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Fatigue tests of eleven T-beams with stirrups, four rectangular beams with bent-up
bars and inclined stirrups and sixteen rectangular beams without shear reinforcement
were carried out. Based on the test results, an equation for the prediction of the fatigue
strength in shear of beam without shear reinforcement is proposed. This equation
includes the influence of load range. Using this equation a procedure is derived to
calculate the average strain of shear reinforcement under general variable loading. This
procedure is based on a newly developed idea that the strains during the subsequent
loading are essentially the same in spite of the difference of the previous loading history,
if the stirrup strains produced by the same applied shear forces are same. The fatigue
strength of a beam can be evaluated from the stress range calculated by this procedure.

Notation
a : shear span, distance between center of the load and support
A, : area of bent-up bars within a distance s

A; : area of inclined stirrups within a distance s
A, : total area of tension reinforcement
A, : area of vertical stirrups within a distance s
A, : area of web reinforcement within a distance s
b : beam width
b,, : web width
d : effective depth (mm), distance from extreme compression fiber to centroid of

tension reinforcement
E, : Young’s modulus of steel
: Young’s modulus of web reinforcement
f.” : cylinder strength of concrete (MPa)
Juy ¢ yield strength of web reinforcement
M.S. : maximum size of coarse aggregate
N : number of loading cycles
N, : number of loading cycles when stirrup strains begin to increase
: equivalent number of loading cycles
N; : tested fatigue life
N;; : number of loading cycles at the first fracture of stirrup
p : reinforcement ratio, = A4,/(bd)
D, - reinforcement ratio, = A4,/(b,d)
7 = Viin/ Vinax
s . spacing of shear reinforcement
§ : average spacing of shear reinforcement

* Department of Civil Engineering.
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s, : spacing of bent-up bars
s; + spacing of inclined stirrups
s, : spacing of vertical stirrups
t : time (min)
V : shear force
V. : shear force carried by concrete
V., : shear force carried by concrete at the initial loading
V., : static strength in shear of beam without web reinforcement
V; : shear force at calculated flexural failure
Vaax - applied maximum shear force
Vemax ca - Calculated applied maximum shear force
Vimaxtest - tested applied maximum shear force
Vmin © applied minimum shear force
V, : range of applied shear force, =V _,,— Vyin
V, : shear force carried by the assumed truss with 45° diagonals
V, : shear force at yielding of stirrups
z : arm length of the assumed truss, =d/1.15
o : angle between shear reinforcement and longitudinal axis of member
B, : a coefficient for each stirrup to cover the influence of support and loading point
(13]
B, : average of the coefficient 8,
&, : average strain of bent-up bars
g, @ uniform compressive strain in the assumed pure shear strain state
& @ average strain of inclined stirrups
g @ uniform tensile strain in the assumed pure shear strain state
£, : average strain of vertical stirrups
g, : strain of web reinforcement
£wmax - Strain of web reinforcement at applied maximum shear force
€. max . average strain of web reinforcement at applied maximum shear force
£,, © average residual strain of web reinforcement
. © average strain range of web reinforcement
Euecat - calculated average strain range of web reinforcement
Euries  tested average strain range of web reinforcement
Gourcar - Calculated average stress range of web reinforcement
Ourrest - tested stress range of the first fractured stirrup

1. Introduction

A reinforced concrete beam sometimes fails in shear under fatigue loading due to the
fracture of web reinforcement even if the applied maximum shear force is much less than the
ultimate static strength [1], [2]. Since the fatigue fracture of web reinforcement depends on the
stress intensity, the characteristics of stress under fatigue loading are firstly to be investigated.
Some previous reports pointed out that stirrup strains increased during fatigue loading [2]-{5],
the fatigue fracture of stirrup occurred at bend [2], [6], [7] and the fatigue strength of stirrup
was smaller than that of bar itself [2], {7]. Some of the reports proposed the equations for the
calculation of stirrup strains under fatigue loading according to the observed relationship
between applied shear forces and stirrup strains [2], [3], [5]. Recently, Sabry reported that
stirrup strains increased in proportion to the logarithm of the cycles of repeated loading due to
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the decrease of shear force carried by concrete and proposed the equation for the calculation of
stirrup strain by applying the fatigue strength in shear of the identical beam without shear
reinforcement to the decrease of shear force carried by concrete [1].

This study is the extension of the Sabry’s work. Fatigue tests of eleven T-beams with
stirrups, four rectangular beams with bent-up bars and sixteen rectangular beams without
shear reinforcement were carried out. In the tests of beams with shear reinforcement the
maximum and/or the minimum load was changed for each specimen and all the strains of shear
reinforcement were measured in detail to investigate the behavior of shear reinforcement under
general variable loadings. The tests of beams without shear reinforcement were carried out to
support the assumption for the explanation of the behavior of shear reinforcement under the
fatigue loading. In the tests the load range was taken as a main parameter.

2. Outlines of Tests

Eleven T-beams had identical section as shown in Fig. 1(a). Loading points were
determined to make shear span depth ratio 2.0 for the right span and 4.0 for the left, while the
ratio was 2.5 for Sabry’s tests. The spacings of stirrups were relatively small compared with the
Sabry’s beams. Stirrups in the both shear spans were so designed that all the stirrups except the
one nearest to the loading point should yield when the main tensile bars yielded. The shear
force at yielding of the vertical stirrups was calculated by eq. 1 (see Table 1 and Fig. 2).

Vy=Veot Aufuy (2/9)]Bx 6))
where
Vcozo'z.ﬁ;/lls(l +ﬂp+ﬁd)bwd (2)

In Table 1, the tested values of V., obtained from shear-strain curve of stirrup together with
the one calculated by eq. 2, and the shear force at flexural failure, V;, calculated by eq.3 are

also shown.
Vi=A.f,(1-0.6pf,[f.")d]a) 3)

The stirrups were bent around the longitudinal bars and all the specimens were divided into
two groups, called as FS series and FL series respectively, according to the radius of bend. The
radius was 1.25 times the diameter of the stirrup in FS series and 2.5 times in FL series.
Loading history was one of the main parameters, and the details were shown in Fig. 3.

