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SYNOPSIS

The purpose of this paper is to propose the calculating method of ultimate
torsional strength and deformation for the structural concrete members. In this
study, it is assumed that the failure mechanism of the structural concrete
members in torsion is based on the space truss. The study may applied to the
members which have rectangular cross section and are comprised reinforced con-
crete, steel-reinforced concrete, and reinforced, prestressed concrete of light-
weight concrete. The items are : (a) Equilibrium condition, (b) Geometrical con-
dition, (c) Shear flow, (d) Ultimate torsional strength of prestressed concrete
and steel-reinforced concrete member, (e) Relation between failure modes and rein-
forcement ratios, (f) Application of the equations for concrete members in com-—
bined torsion and bending.
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1. INTRODUCTION

Torsion is generally a secondary effect in the concrete structures. However, it
becomes gradually important to investigate the torsional behavior of concrete
members, because of the decreasing cross section with increasing of the strength
of material used, the enlargement for the size of structures, the complication
of structure, the advance of accuracy for calculating method and the use of
limit design method. Therefore, the clarification of the behavior for concrete
members in torsion is very important and basic design factor for the concrete
structures.

Consequently, in this paper, as the begining for the solution concerning with
the problem, the theoretical equations are given for the member of reinforced
concrete, prestressed concrete and steel-reinforced concrete with rectangular
section in pure torsion, comprising of the light-weight aggregate concrete. The
equations are based on a space truss model, and derived from considering both
the equilibrium conditions and the compatibility of deformation, and also the
stress-strain characteristics of steel bars and concrete. The limitation of
proposed equations are showed. Finaly, the author proposed the design procedures
for structural concrete members in torsion.

2. CHARACTERISTICS OF THIS RESEARCH

In the characteristics of this research are as follows.

a) Application of space truss to the basic conception.

From the cracking mode at ultimate state, the mechanism of torsional resistance
of reinforced concrete member is the space truss in which diagonal concrete
struts with effective wall thickness (t) carry compression, and transverse and
longitudinal bars carry only axial tension.

b) Equilibrium conditions and compativility of strain.

The equations for ultimate torsional strength are led by considering the balance
of forces and the compatibility of strain, therefore these equations make it
possible to estimate the balanced reinforcement and the stresses of steel.

c) Prediction of the failure modes.

By using the equations, the failure modes of reinforced and prestressed concrete
member are able to predict in case of under-reinforcement, over-reinforcement
and partially-over-reinforcement.

d) Estimation of torsional deformation.

At ultimate state, the torsional rigidity can be estimated by the equations from
the theory of space truss.

e) Limit of application for the equations.

The author proposed the applicational limit of equations that based on the
theory of space truss.

f) Tests for all kinds of structural members.

This research is applied to the members which are comprised reinforced, steeel-
reinforced concrete, and reinforced, prestressed concrete of light-weight con-
crete with the square or rectangular cross section.

g) Proposing the design procedure of concrete members in torsion.

The flow chart of design procedure is shown.

3. ANALYSIS TO THE ULTIMATE STRENGTH OF CONCRETE MEMBERS AND THE BEHAVIOR OF
CONCRETE MEMBERS.

It is generally that in reinforced concrete subject to torsion the reinforcement
has no appreciable effect on the stiffness before cracking. Similaly, the

longitudinal or transverse reinforcement acting alone provides little additional
strength beyond the capacity of plain concrete. However, if the longitudinal and



the transverse steels are combined, the torsional moment corresponding to first
cracking is usually somewhat increased. After cracking, the stiffness is marked-
ly reduced but considerable
increase in strength and a

large amount of plastic de-
formation are possible

depending on the amount and
disposition of the reinforce-
ment. After cracking, the

theory of elasticity is no
longer applicable and we

need another theoretical model.
Shown in Fig.l is the prediction
of the cracked model which will
be presented in this paper.

The theory presented is a develop-
ment of the truss model for torsion
and resembles the model proposed by
Collins(l). In his research, the
truss model have a box section with Fig.l Equilibrium of cracked model
constant thickness of wall, and

consists of closed hoops perpendicular to the axis of the member and longitudinal
bars distributed symmetrically around the section.

