 0.438 vV£.'
because of the bi-axial stress state of slabs. The dowel action due to the

tensile reinforcement enhances the shear capacity by 20 percents, as was
assumed by Hewitt([12].

Regarding the shear strength acted with the axial force, the equations of ACI

318-77 and Mattock can not estimate the shear capacity toward the fixed slab.
Following equation is adopted in this paper.

T=fy /140 (8)
fru

where f,: average axial stress
Due to the assumptions of critical section and dowel action, T can be written as

T = Pghear1/2.4 md (r + d). Equation (8) is rearranged by substituting £, and
f¢y into (8), as follows.

—93—



Pshearl = % {or + Y(QR) 2 + 4}

where
3.70 md (r + d) V'

Q

W
1.54 d Pgyoyy VEG'

The method above mentioned does not include the influence of effective depth.
Regarding reinforced concrete beams, Kani[14£ and Kennedy([l5 considered the
shear strength as the function of 1/(d/10)%°2% and 1/(d/10) 928, respectively.
If shear failure in slabs is similar to that in beams, shear strength of slabs
might be expressed as the function of effective depth of slabs, approximately
likely (d/10)°'25. This idea has been recognized in CP-110 and Kakuta[7]). When
Ry is defined as the coefficient regarding the influence of the effective depth,
that iS, Pghear2 = Pshearl'R4s the equation Rg = 1/(2.0 (d/10)9-25 - 1.7) is
derived based on the experimental results. Table 4 indicates the calculation
results. Specimens failed in shear have the failure load (Pygg¢) lower than the
calculated flexgral load (Peiex1) - The ratio of Pohear? tq Pflgxl ranges 0.20
to 0.86 precluding No. 17 and No. 18, as means that slab fails in shear before
the flexural ultimate stage.

4.4 Relation between Flexural Capacity and Shear Capacity

Behavior of slabs, for which flexural failure precedes to shear failure, is
examined in this section. From the calculation result, it is confirmed that
the flexural capacity and the in-plane force increase in accordance with the
decrease of K/10s (that is, the increase of rigidity of boundary beams) under
the constant conditions of loading, materials and dimensions of slabs.

In-plane force is mainly varied with such factors as fc', pfsy and K/10s, and 4
and 2r have small influence

towards in-plane force. 40rK=10x107%

Fig. 9 shows the relation 1 )

between pfsy/fc' and Pgieyy/ | £=3000mm,d=300mm,2r=300mm
Pflex2 It is likely that 35 |

ﬁ:%éN:mmz

Priex1/Prlex2 increases con- \ TS

siderably in accordance with i
decrease of pfsy/Ec' when 39 i
boundary beams have large
dimensions.

N
o
T

Furthermore, the results
calculated under the variable
combinations of loading,
properties of materials and
dimensions of slabs show as . L
follows. It is inclined that
failure pattern of slab trans- _a
fer from flexure to shear K=10x10_
providing that slab span 10K=10x10"" 1 1 |
increases under the constant 0.0 0. 02 03
value of d4/4 and 2r/%. This Play / 1e

might be reasoned that shear

strength decreases because of Fig. 9 Relationship between

the increase of effective pfgy/fc' and membrane effect
depth.

an/Pm:z
n
[e]
T
-
2
z




?shearZ/Pflexl naturally increases when the diameter of the loading plate
increases under the constant condition of slab span. It is also shown that
Pshear2/Pflex1 becomes lower if the effective depth of slab, pfsg and the
rigidity of boundary beams increase. £_' shows little influence toward Pgp.., o/

Pflexl-

4.5 Shear Strength of Fixed Slab

Shear strength is expressed as the summation of various factors in the
literatures of [17] and [18]). The idea is applied to the fixed slab so as to
recommend a practical equation, following.

Tu

.. Bo (1 + Bpg + Bg + Bg + By) (9)
tu
where fey = 0.438 Vfc'

Bpf: coefficient indicating the influence of reinforcing
bar. Bpg = 0 at pfgy = 30

Bf : coefficient indicating the influence of concrete
compressive strength, Bg = 0 at f.' = 23.5 N/mm?

Bg ¢ coefficient indicating the influence of effective
depth, B3 = 0 at 4 = 300 mm :

By : coefficient indicating the influence of in-plane
force
Ty ¢ Pghear2/2T (r + d)

(i) Bo:. The standard slab is as follows, fo' = 23.5 N/mmz, pfsy = 2,94, ¢ =
3.0 x 103 mm, d= 300mm, 2r = 300 mm and K = 1.0 x 104 (K/10s = 229). The
calculation leads to the value of By = 0.469. Equation (9) does not, however,
consider the factors (& - 2r)/2 d and 2. B, tends to slightly decrease in
accordance with the increase of ( - 2r)/2 d, as is similar to the equation
proposed by Kennedy. Larger the span £, large the coefficient Bo under the
condition of the same (% - 2r)/2 d. However, B, change slightly in the range of
d/% = 0.04 to 0.12 and 2r/% = 0.05 to 0.30. Then, B, is determined as 0.47 in
this paper.

(ii) Bpg and Bg: PBpg is nearly zero in the range of , pfsy = 2.9 to 5.9, as
coincides with the experimental result of 3.4. B¢ is also defermined as zero
because the variation of B¢ is limited to -0.01 to 0.02.