The details of four rectangular beams with bent-up bars are shown in Figs. 1(b) (c) (d) and
in Table 2. All the specimens had bent-up bars in the left shear span and inclined stirrups in the
right. The diameters and the spacings were same for the bent-up bars and the inclined stirrups.
Vertical stirrups were used together in the two specimens. The details of loading history were
shown in Fig. 4. Sixteen rectangular beams without shear reinforcement consisted of eight
different types of beams as shown in Table 3 and Fig. 1(e).

All the specimens were loaded statically during the first hundred cycles, and after that,
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Table 1. Properties of T-beams with stirrups.

V., v, v,
Specimens
P ) @ ald=4 ald=2 ald=4 ald=2

kN kN kN KN kN kN

FS1, FL2, 9% 99 2

FS3 FL4 9 428 229 459

FS3, FL6, 97 101 230

FS7 FLS 3 429 231 462

FS9, FL10, 106 106 239

1l 438 235 470

(1) Tested value obtained from shear-strain curve of stirrup.
(2) Calculated value by eq.2.
(3) B, sis 155.5mm for a/d=4 and 62.2mm for a/d=2.

bi

0.345P
&
Q
B=1
(39
Be=1
0.655P
5P

__l_id’_\______ (b)
1.95d Fig. 2. Shear diagrams: (a) T-beams with stirrups;
(a) (b) rectangular beams with bent-up bars.
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Fig. 3. Loading histories of T-beams with stirrups (numerals indicate loading cycles x 10%).
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Table 2. Properties of beams with bent-up bars.

Bent-up bars Inclined stirrups
Vo v, Veo vy Vi
. 0 2) 1 (2)

Specimen kN KN KN kN kN kN kN
BI1 98 92 220 104 97 225 155
BI2 90 95 225 96 101 231 172
BI3 98 97 326 104 103 332 179
BI4 134 124 362 138 128 365 245

(1) and (2) see Table 1.

v \
186 186
BI1 167
147
I 127kN
118kN
8
; (100)  (63)
(45X 10°) s
I 29 (7.53X 10%)
(10*)
(100} (100) 20
¢ t
v v 194
gt 176
BI3 ] 162KN — . Bl4
137 J
78kN . g
49
- (3.3x10 (1.66% 10°) 29
20 151 (1.81% 10°)
(1.94% 10°) : (3 :

Fig. 4. Loading histories of rectangular beams with bent-up bars (numerals indicate the applied
shear force, () indicates loading cycles).

loaded dynamically 210 cycles per minute. A hydraulic jack was used for the cyclic and the
static loading. Electrical resistance strain gauges of 5 mm in length were used for measuring the
strains of shear reinforcement. The pulsator was stopped after appropriate Ioadiné cycles, and
the strains of shear reinforcement were measured under static loading and the propagation of
diagonal cracks was recorded. Concrete cover was removed to confirm the fatigue fracture of

— 43—
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Table 3. Properties and test results of beams without web reinforcement.

’ . N
d b Dw fc Vl‘ ch Vmax me in Vmax f Notes

mm mm' mm % MPa kN kN kN kN V..V, 10kilo

Specimens v,

la 1,540 440 200 0.68 334 65 69 49 5 01 072 0.05

1b 1,540 440 200 0.68 334 65 69 49 30 0.6 0.72 314

2a 1,540 440 200 0.68 455 66 76 46 5 0.1 0.6] 1.86

2b 1,540 440 200 0.68 455 66 76 46 28 0.6 061 4479< (1)
74 0.97 0)

32 1,540 400 200 1.67 334 138 99 60 24 04 061 1,02< (1)
82 0.83 3)

3b 1,540 440 200 1.67 334 138 99 71 36 0.5 0.72 0.07

4a 1,540 440 200 1.67 455 143 110 67 7 0.1 06! 43

4b 1,540 440 200 1.67 455 143 110 79 32 04 072 0.23

5a 770 220 400 0.68 342 65 85 58 6 0.1 0.69 [24.5] @)

5b 770 220 400 0.68 342 65 85 58 23 04 0.69 34.1

6a 770 220 400 0.68 46.0 66 93 57 6 0.1 061 [31.1] &)

6b 770 220 400 0.68 46.0 66 93 57 23 04 061 3121< (1)
62 25 04 066 2315< (1)
67 3 05 072 36.9

Ta 770 220 400 1.67 342 139 115 98 59 0.6 085 0.049

7b 770 220 400 1.67 342 139 115 98 10 01 085 0.024

8a 770 220 - 400 1.67 46.0 143 127 99 7% 08 078 706

8b 770 220 400 1.67 46.0 143 127 108 97 09 085 3984< (1)
108 86 08 0.5 B7< (1)
117 94 08 092 123.5< (1)
117 70 0.6 092 0.267

(1) Non failure.

(2) Flexural failure under static test.

(3) Shear failure under static test.

(4) Fatigue failure due to fracture of tension bars.

stirrups after the tests. All the bars used in the tests were deformed bars having two
longitudinal ribs and parallel transverse lugs perpendicular to the bar axis. Their material
constants together with the compressive strengths of concrete at the ages of testing were as
shown in Table 4.

3. Fatigue Strength in Shear of Beam without Shear Reinforcement

The experimental researches on fatigue strength of beams without shear reinforcement
have made clear that fatigue strength at 1 mega cycle is about 609 of the static strength in the
cases of a large span depth ratio [1], [S], [8], [11], so-called SN curves of beams with a large
span depth ratio are different from those with small one [1], and that the beam, which should
fail in flexure under the static loading, sometimes fails in shear under the fatigue loading [11].