The equations of equilibrium conditions are

qd = Jemtx sin({ cos (1 5
Al O = Gemtx cod(l Po (2)
AV fsy= (Gemtx sinlls (3)

In the model, the torsion is resisted by diagonal concrete compressive stresses
which spiral around the beam at a constant angle ()l. It is possible to calculate
the twist of a beam in torsion if we know the strain in the longitudinal, trans-
verse steel and the diagonal concrete strain, and the angle (),

tan?(] = e+ L

(4)
Ec+ Zy (pv/pPO)

An expression for the shear flow can be obtained

Al(0s¢ av{sy
Po S

(5)

The torsional moment on the beam is obtained from the fundamental equilibrium
equation

Mt =2 Am g (6)
In the prestressed concrete beams, the longitudinal prestressing steel will
help to provide the longitudinal tension needed for equilibrium Eq(2) will thus

become

Al st + Apt 6}71_ = tx §, cos 0l Po (7))



In author's research, as shown in Fig.l, the truss model have a box section with
variable thickness of wall(tx, ty), and longitudinal bars distributed unsymmet-
rically around the section. Moreover, the torsional shearing forces are variable
to the proportion to the length of the wall(2), and then the theory is suitable
for the change of the sectional shape, also is applicable to the steel-rein-
forced concrete member. The author proposed the applicable limit of the theory.

3.1 Equilibrium Condition

The concrete member in torsion is resisted by the space truss in which diagonal
concrete struts in compressive stresses are around the section of member at an
angle J, and the reinforced bars are in tension, moreover, in this truss the
tangential component of these stresses is provided the shear flow q which must
be equilibrated the torsion. The normal components of the diagonal stresses
result in a longitudinal and transverse compression forces which must be
balanced by the tension in the bars.

The equations for equilibrium condition are
Axis-x and y:

Gcrs. ty'sin’0l = av Bsyx

Av §svx (8)

fexs ty sin’gl

Oeys tx sin’Ql = v § suy

Axis-z
1/2 [[)'qd tx + &cyb tx - tx ty (Qex + ch)] cos’fl = a1 Ost
1/2 [ Gexd tx'+ Geyb tx - tx ty((ek + Gey)] cos’(l = a1 Gy,
q = Oemtm sin(l cos(l (10)
Assuming as follows,
kl = ty/tx, k2 = ty'/tx, k3:=6'c:¢/6-cy , k4 = 6c1/62y ;)
cl=1/2 (1 +k1%k3bsa), Cl'=1/2 (1 + k2 k4 b/d )
Ci"= 1/2 ( Cl1 + C1"'") > (11)

c2 =1/2 [kl (k3@ - ex (1+x3 )) + b]

c3 =172 [kz (ka4 a-tx (1+ka )) + b]

and then, equations (8), (9) and (10) are

Av Gsvy = ch tx s sin’( c1" (12)
AL G5t = (ey tx cos’( C2 (13 )
Al'6}[ =6"C§, tx coszd C3 (14 )

Assuming, (., = ch , tm = tx, the equation (10) yields

q = 66)/ tx sin{{cos ({ c1" (15 )



3.2 Geometrical Condition

The expression between twist (@) and angle((])is given from the torsional strain
energy in member of unit length, and then

o- Po (EL ca_ EvPv tan(l N 2&c ) (16)

T 2Am tan(l Po sin20Q

The internal energy will be minimum, if the minimum work done, and henc for a
given load the external displacement is minimum, this means that d(9/d(l= 0,
Solving this equation laeds to :

tan7d= ELC4+£C

Ey(PV/PO)+ £, (17)

3.3 Depth of Diagonal Concrete Strut

If the concrete strain distribution (assumed linear) is known, the magnitude and
position of the resultant compression can be calculated by using the stress-
strain characteristics of the concrete. A convenient approch is to replace the
true concrete stress distribution with an equivalent stress block of depth ab.
For a given surface strain g¢s, the rectangular stress block factors B and K¢
can be calculated from the stress-strain curve of the concrete, and then it can
be seen that the resultant diagonal compression will act at a distance ab/2
below the surface. The position of this resultant defines the path of the shear
flow and hence the terms Am and Po. An expression for the equivalent depth of
compression ab can be obtained from equilibrium Egs (12),(13) and (14), if the
term Scyis replaced by kc §cy ab,

ab =

1 ( avBsvy , AL Os (1+C5) ) (18 )

Kc Gey \ s 1" c2 + C3

3.4 Shear Flow(q), Torsional Moment (Mt) and Twist (8)

The equation for g,Mt and § can be obtained from Egs. (12),(13)and(15), and then
Shear flow is

_ / c1" av(Qsvyy AL0s( (1+C5)