(iii) Bg: The relation between effective depth and Bd' shown in Fig. 10, is as
follows.

3.0 L
2.0(d/10)0-25 -1.7

Bd=

(iv) By: It might be possible to express By as the function of K/10s, as is
shown in Fig. 11. BN becomes constant in the case of larger value of K/iOs, and

this is caused by the fact that larger value of K diminishes the effect of
in-plane force. When By is assumed as zero at K/10s = 230, it is likely that BN
is written as the following hyperbola.

230 - K/10s
20 (20 + K/10s)

By

Equation (9) is rearranged due to the above consideration.



Ty

m=80(1+6d+8N)‘ lsF%

3.0

T /To in Table 4 means the calcula-
fest’ 2 2.0/10°%% 1.7

tion results based on the equation
above mentioned. It is 1likely that Lo~
shear strength of fiexed slab can be
roughly estimated by way of this
approach.

fixed slab B, =

o tests

Kennedy

5. OONCLUSION

The experimental and theoretical work 00 .
is carried out with regard mostly to Sesas
the reinforced concrete fixed slabs
(1.0 x 1.0 m) which are mainly Kakuta

subjected to concentrated load at the 05 ' ' !

center of specimens. The calculation o] 100 200 300 = 400
method of wultimate load and shear d (mm)

strength is proposed in consideration

of in-plane force. The following con- Fig. 10 Relationship between Bd

clusions are obtained within the limits and effective depth

of this study.

(1) Testing results obtained are as 10— 230-~K/10s
follows. — B,ﬁm

a) The observed crack widths range - ¢23000mm, 2r=300mm
less than 0.2 mm even at the stage

when the ratio of the applied load zo 0.5 — £25000mm, 2r=300mm
the ultimate punching load comes up to
around 50 percent.

b) In many cases failure occurs by
punching along a truncated cone around 00
a concentrated load. The angle of
inclination from the circumference of

loading plate ranges from 25 to 30

By

degrees. When the area of loading 05 | ! | ]
plate becomes larger, the collapse ) o 100 200 300
mode of slabs changes from punching K/10s

shear to flexure.

c) It is confirmed that compressive

in-plane force 1is generated at the Fig. 11 Relationship between By
early stage of loading and increases as and rigidity

the applied load increases.

d) The testing punching load is

compared with the design codes and the proposed equations. Though the failure
load in punching shear is in excess of calculated results, it is likely that
the loads, based on the codes and the equations, tend to be underestimated.

(2) The calculation equation for flexural capacity is derived in consideration
of in-plane force. The calculation results obtained according to that analysis
are roughly in agreement with the testing results, such as deformation of -
boundary beams. In-plane force is more effected in slabs with a lower value of
pfsy/fc' and larger restraints of lateral movement.

(3) The calculation equation regarding punching shear is proposed in
consideration of in-plane force. Two equations for flexure and shear can define



the boundary line by which the fixed slab will collapse.

(4) Finally, a practical equation for the shear strength of fixed slabs is
recommended, as follows.

Ty = Bo (1 + Bg + By) fey

where
3.0
Bo = 0.47, fi, = 0.438 VE.', Bg = = -1
° ! tu ¢ P4 5 0(a/10)0-25 ~1.7
6. - 230 - K/10s _ /28t 3/2 42
N " 20 (20 + K/10s) 76BEI = 32A,G
_ 2 2 2
s = iz 4 -va (= log 2c _ 3o, &—}
47 ER3 4 L 16 16
Ty = %E' b= 2T (r + 4)
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NOTATION

h : Whole height of slab (mm)

d : Effective height of slab (mm)

2 : Span of slab (mm)

r : Radius of circular loading plate (mm)

b : Circumference of critical section (mm)

Ay : Cross-sectional area of boundary beam (mm2)

I : Moment inertia of boundary beam (mm4)

p : Tensile reinforcement ratio of slab

fo : Yield point of reinforcing bar (MP,)

fe : Compressive strength of concrete (MP,)

fru : Tensile strength of concrete (MPy)

E : Young's modulus of concrete (MP,)

G : Modulus of rigidity of concrete (MPp)

v : Poisson's ratio of concrete

T : Shear stress (MP,)

Ty : Shear strength (MP,)

m, : Positive ultimate resisting moment per unit width (N mm/mm)
i : Ratio of positive ultimate resisting moment and negative ultimate

resisting moment per unit width

P ¢ Concentrated load (N or KN)

Prest * Testing failure load (N or KN)

Pelex1 ° Ultimate flexural load in consideration of in-plane force (N or KN)
flex2 ° Ultimate flexural load due to yield line theory (N or KN)

Pshearl? Ultimate punching shear load in consideration of in-plane force
(N or KN)



Pghear2: Ultimate punching shear 1load in consideration of in-plane force and
influence of effective height of slab (N or KN)

K : Factor relating to rigidity of boundary beam
s : Factor relating to rigidity of slab
Fp : In-plane force of unit width acting at circumference of loading plate

at the stage of flexural failure (N/mm)
w : In-plane force of unit width acting at circumference of slab at the
stage of flexural failure (N/mm)

Se : Deflection at center of slab (mm)

Mo : Lateral movement at span center of boundary beam (mm)

Ax : Distance between neutral axis and d/2 at the stage of flexural failure
(mm)

Axy : Ax at circumference of loading plate (mm)

Axo : Ax at circumference of slab (mm)
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