However, the influences of load range and size of specimen on the fatigue strength have
not yet been reported. Consequently, no S-N curve including these factors has been reported.
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Table 4. Properties of materials.
(a) Concrete

Rectangular beams

T-beam
ith sti i
with stirrups with bent-up bars “{1thout web
reinforcement
FS1 FS5 FS9
FL2 FL6 FL10  BIl BI2 BI3 Bi4
FS3 FS7  FSIi
FL4  FL8
f.” (MPa) 24.3 25.5 29.8 23.8 26.9 28.6 39.1 See Table 3
M.S. (mm) 20 25 15 25
(b) Reinforcement
Rectangular beams
T-beam

with sturrups

with bent-up bars

without web

reinforcement
¢ (mm) 10 25 10 6 25 16 25
A, (mm?) 71.4 506.7 71.4 31.7 490 200 490
f, (MPa) 383 342 383 344 370 400 370
E, (GPa) 186 — 185 186 172 — —

Therefore, fatigue tests of rectangular beams were carried out. The main parameters were the
load range and the height of beams as shown in Table 3.

The evaluation of static strength is important when the fatigue strength is represented by
the ratio of the applied maximum shear force to the static strength. The following equation,
from which the most accurate static strength is obtained, is used for the calculation of the static
strength. This equation can estimate it with less than 109 of the coefficient of variation {12].

V,u=0.20£./15 (0.75+1.40 dja) (1+ B, + Bo)b,d @

Figure 5 shows that the relationship between the ratios of the previous tested fatigue shear
strengths to the values calculated by eq.4 and the tested fatigue lives of the beams. The
calculated static strengths are multiplied by 0.8 for the cases of light weight concrete. The solid
line in Fig. 5 is a calculated line by the following equation, which does not include the effect of
load range.

Iog (Vmax/ ch)= —0.035 log Nf (5)

The average ratio of the tested maximum shear forces to the calculated ones is 1.00 and the

45—



Behavior in Shear of Reinforced Concrete Beams
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Fig. 5. Fatigue strength in shear of beam without web reinforcement normalized with static
strength, V., calculated by eq. 4 [1], [5], [8}-[11].

Table 5. Fatigue lives of beams without web reinforcement, kilo cycle.

Vmin/ Vmax
Vmax/ Ve
0.1 0.4 0.5 0.6 0.8 0.9
0.92 2.67 (1235)
0.85 0.24 0.49 (3870) (3984)
0.78 706
0.72 0.5 2.3 0.7, 369 3140
0.69 [245] 341
0.66 (231.5)
0.61 18.6, 430, [311] (10320) (3121) (4479)

[ ]: Failure due to fatigue fracture of tension bars.
( ): Non-failure.

coefficient of variation is 7.4%.

Load levels and fatigue lives of our specimens are shown in Table 3. Twelve of the sixteen
specimens failed in shear due to propagation of the main diagonal crack. Two of the others
failed in flexure due to the fatigue fracture of the tensile bars at the maximum moment region
and two failed under the static loading after the fatigue tests.

There are three pairs of the specimens, 1a—1b, 2a-2b and 7a-7b, which are identical except
for the magnitude of the applied minimum load. The fatigue life of one specimen, whose ratio
of the minimum load to the maximum was larger, was longer than that of the other. And the
specimen 8b did not fail under the third repeated loading, but failed under the fourth repeated
loading whose minimum load was smaller than that of the third one without change of the
maximum load. The test results are rearranged in Table 5 to confirm the influence of load
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Fig. 7. Relationships between ratio of tested value of fatigue strength in shear of beam without
web reinforcement to that calculated by eq. 6 and ratio, r, of minimum shear force to maximum
one: (a) authors’ tests; (b) reported data [1], [5], [8]-{11].

range. The tested values of fatigue lives are classified according to the value of the ratio of
the applied maximum shear force to the static shear strength, V,,,./V.,. The table shows
that the smaller the ratio of the applied minimum shear force to the maximum, ¥V ;./Vmax
(called as ‘r’ hereafter), is, the shorter is the fatigue life between the specimens with the
same. V,,,./V., ratio. Consequently, it can be said that the larger the load range is, the
shorter is the fatigue life.

The relationship between the ratio, r, and the ratio of the tested value of fatigue strength
to the value, V., est/Vemaxcas Calculated by eq.5 which was proposed without any con-
sideration of the influence of load range is shown in Fig. 6. The calculated values have a
tendency to become smaller than the tested ones with increase of the r values. Although the
fatigue strength can be evaluated from eq. 5 in the case of r smaller than about 0.5, it cannot be
evaluated in the case of r larger than 0.6. From this result it can be supposed that the influence
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Fig. 8. Relationships between ratio of tested value of fatigue strength in shear of beam without
web reinforcement to that calculated by eq. 6 and various factors: (a) cylinder strength, £."; (b)
shear span depth ratio, a/d; (c) reinforcement ratio, p,,; (d) effective depth, d; (¢) fatigue life, N;.

of load range appeared not so clearly from the previous tests where the most of values of r were
smaller than 0.5. Finally, with consideration of the influence of load range a following equation
for the prediction of the fatigue strength in shear of beam is proposed.

108 (Vmas/ Vew) = —0.036 (1—r2) log N ©)

The relationship between r and the ratio of the tested value of the fatigue strength to that
calculated by eq. 6 is shown in Fig. 7(a). Figure 7(b) shows the ratio of the previously tested

value of the fatigue strength [1], [5], [8]-{11] to the calculated one. The average is 0.99 and the
coefficient of variation is 7.4%,.

The relationship between the value of ¥ .. et/ Vinax cat and the cylinder strength, the ratio
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of shear span to effective depth, the reinforcement ratio and the effective depth which are
parameters for the calculation of the static shear strength are givn in Figs. 8(a) (b) (c) (d). The
relationship between the value of V,,, 151/ Vmax cat 20d the tested value of fatigue life is given in
Fig. 8(e). The values of ¥, ,, e/ ¥imax ca1 @€ Dot correlated to any parameter. This means that
€q.6 can be used for the evaluation of fatigue shear strength of beams without shear
reinforcement.

4. Stirrup Strain under Fatigue Loéding with Constant Maximum and Minimum Load

Based on the assumption that the decrease of shear force carried by concrete is essentially
the same as that of the fatigue strength of beam without shear reinforcement, equations for the
calculation of stirrup strain under fatigue loading with constant maximum and minimum load

are derived.