(19)
s c2 + C3
Torsional moment is
C1" Av Osvy _AlQg( (1+C5)
= 20
Me ZAm J/ s c2 + C3 . ( )
Assuming the following relation for members after cracking.
Mt
= — 21
o Gec Ker ¢ )

From the relation between the bending deformation of diagonal compression strut
and the twist of member,
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_ &ske BOcu Cl s C2 + C3
O= =55 BV Gy AL Gs (1+C5) (22)

3.5 Calculation of Steel Stresses

From geometric Egs(16),(17)and (20), and the equilibrium equation, the following
expression for the steel strain can be derived

_ Ees Am (eu B(C2+C3)ke . ]

€= e { Po AlQg, (1+4C5) (2-B) (23)
- Am(.ukc BSC1"  _ _Po _ B ] ‘

&= 5:5[ 2BsyyFo AV o ( = ) (24)

If the stress-strain relationship of the longitudinal and transverse steel is
known, the Egs (23)and (24 ) can be solved for 6'“ and 6"5‘/,

2 C4 C4 Po Al (1+C5) 4 C4

! £sEs (2-8) \° 2§.s Es AmQzy B(C2+C3) ke EcsEs(2-8)
G‘SL_ T & + -
(25)

o (B - B - e

} Pv Pv Av
- ;iiiEE_EE. (1_ _£i) (26)
2 Pv 2

3.6 Analysis of Prestressed Concrete Beam

If the beam is prestressed, its torsional cracking strength is increased with
the average prestress. After cracking, the longitudinal prestressing steel will
help to provide the longitudinal tension needed for equilibrium. The left side
of Eq (13) will thus become, see Fig.2

/
Al' (s + AP'G}L }
(27)
Al (g + 2p 0 pt

This means that in Egs(12), (13)
and (14) the term Al(Jg is
replaced by ( AlGg. + Ap(pL )
and C5 by Cp, and then

abp = 1 Av&vy
P ke Qcu s C1"
(8105 +ap(sp ) (1+Cp)
Cc2 + C3
(28 ) Fig.2 Longitudinal prestressing
steel force
Ees ( Am Qe B (C2+4C3) ke
= - 29
E/’L 2 C4 Po(Al(y, +Ap(j7,[) (1+Cp) (2 IB) ( )



w® - /Cl"Av Gsvy _(alGsi +Ap (e ) (1+Cp)
S

C2 + C3 (30)
Torsional moment of prestressed concrete beam ( Mtup )
_ C1"av sy (3105 +Ap (pi ) (14Cp)
Mtup = 2Am J/ S 3 1+ 3 (31)
Torsional stiffness of prestressed concrete bean ( GcKup )
4 nam Av §3vy (8105, +Ap Gp ) (1+Cp)
GcKup = (32)
Ecs ke Beu s C2 + C3

3.7 Ultimate Torsional Strength of Steel-Reinforced Concrete Member

On the basis of test results, the behavior of steel-reinforced concrete members
are approximately as same as that of the reinforced concrete member. If the
steel joist in the member convert into the bars, the expressions for reinforced
concrete can be applied to the analysis for the behaviors of steel-reinforced
concrete member.

For the steel joist shown in Fig.3 ﬁ/,;ar ﬁij . bar
- — A
5 it H I R
T ] d
Avt = bt t —Si%y- th M = f
s sy (33 ) L ______ ! \ . =g — L_._
S alt = 4 als Dssy
Osy steelangle
[=)
The total area of the converted steel bars Fig.3 Steel-reinforced
are concrete and steel joist

Y Avs = Av + Avt
(34)

Y als =) alt +) Al ‘ b
It is necessary to calculate the converted width

and height for the estimation of the Po and Am, d Ly
and then, see Fig.4.

A
Av bo + Avt bot LL...J

dot| d,

= 9
bos Av + Avt
(35) bot
Av do + Avt dot
dos = Av + Avt ‘ b°

Fig.4 Cross section cf

steel-reinforced
concrete
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3.8 Relation between Failure Modes and Reinforcement Ratios

In the prediction of failure modes, it is convenient to define the following
reinforcement ratios

Sals _ pal
" Am

Am s

pl =
(36 )

Av Pv
Am s

pv

The value of the longitudinal and transverse reinforcement ratio which will
produce balanced conditions at failure can be obtained from the equations of
strain for steel bars.

