球面すべり支承の橋梁構造物への 適用に関する解析的検討

恩田 駿秀1·西谷 朋晃2·石川 義樹3·名古屋 和史4

¹正会員 八千代エンジニヤリング株式会社 国内事業部構造・橋梁部技術第二課 E-mail: ts-onda@yachiyo-eng.co.jp

²正会員 西日本高速道路株式会社 関西支社 建設事業部 構造技術課 E-mail: t.nishitani.aa@w-nexco.co.jp

³非会員 八千代エンジニヤリング株式会社 北日本支店 北海道営業所 E-mail: ys-ishikawa@yachiyo-eng.co.jp

⁴正会員 八千代エンジニヤリング株式会社 北陸支店 技術部 技術第一課 E-mail: nagoya@yachiyo-eng.co.jp

球面すべり支承と呼ばれる振り子の原理を用いた免震支承は、海外においては橋梁構造物に用いられて いるが、我が国では橋梁構造物に適用するための設計基準が整備されていない状況である. 我が国におい て球面すべり支承を橋梁構造物に用いるためには、海外と比較して大きな地震が発生しやすいことや、軟 弱地盤の架橋地点が多いことなどの特徴を考慮して、その適用性について検討を行う必要がある. 本研究 では、球面すべり支承を用いた橋梁について、非線形動的解析を行う際の解析手法を検討するとともに、 球面すべり支承と従来の積層ゴム支承の非線形動的解析結果を比較することで、球面すべり支承の橋梁構 造物への適用性を検討した.

Key Words: Friction Pendulum Bearing, Lead Rubber Bearing,

1. はじめに

(1) 橋梁における免震構造の課題

1995年の兵庫県南部地震において、多くの橋梁構造物 が鋼製支承の損傷による被害を受けたことから、積層ゴ ムを用いた免震支承が広く用いられるようになり、免震 構造という考え方が広まった¹⁾.また、免震構造以外に も地震時水平力を分散する構造として多くの橋梁に積層 ゴム支承が使用されている.免震構造とは、構造物の下 部構造と上部構造の間に積層ゴム支承等を入れて、構造 物全体の振動系の固有周期を長周期化させ、減衰を増加 させることで地震動に対する構造物の応答を低減しよう とするものである².

我が国の免震構造では、土木・建築構造物ともに鉛プ ラグ入り積層ゴム支承や高減衰積層ゴム支承といった積 層ゴム支承が一般的に用いられており、高速道路橋にお いても、積層ゴム系の免震支承が標準的に使用されてい る³.しかし、2011年3月の東北地方太平洋沖地震や 2016年4月の熊本地震といった近年発生した大きな地震 においては、橋梁被害の中にこれらの積層ゴム支承の破 断や大きな残留変形といった損傷が散見された(写真-1(a)).これらは、建設後の経年劣化等の要因によって 積層ゴムのせん断変形性能が低下していた可能性 ⁴や断 層破壊に伴う地盤変状 ⁵といった設計時の想定外による ものが原因である可能性が指摘されている.特に、積層 ゴムの経年劣化に関しては、代表的な要因としてオゾン が挙げられ、積層ゴム支承の維持管理上の課題となって いる(写真-1(b)).このような背景を踏まえると、リ スクマネジメントの観点から、積層ゴム系の免震支承の みに依存するのではなく、様々なタイプの免震支承につ いて道路橋への適用可能性を検討することが重要である.

(a) 損傷事例(b) 劣化事例写真-1 積層ゴム支承の損傷・劣化事例

(2) 球面すべり支承の概要

球面すべり支承(Friction Pendulum Bearing,以下 FPB) と呼ばれる振り子の原理を用いた免震支承が開発されて おり,海外ではいくつかの地震地域において実橋梁での 採用実績がある.FPBは、凹状の球面上をスライダーと いう鋼製の可動体が摩擦の影響を受けながら滑る振り子 型の免震支承である。FPBの固有周期は、図-1に示す ように振り子の原理を用いており、上載重量によらず振 り子の長さ(支承構造においてはすべり面の球面半径) で決まるため,積層ゴム系の免震支承と比較して長周期 化が容易で、すべり面の直径を変えることによって限界 変形量をコントロールすることができる.また、すべり 面の摩擦によって減衰を確保し、振り子運動の復元力に よって残留変位を低減することができるといった利点も ある.