4.1  Stirrup strain at the applied maximum shear force

The applied maximum shear force is carried by two components, ¥, and ¥V, where V, is
the shear force carried by the assumed truss with 45° diagonals and V, is the one carried by
concrete. The following equation is thus obtained, where V,,, is the applied maximum shear

force.
Vs = Vmax - Vc (7)

This equation is for the part where the influences of supports or loading points are negligibly
small. For the part where these influences exist, ¥ is lightened by multiplying the coefficient 8,
as indicated in Fig. 2.

Vs = ﬁx( Vmax - Vc) (8)

As the decrease of ¥V, under fatigue loading is assumed to be the same as that of the fatigue
strength of beam without shear reinforcement, V¥, is expressed as eq. 9, which is derived from

eq. 6.
Vc= Vcolo—0.036(l —r2)log N (9)

When 7,

max

Finally, eq. 10 is obtained for the calculation of the average strain of vertical stirrups at the

is constant, the value of V, increases with the decrease of ¥, as indicated in eq. 8.

applied maximum shear force.
Eu max =Bl Vinax = Vo 1070030 =218 M (4 _E 2 /5) (10

The average strains calculated by eq. 10 are compared with the tested ones as shown in
Fig. 9. Equation 10 is confirmed to be applicable to our T-beam tests with different minimum
load as wells as the Sabry’s rectangular beam tests with constant minimum load [1]. Fig-
ure 9(b) shows the cases where the maximum load is different with constant minimum load.
Figure 9(c) shows the case where the minimum load is different with constant load range.
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Fig. 9. Average strain of stirrups at applied maximum shear force: (a) V,,,,=150kN, V_, =
27kN, a/d=4; (b) maximum load was changed with constant minimum load (=26kN),
a/d=2; (c) minimum load was changed with constant load range (=110kN), specimen
FS11; (d) load range, maximum load and minimum load were changed; (¢) maximum loads
were different with constant minimum load (=20kN), a/d=2.5 [1]; (f) minimum load was
changed with constant maximum load (=150kN).

Figure 9(d) shows the case where the load range is different as well as the maximum and
minimum loads. The solid lines in these figures derived from eq. 10 agree with the tested values.
The ranges of V,,,./Vmin (1.23 to 11.1) and V. /V,, (1.42 to 2.94) cover all the practical cases.
Equation 10 is.confirmed to be applicable also to the cases where the influence of support or
loading point is either small (a/d=4.0) or large (a/d=2.0).

4.2 Influence of load range on stirrup strain

It is shown by eq. 10 that the larger the ratio of r is, the smaller is the increase of stirrup
strain, and that the increase does not exist, when the r value is equal to one. Actually the stirrup
strain increases even under the sustained loading (r=1), because the duration of loading causes
the stirrup strain to increase. However, eq. 10 can be applied to the cases, where the influence of
fatigue loading is dominant, since the increase due to the duration of loading is much smaller
than the one due to the loading cycles in those cases.

The increase of average stirrup strains in FS9(I), whose value of V,,;, is very close to that

in
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of V.. is smaller than those in other cases as shown in Fig. 9(f). The calculated line represents

the small increase nicely. It may be said that Fig. 9(f) shows the influence of load range on the
decrease of V, clearly.

4.3 Stirrup strain at the applied maximum shear force less than the shear capacity of concrete

Sabry reported that the stirrup strains hardly increased in the early stage of loading and
stirrup strains began to increase noticeably after some cycles when the applied maximum shear
force was less than the shear capacity of concrete [1]. In the authors’ tests it was observed that
the average of strains in stirrups increased very little until two or three diagonal cracks
appeared in the same shear span and one of them became so long to cross some of the stirrups.

The idea on which eq. 10 is based can be extended to estimate not only the number of
cycles, N, when stirrup strains begin to increase but also the increase of the strains thereafter.
The shear capacity of concrete is assumed to be same as the shear force carried by concrete at
the initial loading and to decrease like the fatigue strength of the identical beam without web
reinforcement until N, cycles. After N, cycles the applied maximum shear force is carried by
two compornents, ¥, and ¥, and the decrease of ¥, can be evaluated from eq. 9 so thateq. 11 is
obtained. '

Vmax = Vco 10—0.036(1 —r2)log N (1 1)

The stirrup strain at the applied maximum shear force can be calculated by eq. 10, substituting
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Fig. 10. Average strain of stirrups at applied maximum shear force less than the shear capacity of
concrete (V. < Vo). (a) Sabry’s tests, rectangular beams, ¥V, =69kN, V. =20kN, V =
79kN, a/d=2.5. (b) authors’ tests, T-beams, V,,,,=89kN, V.. =14kN, ¥V =97kN, a/d=4
for FS7, V. =77kN, V_,,=26kN, V,,=97kN, a/d=2 for FS5.
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the total loading cycles from the start of fatigue loading for N. The calculated values are
compared with the experimental values in Figs. 10(a) (b). These figures show that this
procedure can be used for the calculation of stirrup strains when the applied maximum shear
force is less than the shear capacity. of concrete.

4.4 Stirrup strain at the minimum shear force

In order to know the fatigue fracture of stirrups in a beam, the stress range under fatigue
loading need be determined. The equation for the calculation of the stress range was
temporarily proposed as a result of observation which showed that the stirrup stress changed
linearly with the change of load [1]. But the equation was incomplete because of the neglected
residual strain. In the authors’ study the stirrup strain at the applied minimum load was
examined in detail, and an improved equation was derived.

Figure 11(a) shows the typical relationship between applied shear force, ¥, and average
strain, £,,. Although V-, curve was a straight line at unloading of the first cycle, the one was a
folded line at reloading of the second cycle. The both curves at unloading and reloading of the
10 kilo cycle approached each other and made folded lines. The shear force at the folded point
became larger with loading cycles. In another specimen, however, no folded point was
observed, when the applied minimum shear force was larger than the shear force at the folded
point (Fig. 11(b)). The applied minimum shear force is usually larger than the shear force at the

S—Wvﬂ

1,200

d V.kN
- Ve 0 40 80 Veo 160

(b)
Fig. 11. Observed and assumed relationships between applied shear force and average strain of
stirrups: (a) specimen FL6, a/d=4, N=1 and N=10% (b) specimen FS3, a/d=4, N=10°.
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folded point so that the V~£, curve can be roughly said to be a straight line.