Gev B kc (C2 + C3)
pib = Gsty Po(14C5) (2 &¢ / &es C4 + (2- B)) (37)
pvp = < B ke c1 o)

Gsvyy 2[€v /€5 + Po/PV (1-B/2))

The balanced values of plb and pvb for the range of material properties and
ratio bo/do usualy used in design are given in Fig.5. The two balanced condi-
tions which are given by Eas (37) and (38) define five failure modes( neither
steel yields, only transverse steel or only longitudinal steel yield, both
steels yield and balanced failure ), and then we can predict the failure modes
examining the reinforcement

ratios of beams by Eqgs(37) and

(38).
Legend
3.9 Application of the Equation - —— Pib, Pvo for square section
for Concrete Members in Combined O ——Dip .
for rectangular
Torsion and Bending '"*‘Qm} q6=4ogma section

In combined torsion and bending,
the equations for concrete
members which are given by the
analogy of space truss can apply
the analysis of behavior of
concrete member within the
stress on the upper surface of
member in tension. Here, it
takes for convenience that the
limit Ko = Mt/M is characterized
by the condition of zero stress
in the top longitudinal bars(3).
From the equilibrium condition

S~ Mt Po
AL Gst = 8bo do tan(l Cl"
M (30) 10 20 S 40 50
Tabo 3 Concrete Strength, e (MFa

Fig.5 Balanced reinforcement ratio



In the equation(39), 6;£= 0 and then

1l
ME/M = 2 do t;z(x Ci" _ ko (10 )

The equations being based on the space truss are reasonable in the range
Ko < Mt/M, in the case of Ko = Mt/M, different theory must be applied.

4. TESTS OF CONCRETE MEMBERS AND RESULTS

4.1 Outline of Tests

To study the behavior of reinforced, steel-reinforced concrete beams, and pre-
stressed concrete beams of light-weight concrete(4),with square and rectangular
cross-section under pure torsion, 19 beams were tested, involving the following
4 major variables:

1) Amount of reinforcement

2) Concrete strength

3) Concrete quality

4) Cross-section

Five groups of beams were tested as outlined in Table.l.

Table.l. Tests and Results

' | -
steel Ult' moment (kN-m)
Beam Group i:z; ratio test |(calcull _(_2 mean Note
(°/0) | (1) (2) (2)
110 0.90
. 0.
R-2.0-~C0 2.0 1 131 | M (108 9
R-1.0-CO RC squ- i 77 1.07 .
are 1.0 82 72 1.13 1.10
R-0.5-00 0.5 50 49.5(1.01 | 1.01
194 0.98
SR-5.9-00 5.9 214 198 1.08 1.03 Steel-reinforced
SR-4.5-00 2.5 | 148 | 190 | 0.78 | 0.78| °oncrete
SRC
209 0.98
SR-4.9-00 4.9 | 199 | 212 |glga | ©-98
SR-3.5-CO ‘3.5 | 168 | 182 | 0.92 | 0.92
52 1.07
- . rect' . 48. .
Rr-2.0-CO RC 2.0 1 50 1,05 | 1-06
-40-2.0- 2. . . : :
RL-40-2.0-00) 0| 124 | 144 |0.86 | 0.86 Light-weight
RL-40-1.0-00| LRC |squ- | 1.0 95 84 | 1.13 | 1.13| yeinforcea
RL-40-0.5-CD are | 9.5 | 47 | 42 |1.11{ 1.11f concrete
PL-40-2.0-CD 2.0 | 157 | 153 | 1.02 | 1.02 Light-weight
PL-40-1.0-00| LPC 1.0 | 125 | 123 | 1.01 | 1.01| prestressed
PL-40-0.5-00) 0.5 86 69 | 1.25 | 1.25| concrete
Average 1.02




A typical test beam is shown in Fig.6. The length of all beams was 2250mm., The
clear span subjected to torsion was 1600mm. To avoid local failure close to the
clamping heads due

to stress concent-

ration, a length ¢

of 325mm. at each 250@00 83‘5115 A‘—] 1600 325
end of the beams [

was reinforced
with about 50°/,
additional stir-
rups. Seventeen

$13

e

I
beams had a nominal 571E5E3 - iﬂi—%725
cross-section of 3 30 ~J o |
400x400mm., twobeams EtB AMA B
beams had a nominal
cross-section of
400x250mm., and Fig.6 Test beam of reinforced concrete
contained both
longitudinal and transverse steel.