我が国では、主に建築構造物を対象とした研究が行わ

図-1 球面すべり支承の原理

項目		橋梁諸元						
上部構	形式	鋼5径間連続二主鈑桁橋						
	橋長	231.600m(桁長 231.000m)						
	支間割	40.000 m+3@50.000 m+40.000 m						
	幅員	10.650m(全幅員)						
	支承 条件	免震支承(鉛プラグ入り積層ゴム支承)						
造	使用	コンクリート: σ_{dk} =40N/mm ² (床版) 鉄 筋 : SD345 (床版)						
	材料	鋼 材:SM490Y,SM520 (主桁)						
		SM400(横桁)						
	橋脚	RC柱式橋脚(橋脚躯体高H=20.000m)						
下部	基礎	杭基礎 (杭径 φl,000 mm,杭長 L=15.000 m×16 本)						
構	使用	コンクリート: $\sigma_{ck}=30$ N/mm ² (橋脚)						
造	材料	$\sigma_{ck}=24$ N/mm ² (基礎)						
	毛亜中	鉄筋:SD345						
その他	里安度の区分	B種の橋(本線橋)						
	地域	A2 地域(地域別補正係数 C=1.00,						
	区分	$C_{k}=1.00, C_{lk}=1.00)$						
	地盤 種別	II種地盤						

表-1 検討ケースの橋梁諸元

れており,実際の建物への適用実績もある.一方,橋梁 構造物に対しては,いくつかの研究⁷は行われているも のの国内の実績はなく,設計基準としても整備されてい ない状況である.球面すべり支承を我が国の橋梁構造物 に用いるためには,海外と比較して大きな地震が発生し やすいことや,軟弱地盤の架橋地点が多いこと等の特徴 を考慮して,非線形動的解析を行う際の解析手法やその 適用性について検討を行う必要がある.

2. 検討概要

FPB を用いた橋梁の適用性について、橋梁全体系の非 線形動的解析により検討を行う.検討は、鉛プラグ入り 積層ゴム支承(Lead Rubber Bearing,以下LRB)を用いて 免震橋として設計されたモデル橋を基準ケースとして、 支承をLRBからFPB に変更したときのレベル2地震動 に対する橋の応答比較を行い、FPBの地震時挙動を把握 するとともに、FPBの橋梁構造物への適用性を検討する.

(1) 対象橋梁及び解析条件

検討の基準となる LRB を用いた免震橋の橋梁諸元を 以下に示す.支承条件は橋軸方向,橋軸直角方向ともに 免震である.

橋梁諸元及び解析条件を表-1,表-2に,橋梁一般図を 図-3 に示す.検討に用いる地震波はタイプⅡを用い, 各波における最大応答の3波平均値を用いて結果の整理 を行う.

項目	解析条件
解析 手法	非線形時刻歷応答解析(直接積分法)
積分 手法	Newmark の eta 法(eta =1/4), Δ =0.002sec
構造 部材	上部構造:線形梁要素(桁-支承間は剛部材) 免震支承:非線形せん断ばね 塑性ビジ:非線形回転ばね 橋脚躯体:非線形梁要素 基礎ばね:線形ばね
骨格 曲 と 履歴	免震支承:バイリニア 塑性ビジ: <i>M</i> -θトリリニア,武田型 (剛性劣化指数 0.4) 橋脚躯体: <i>M</i> -φトリリニア,武田型
減衰定数	上部構造:0.02, 免震支承:0.00 橋脚 :0.02, 基礎ばね:0.20
減衰 マトリクス	LRB 解析時: Rayleigh 減衰マトリクス [C]=α[M]+β[K] FPB 解析時:要素別 Rayleigh 減衰 (支承ばね要素:β=0.0)
入力 地震動	道路橋示方書V,タイプII地震動 (3波平均) II種地盤用標準波形×1.00 (C ₂ : A2)

表-2 解析条件

(2) FPB の支承特性

FPBは、球面半径 R 及び摩擦係数 μ が主なパラメータ となる.FPBの周期 T_{fs} 及び二次剛性 K_{fs} は、球面半径 Rと上載荷重 wにより式(1)、(2)で表される.FPB における 荷重-変位関係を図-3 に示す.なお FPB は、速度依存性 及び面圧依存性を有することが確認されているが、本検 討においてはこれらの影響は考慮しないものとする.

$$T_{fps} = 2\pi \sqrt{\frac{w}{k_{fps}g}} = 2\pi \sqrt{\frac{w}{R}g} = 2\pi \sqrt{\frac{R}{g}} \qquad (1)$$

$$k_{fps} = \frac{w}{R} \tag{2}$$

減衰及び初期剛性の設定方法が橋梁の応答値 に及ぼす影響検討

FPB による橋梁全体系モデルの非線形動的解析を行う にあたり、橋脚単柱モデルを用いて減衰マトリクス及び 初期剛性の設定方法について検討を行った.照査方向は 橋軸方向とし,固有値解析時の剛性は解析結果より得ら れた最大応答変位時の等価剛性 K_{df}を用いた.

(1) 支承部の減衰が橋梁の応答値に及ぼす影響

減衰マトリクスについて、「Rayleigh 減衰マトリクス」 と支承ばねの剛性項をゼロとした「要素別 Rayleigh 減衰 マトリクス」の比較結果を図-4 に示す.対象橋脚は P3 橋脚とし、FPB の諸元は球面半径 R=8,000、摩擦係数 μ =0.05 とした.初期剛性ついては、スライダー部の剛性 として仮定した 1.2347×10⁶(kN/m)を用いた.