The inclination of the straight line became larger with increase in number of cycles of
fatigue loading so that the strain range corresponding to the same range of shear force became
larger. And a significant increase of the residual strain was observed during the fatigue loading.

The observed V-¢,, relationship shown in Fig. 11 can be explained by assuming that V—¢,
curve is always on the straight line between the point representing the strain at the applied
maximum shear force and the fixed point on the shear axis. At present this point is regarded as
the point where the shear force is equal to minus V. The strain range and the residual strain
are assumed to increase during the fatigue loading, because the maximum strain increases
almost proportional to the logarithm of loading cycles according to eq. 10. The assumed lines
agree with the actual V-£, curve not only in the authors’ tests (Fig. 11) but also in a previous
test [14] (Fig. 12).

From the assumption, the following equations are derived.

Eywr = gw max( Vmax - Vmin)/( Vmax + Vco) (12)
Ewo=Ew max( Vco)/( Vmax + Vco) (1 3)

The calculated values are compared with the tested values in Figs. 13(a), 13(b) and 14. The
authors’ tested values are shown in Figs. 13(a) and 14, and Sabry’s ones {1] are in Fig. 13(b).
These figures clearly show that these equations can express the average behavior of stirrup in
the authors’ tests. While the calculated values are generally smaller than the measured values in
Sabry’s tests. It was observed that the calculated strain ranges tended to be smaller than the
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Fig. 13. Average strain range of stirrups: (a) authors’ tests, V,,,,=14kN, a/d=4; (b) Sabry’s tests
{1}, Vamin=20kN, a/d=2.5.
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tested values in the cases where the number of shear reinforcement was relatively small. This
tendency causes the calculated values to be smaller in Sabry’s tests. However, for simplicity
eq. 12 is considered to be used for practical cases.

4.5 Scatter of measured strain in each stirrup from calculated one

Measured strain in each stirrup lies scatteringly around the calculated one in each stirrup.
The observed scatter is influenced by propagation of diagonal crack. The fuller the propa-
gation is, the smaller is the scatter. The scatter of stirrup strain range at the last measurement
before the first finding of the damaged gauge is shown in Fig. 15. The average ratios of tested
value to calculated one are 1.09 (a/d=4.0) and 1.00 (a/d=2.0), and the coefficients of vari-
ation are 389, (a/d=4.0) and 289, (a/d=2.0). The ratios tend to be smaller than 1.0 in the
cases of stirrups near to loading points and larger than 1.0 in the cases of stirrups near to
supports.
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Fig. 15. Scatter of measured strain of each stirrup around calculated one.
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5. Stirrup Strain under General Variable Loading

5.1 Equivalent number of loading cycles

It is necessary to make clear the behavior of web reinforcement under fatigue loading with
varied load range, since the actual structures are not subjected to fatigue loading with the
constant maximum and minimum load.

When general fatigue loading is divided into some sets of repeated loading with constant
maximum and minimum shear force, each set is named the first repeated loading, the second
repeated loading and so on according to the sequence of the loading. Although the stirrup
strain after subjected to the first repeated loading shall be calculated as mentioned in Section 4,
the strain during the second repeated loading can not be calculated. But this strain can be
estimated if it is assumed that the loading history of the first repeated loading is equivalent to a
certain number (N,,) of cycles of repeated loading whose maximum and minimum shear force
are equal to those of the second repeated loading. By the similar way the stirrup stain under the
subsequent repeated loading can be estimated.

To obtain the equivalent loading cycles a new idea is developed. When the stirrup strains
produced by a certain applied shear force are equal in the identical beams under different
loading histories, the strains during subsequent loading are essentially the same in spite of the
difference of the previous loading histories. In other words, the behavior of a stirrup after
subjected to a certain loading, static or fatigue or sustained loading, is only dependent on the
strain corresponding to the shear force applied. Consequently any loading history can be
substituted by an equivalent fatigue loading with the constant maximum and minimum load.

3.2 Stirrup strain under fatigue loading with varied load range

The line (b) in Fig. 16 is drawn between the fixed point (—¥,,, 0) and the point
representing the strain of stirrup after subjected to N, cycles of the first repeated loading whose
maximum and minimum shear force are V., and V,,,,. When the maximum shear force of

/ log N

log Neo

N.cycles

Iy 108 (Neq + N))
[

N.cycles

0 0 Vimins Van:s Vimazz  Viam v Fig. 16. Idea of equivalent number of loading cycles.
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the second repeated loading is below the point A in Fig. 16, the points representing the strains
at the beginning of the second repeated loading are on the line (b), as mentioned in Section 4.4.
The strain, s,, at ¥,,, , is calculated by the following equation, where ¥, , is the maximum
shear force of the second repeated loading and &, . is the maximum stirrup strain calculat-
ed by eq. 10 with V., = Viax 15 Vinin=Vimin1 and N=N,.

€w = E€wmax1 (Vmax 2 + Vco)/( Vmax 1 + Vco) (14)

Based on the newly developed idea, it is assumed that the state of strain after subjected to N,
cycles of the first repeated loading is equivalent to the state of strain after subjected to the
equivalent number of cycles of loading whose maximum and minimum shear force are equal to
that of the second repeated loading.

The assumption is expressed by eq. 15.