T
VI

500

L1715 J

R-1.0-oo

cross-section

4.2 Tests results

The analytical and test results for 19 beams tested in torsion are given in
Table.l. the analytical strengths have been computed using the analysis proposed
befor.

The general pattern of cracks
is shown in Fig.7. The pat-
terns of cracks for other
beams were similar except
that the inclination of the :
cracks with the axis of the R - 1.0-Q0
beam in the zone of axial
compression stresses and
space of cracks are different
between reinforced concrete
beams and steel-reinforced
concrete beams.

RL-40-1.0-CQ0D
5. DESIGN PROCEDURES

Design procedures for structural
concrete members subject to
torsion are not yet fully
developed and codified.

this paper sets out what is

e

believed to be a reasonably PL-40-1.0-CD
conservative design procedure
for concrete members subject Fig.7 Cracking pattern after failure

to torsion. It is based on the
author's evaluation of studies of torsional behavior so far completed, and the

equations proposed by author. In Fig.8., the outline of flow chart for design
procedures are shown.

6. CONCLUDING REMARKS




The space truss model is capable of
predicting the post-cracking torsional
behavior of concrete members, especially
in ultimate torsion. Some of the capa-
bilities of the theory are listed below;
1. The theory can be applied to concerte
members (reinforced, steel-reinforced and
prestressed concrete) having a rectan-
gular and box section.

2. The torsional strength of under-
reinforced, partially-over-reinforced
and completely-over-reinforced members
can be predicted.

3. The theory can predict the behavior
of concrete membres in over-reinforce-
ment. The theory presented in the paper
is applicable only to St'Venant torsion
and hence can not predict the response
where warping torsion dominates.

The section subjected to combined
torsion and bending , and unsymmet-
rically reinforced section can be
treated.by the procedures.
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NOTATION

START
given material properties,
sectional dimension
calcul‘of ab
calcul'of Am,Po

calcul'of rein-
forcement ratio

YES

[ box sectioﬁ

I plain secti&ﬂ

check of wall
thickness t2tx

NO

calcul'of g

check of Mtu
Mtu2Mtud

Fig.8 Design flow chart

Al = area of bottom longitudinal reinforcing steel
Al'= area of upper longitudinal reinforcing steel
Alt = area of longitudinal steel angle of joist

Als = total area of the converted steel bars

Am = area enclosed by shear flow

Ap = area of bottom longitudinal prestressing steel
Ap'= area of upper longitudinal prestressing steel

Av = area of one transvrese steel
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Avs = area of the converted transverse steel

Avt = area of tie plate converted into transverse steel

ab = equivalent depth of compression strut

abp = equivalent depth of compression strut in prestressed concrete

b = width of cross-section

bo = smaller center-to-center dimension of closed rectangular stirrup
bot = smaller dimension of steel joist

C4 = 2(C2+kg C3)/(po C1™)
cs = (al' 6st’)/ (Al Gst )
Cp = (A1'Gsl'+ap' 6pl’ )/ (A1 65t +Ap Gpr )

d = depth of cross-section
do = larger center-to-center dimension of closed rectangular stirrup
dot = larger dimension of steel joist

Es = modulus of elasticity of steel

Gec = modulus of rigidity of concrete

Ko = Mt/M

Ku = torsional stiffness of reinforced concrete at ultimate torsion

Kup = torsional stiffness of prestressed concrete at ultimate torsion

kc = an equivalent rectangular stress block factor

ke = EU/€1

M = bending moment

Mt = torsional moment

Mtu = ultimate torsional moment

Po = perimeter of shear flow path

Pv = transverse steel (stirrup) perimeter

s = transverse steel (stirrup) spacing

tm = mean thickness of compression struts

Ol= angle of diagonal cracking

B== an equivalent rectangular stress block factor

€ .= concrete diagonal strain at the position of the resultant shear flow

€= concrete diagonal strain at the surface

€ (= strain in longitudinal steel

gy =strain in transverse steel (stirrup)

ElP= strain in longitudinal steel of prestressed concrete

Bem™ average compressive stress in concrete strut

§cu= compressive strength of concrete

6?‘ ,6}(' = stresses of prestressing steel in bottom, in upper, respectively

65( ’6}L, = stresses of longitudinal steel in bottom, in upper, respectively

Osv = stresses in transverse steel (stirrup)

'6SSV'63Y = yield points of steel plate, bar, respectively

g¢Y'63WY = yield points of longitudinal, transverse steel, respectively
= twist per unit length

Ou= twist per unit length at ultimate