BtV s = Vg 10700700 20 8y
=Bl Ve = Ves 0700V oy V)V + Vi) (s)

The equivalent number of loading cycles is obtained by transposing eq. 15.

log N,

Vma — Vmax +(V. o+ Vco -0.036(1—r12)log N1
q= 2 IOg {( x2 1) ( max 2 ) ‘ (16)
0036 (1 _r2 ) Vmax 1 + V;o

where 71 = Viin1/Venax 15 72= Vinin 2/ Vinax 2+

After subjected to N, cycles of the second repeated loading, stirrup strain, &, gy 2> at Vpax2 €an
be calculated by eq. 10, substituting N,,+ N, for N. This means that the rate of increase in
, OT &, , is very small if the order of N, is smaller than that of N, (see Fig. 17). Solid and

BW max

(1

\Ewn

1,000

Ewmaz,
T

o |_
seoe o 00 ° }ewm

500 /

Calculated lines

600

Average strain of stirrups,

Calculated L

> N

0 2 4 6

Ve 0 Ve 200 log N
Fig. 17. Average strain of stirrups after the Fig. 18. Influence of previous over-loading,
first repeated loading in a case of a large specimen FL2, a/d=2, V=283 kN,
influence of previous fatigue loading, speci- Vain1=0, Ny=1, Vo 2 =136 kN, V=49
men FL2, a/d=2. kN.
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open circles in Fig, 18 indicate the observed ¢, .. » and ¢,,, , respectively in the case of beam, in
which N, is one, and the solid lines in the figures are calculated by eqgs. 10 and 12, substituting
N.+ N, for N. In the figures the small increase is recognized in the early stage of the second
repeated loading, and the calculated lines express nicely the small increase.

When the maximum shear force of the second repeated loading is above the point A in
Fig. 16, the point representing the stirrup strain at ¥, is on the line (a). The line (a)
represents the relationship between applied shear force and stirrup strain under static loading.
Therefore, there is no influence of the previous fatigue loading on the stirrup strains under the
second repeated loading, and eq. 10 can be used without any modification for calculating
. &y max 2 (s€€ Fig. 19). Measured and calculated strains in this case are shown in Figs. 9(a)-(d).

Stirrup strains increase clearly, even if sustained load is applied. It was observed that the
rate of increase was approximately in proportion to logarithm of duration of the loading as
shown in Fig. 20. When a stirrup, whose strain had increased due to sustained loading, was
subjected to fatigue loading, it was observed that the increase of strain was small in the early
stage of the fatigue loading. When sustained load was applied after some cycles of fatigue
loading, the increase of stirrup strain was hardly recognized. Therefore, the increase of strain
due to sustained loading is considered essentially the same as the one due to fatigue loading.
Considering this fact, loading speed may be one of the important factors, but the effect of
sustained loading during a usual fatigue test is generally negligible.

This method of calculation for stirrup strains can be used for design of concrete structures
subjected to any variable loads. However, simple conservative procedures can be used for such
structures as railway bridges in which the design variable loads are determined so as to hardly
exceed the actual loads. One of the procedures is to set the value of V, constant such as 0.5 V,
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or 0.6 V,, which corresponds to the case of log N=8 or 6 with r=0.

6. Strains of Bent-up Bar under Fatigue Loading

6.1 Different characteristics of bent-up bar under static loading

The bent-up bar plays the anchorage part of the tensile bar against bending moment as
well as the shear reinforcement. Because of this double role, the strain characteristics under
fatigue loading may be different from those of stirrups.

Two beams whose one shear span had only bent-up bars as shear reinforcement and the
other had only inclined stirrups were tested. Both the shear spans were reinforced essentially
the same against shear force (see Fig. 1(b)). The different point between the two shear spans is
that the tensile reinforcement ratio is constant for the shear span with inclined stirrups and not
constant for the other because the bent-up bars do not play a role as tensile bar in the vicinity
of the support. Strains of the inclined stirrups under static loading are to be expressed by
eq. 10, substituting one for N and considering the angle, o, between shear reinforcement and
the axis of the member (see Fig. 21(a)).

Ew max = .B'x( Vmax - Vco)/{Aw EW(Z/S)(COS a+sin (1)} (17)

The strains of bent-up bar could be expressed by eq. 17 with consideration of the little
decrease of V, due to the decrease of reinforcement ratio, if the bent-up bar plays only a role
of shear reinforcement. The tested values were actually larger than the calculated ones (see Fig.
21(b)), because of role of the anchorage of tensile reinforcement. The tensile stress in the bent-
up portion is equal to the one as the anchorage, when the tensile stress as anchorage is larger
than that as shear reinforcement. In the reversed case the tensile stress in the bent-up portion is
equal to the tensile stress as shear reinforcement. On the other hand, the portion just before
bent portion plays a role of anchorage of shear reinforcement as well as a role of tensile
reinforcement. Therefore, the stress at this portion is swayed by the stress as tensile
reinforcement or the stress as anchorage of shear reinforcement, whichever is larger. For
example, Fig. 22(a) indicates the strains in the vicinity of bent portion of the bent-up bar
closest to the loading point in the specimen BI3. The bent-up bar was located in the region
where bending moment was superior to shear force. The strain at the portion just before bent
porton was almost the same as that of tensile reinforcement against bending moment, and the
strain at the bent-up portion was much larger than that as shear reinforcement. The case in
which shear force was superidr to bending moment is shown in Fig. 22(b). The bent-up bar was
the second one from the loading point in the specimen BI3. The strain at the bent-up portion
agreed approximately with that as shear reinforcement when the applied shear force was larger
than 140kN, and the strain at the portion just before the bent was much larger than that
as tensile reinforcement. -

Consequently the maximum strain in the vicinity of bent portion of bent-up bar is the
strain as shear reinforcement calculated by eq. 17, substituting g, for f,, or the strain as tensile
reinforcement in bending calculated by the conventional method, whichever is larger. The
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Fig. 22. Strain of bent-up bar in the vicinity of bent portion, specimen BI3.

things mentioned in this section are applicable to the average stress in the cross-section of bent-
up bar, but not applicable to the local stress caused by bending operation.

6.2 Strains of shear reinforcement in case of using bent-up bars together with vertical stirrups

Bent-up bars are generally used together with vertical stirrups, and the strain characteris-
tics should be different from the case where only one type of shear reinforcement is used.

The average strains of inclined stirrups in the right span of the beam were almost twice as
large as those of vertical stirrups (Fig. 23(a)). This was observed also in the left span of the
same beam, where the bent-up bars and vertical stirrups are used together (Fig. 23(b)). This
observed phenomenon is explained by the following assumption. It is assumed that a pure
shear strain state occurs in the shear span. The pure shear strain state indicates that there are
uniform tensile strain, ¢, field at an angle of 45° between the member’s axis and uniform
compressive strain, ¢, field at an angle of 90° between the tensile strain (Fig. 24). The
strains of bent-up bars (or inclined stirrups), ¢, (or ¢;), and vertical stirrups, ¢,, are expressed
by these tensile and compressive strains, ¢ and e..

—61—
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Fig. 23. Average strain of shear reinforcement in beam with bent-up bars (or inclined stirrups)
and vertical stirrups, specimen BI2: (a) inclined stirrups; (b) bent-up bars.
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Fig. 24. Pure shear strain state.

&, (or &) =¢, cos*(a—45°)+¢, sin*(x—45°) (18)
&, =&, c05%(90° —45°) + ¢, sin?(90° —45°) (19)
Both the equations are deduced by taking a=45° and ¢ >¢..
&, (or &)=¢, (20)
£,=05¢, 21
Therefore the following relationship can be obtained.
glor g):e,=2:1 ’ 22)

The sum of shear force carried by bent-up bars, ¥, (or inclined stirrups, ¥;), that carried by
vertical stirrups, ¥, and that carried by concrete, V, is equal to the applied maximum shear
force V... The following equation is thus obtained.
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Vb(or Vn) + Vv: Vmax—' Vc (23)

When the influences of loading points and supports are considered,

Vo(or )+ V=B, (Veax— Vo) (24)
where
Vy=Ap(cosa+sin o) E,e,z/sy 25)
V,=A(cosa+sin a)E,&z/s; (26)
V,=A.E.zt.z2/s, 27

Consequently each strain can be calculated by using eqs. 22 and 24 and the calculated lines are
shown in Figs. 23(a) (b).

6.3 Behavior of bent-up bars under fatigue loading

The characreristics of strain in vertical stirrups under fatigue loading were mentioned in
Sections 4 and 5. It was experimentally made clear that these characteristics were also
recognized in the bent-up bar and inclined stirrup.

In the case where only bent-up bars or inclined stirrups are used, the strain of bent-up bar
or inclined stirrup at the applied maximum shear force under fatigue loading with the constant
maximum and minimum shear force are essentially the same as that of the vertical stirrups and
can be expressed by eq. 28 (see Fig. 25(a)).

ﬁx{ Vmax - K010_0'036“ —r2)log N}
'w max AwEw Z/S (COS o+ sin a)

(28)

However, this equation is not applicable to the bent-up bar in the region where bending
moment is superior to shear force, as mentioned in Section 6.2. Furthermore, it was indicated
experimentally that the tensile strains as anchorage of tensile reinforcement hardly increase
under repeated loading.

In the case where both the bent-up bars (or the inclined stirrups) and the verticl stirrups
are used together, the strains of both shear reinforcement under fatigue loading can be
calculated, considering that the strain of bent-up bar (or inclined stirrup) is almost twice as
large as that of vertical stirrup. The calculated values are compared with the tested values in
Figs. 25(b) (c).

The relationships between shear force and strain under unloading and reloading are line
aiming at the certain fixed point, which can be assumed the point (— ¥, 0) practically (Figs. 21
and 23).

The influence of over-loading, which is the previous loading whose maximum load is
larger than that of subsequent repeated loading, can be explained by the idea of its equivalent
repeated loading, as mentioned in Section 5.1. Figure 25(d) shows the case of N, =263.
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Fig. 25. Average strains of bent-up bars and inclined stirrups at applied maximum shear force: (a)
specimen BI3, V., =137kN, V. =49KkN; (b) shear span with bent-up bars of BI2, max =
127kN, V=29 KkN; (c) shear span with inclined stirrups of BI2, V., = 127kN, V,. =29kN;

(d) influence of previous over-loading, specimen BI2, V,,,, =176kN, V. =88kN.

7. Beam Failure Due to Fatigue Fracture of Shear Reinforcement

Beam failure due to fatigue fracture of shear reinforcement was observed in both the
eleven T-beam tests and the four rectangular beam tests with bent-up bars. In this section the
fatigue strength of shear reinforcement and beam are estimated from the calculated strain of

shear reinforcement.

7.1 Fatigue fracture of shear reinforcement

Nine of the eleven T-beams failed in shear due to fatigue fracture of stirrups. The applied
maximum shear forces were 629 of the calculated static flexure strength. Two beams failed
under static loading after fatigue tests. The specimen FS1 failed in flexure and the ultimate
strength was 1039 of the calculated ultimate strength. The specimen FS9 failed in shear and
the ultimate strength was 97%; of the calculated ultimate strength.

Two of the four rectangular beams failed in shear due to fatigue fracture of bent-up bars
and one beam failed in shear due to fatigue fracture of both bent-up bars and vertical stirrups
and one beam failed in shear due to fatigue fracture of main bars at the crossing point of
diagonal crack with that of bent-up bars and vertical stirrups.
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Fatigue fractured stirrups in the T-beams were always found in the shear span where a/d
was 2.0. Fatigue fractured stirrups were also found in the specimen FS9 which did not fail
under fatigue loading. Many fractured shear reinforcement in the rectangular beams were
found in the shear span with bent-up bars except for the specimen BI4 in which the fracture
was found in both the spans. After the first fatigue fracture of shear reinforcement, each
specimen resisted one hundred thousand to three million cycles. Following the first fracture, the
T-beams failed due to the fracture of four to ten more legs of stirrups and the rectangular
beams failed due to the fracture of five or six more bent-up bars and several vertical stirrups.
Although the total number of fractured shear reinforcement in each specimen did not seem to
relate to the magnitude of fatigue loading or the fatigue lives of the beams, it was recognized
that the shorter the fatigue life of beam was, the fewer was the loading cycles after the first
fracture.

In the T-beams the fatigue fracture occurred not only at lower bent portion where stirrup
was bent around longitudinal bars but also at middle straight portion and upper hook portion.
The portion of fatigue fracture was generally along the main diagonal crack which caused the
failure of beam (see Fig. 26). Many fractured legs at the middle straight portion of stirrup were
found in the center of shear span, and those at the upper hook are found in the vicinity of the
loading point. In the rectangular beams the fatigue fracture of bent-up bar occurred also along
the main diagonal crack. But all the fracture of vertical stirrups was found at the lower bent
portion. The following points can be considered as the reasons for the difference of fractured
positions in vertical stirrup.

(1) The effective depeth of the specimen in the T-beam tests was about two times as high
as that in the rectangular beam tests. A higher effective depth prevents the deterioration of
bond from extending all over the stirrup. Therefore, the stress condition at the lower bend

might be considerably lightened in the T-beam tests, if the point of the diagonal crack crossing

Fig. 26. Fatigue fractured stirrups.
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was far from the lower bend of stirrup.

(2) A main diagonal crack in the specimen BI2 happened to propagate in the vicinity of
the point in which a pair of bent-up bars crossed that of vertical stirrups. Thus the local stress
of the vertical stirrup due to the crossing of diagonal crack might be lightened.

7.2 Fatigue strength of beam
It is considered that the fatigue strength of beam failing in shear due to stirrup fracture is

related to the fatigue strength of stirrup. However, the measured strains in the T-beams show
no more information than that the fatigue strength of stirrup lies between the fatigue strength
of the straight bar (1009;) and that of the bent bar (50%, which is reported in some previous
papers [2] [15]) as shown in Fig. 27. Because it is difficult not only to recognize the fracture
from the measured strains, but also to clear the relationship between the strain at the measured

point and the strain at the fractured point.
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Fig. 27. Relationship between tested stress Fig. 28. Relationship between calculated
range of the first fractured stirrup and num- average stress range of stirrups and tested
ber of loading cycle at the first fracture of fatigue life of T-beam.

stirrup in T-beam.

On the other hand the closed relationship between calculated value of average stress range
of stirrups at the failure of beam and tested value of fatigue life of the T-beam is found as
shown in Fig. 28. The average of the stress ranges is 709 of the fatigue strength of the straight
bar. The coefficient of variation is 4.89;. This figure clearly indicates that the fatigue strength of
the T-beam can be evaluated from the average of stress range in stirrups calculated by eq. 12.

7.3 Design recommendation )

Although the beam failure due to fatigue fracture of shear reinforcement can be evaluated
from the average stress range calculated by the proposed equation, it is difficult to evaluate
accurately the S-N curve for the beam failure. It is necessary to clarify the shear resisting
mechanism after the first fracture of shear reinforcement occurs, in order to evaluate more
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correctly the fatigue life of a general beam. On the other hand the applied stress of shear
reinforcement can be calculated by the authors’ proposed equations before the first fracture of
shear reinforcement occurs. Considering these facts, it is proper that the first fracture of shear
reinforcement, which does not mean the beam failure but influences it greatly, is regarded as
the fatigue limit state in design.

In design procedure the applied stress range calculated as in Section 5.2 is checked by
comparing with the fatigue strength of shear reinforcement. There is not so many information
on the fatigue strength, but the first fracture occurs at bent portion in most of the cases.
Therefore, the fatigue strength is considered to be 509 of that of the straight bar according to
the fatigue strength of bent bar. In future it is necessary to estimate the fatigue strength of
shear reinforcement more correctly, considering the scatter of the applied stress (see Section
4.5).

The strains of shear reinforcement increase under fatigue loading. However, most of the
increase occurs in the early stage of repeated loading, since the increase is approximately
proportional to logarithm of loading cycles. The applied stress can be assumed to be con-
stant and calculated by the proposed equations, substituting the design value of loading cycles,
which is one mega cycle for example.

8. Conclusions

(1) An equation to calculate the fatigue strength in shear of beams without shear
reinforcement is proposed. This equation includes the influence of load range which becomes
significant when the ratio of applied minimum shear force to the maximum exceeds the value of
0.6. This equation is valid for the relatively large span depth ratio and for all the previous data
collected by the authors.

(2) Based on the above equation, the equation for the calculation of the average stirrup
strain at the applied maximum shear force under fatigue loading is modified. This modified
equation is valid for T and rectangular beams, and for the wide range of span depth ratio. And
the equation is applicable not only to the cases of the constant minimum load but also to those
of the constant maximum load or the constant load range. This equation clarifies the influence
of load range on the increase of stirrup strain, which is obtained from the experimental results.

(3) When the applied maximum shear force is smaller than the shear capacity of
concrete, the stirrup strain does not increase at the early stage of fatigue loading but begins to
increase after the specific cycles of fatigue loading. This phenomenon can be explained by
extending the assumption on which the equation in (2) is based.

(4) The equation for the calculation of strain range in stirrup is modified to increase the
accuracy. This equation is derived from the observation that the applied shear force-stirrup
strain relationship can be considered linear at unloading and reloading and the line is assumed
to cross the shear axis at the fixed point.

(5) A procedure to calculate the average strain in stirrups under general variable loading
is proposed. This procedure is based on a newly developed idea that the strains during the
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subsequent loading are essentially the same in spite of the difference of the previous loading
history, if the stirrup strains produced by the same applied shear forces are same. Consequently
any loading history can be substituted by equivalent fatigue loading with the constant
maximum and minimum load,

(6) The strain of bent-up bar is equal to the larger value between the strain as shear
reinforcement and the one as tensile reinforcement for bending. The strain of 45° bent-up bar
as shear reinforcement is two times as large as that of vertical stirrup used together. The strain
of bent-up bar under the fatigue shear loading has the same characteristics as that of vertical
stirrup and can be calculated from the proposed equations in consideration of the above.

(7) In the T-beam tests nine of the eleven specirhens fail in shear under fatigue loading
whose maximum shear force is about 60, of the static strength, although these specimens
under static loading will have failed in flexure at the load when stirrups yield. In all the cases
shear failure occurs due to fracture of several legs of stirrups. Most of the fatigue fracture
occurs along the main diagonal crack. The fatigue strength of beam can be evaluated from the
calculated average of stress ranges in stirrups.

(8) A design method for stirrup under fatigue loading is presented, assuming that the
fatigue limit state is the first fracture of shear reinforcement.
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