要素別 Rayleigh 減衰を用いたケースでは支承に大きな 変形が生じており、上部構造と下部構造が別々の挙動を 示したのに対して、Rayleigh 減衰を用いたケースは支承 の変形が小さい.また、下部構造の塑性化程度について も、要素別 Rayleigh 減衰を用いたケースでは塑性化が抑 えられているのに対して、Rayleigh 減衰を用いたケース は大きく塑性化した.これは、支承部に通常の Rayleigh 減衰を適用した場合、FPB の初期剛性が高いことで支承 に過度な減衰がかかったことに起因すると考えられる.

Rayleigh 減衰を用いた場合,支承に適用される減衰は 初期剛性より算出されるが,FPB の滑動後は二次剛性が 支配的となる.そのため,初期剛性を基に設定した減衰 は実際の地震時挙動の減衰と異なる可能性があることか ら,設計上過度な減衰を見込むことのないよう,FPB の 減衰には要素別 Rayleigh 減衰を用いるのが良いと考えら れる.

図-4 減衰設定による地震時応答の違い

(2) 初期剛性が橋梁の応答値に及ぼす影響

前述した 2.(1)の減衰の検討では,初期剛性の設定を 支承の部材寸法及び材料を基に仮定したが,設計計算時 においては支承の部材寸法等が不確定であることから, 支承部材の剛性を基にした条件設定は現実的ではないと 考えられる.そこで,FPBの非線形動的解析に用いる初 期剛性の設定方法について,地盤種別,上部構造反力及 び脚高等の条件が異なるモデルに対して,二次剛性に対 する比率から設定する方法と,降伏変位を仮定して設定 する方法の比較検討を行った.

検討には、P3 橋脚単柱モデルを用い、減衰は 2. (1)で 検討した要素別 Rayleigh 減衰により設定した.

建築構造物にFPBを用いる場合,設計時の初期剛性*K*_i は、一般に二次剛性*K*_{fo}の 100~1,000 倍の値が用いられ ることが多い.一方、橋梁用ダンパーでは、摩擦ダンパ ーやオイルダンパー等の構造に関わらず、降伏変位が 2.5 mm となるように初期剛性を設定する手法が用いられ ている[®].

これらを踏まえて、検討する初期剛性の設定方法は次の3通りとした.

①初期剛性を二次剛性の100倍とする方法

②初期剛性を二次剛性の1,000倍とする方法

③降伏変位を2.5mmと仮定し初期剛性を算出する方法

a) 初期剛性の固有値解析への影響

固有値解析時の支承剛性は等価剛性 K_{eff} を用いる.初期剛性が異なる場合でも、最大変位Dは二次剛性 K_{fer} に大きく依存することから、等価剛性に差が生じることはなかった.

b) 非線形動的解析結果

表-1 及び図-2 に示した P3 橋脚を基準として, (a) 基準

ケース,(b)Ⅲ種地盤,(c)反力増,(d)脚高増の計4ケースについて検討を行った.

図-5 に摩擦係数 μ=0.05 の FPB における支承変位と塑性 性ヒンジ回転角の関係を示す.許容値を超過して塑性化 しているケースでは,初期剛性の違いによって塑性ヒン ジの回転角に差が生じる傾向が確認できる.一方で,塑 性化が許容値以下であれば,初期剛性の違いによる応答 値の差はほとんどない結果となった.なお,この傾向は 摩擦係数が異なる場合においても同様であった.表-3 に,本検討により得られた知見を整理する.

表-3 より、従来の橋梁での設計法との整合等を総合的に勘案し、以降の検討ではFPBの初期剛性の設定方法として、方法③(降伏変位を 2.5 mm と仮定し初期剛性を算出する方法)を採用した.

表-3 初期剛性に関する知見の整理

	20 初時間上に用する知光の進生
i	方法①②による初期剛性は、反力と球面半径で決定される
ii	方法③による初期剛性は、反力と摩擦係数で決定される
iii	建築分野の設計では、方法①②が用いられる
iv	橋梁用ダンパーの設計には、方法③が用いられる
v	FPB の摩擦係数は速度依存性を有し、低速度領域において 時に依存性が大きいことが知られているが、非線形動的解 析において最大応答値で照査する場合には、高速度領域で の応答となることが予想されることから、今回の検討にお いては速度依存性の考慮は不要と考えられる
vi	方法①では、二次剛性が小さい場合に初期剛性が剛とは呼 べない領域まで小さくなる. (今回の検討においては、 FPBの球面半径が 8,000mmの時に LRB と同程度の剛性まで 小さくなる)
vii	方法③による初期剛性の範囲は、今回設定した条件で、最 小: $20 \times K_{fs}$ 、最大: $1250 \times K_{fs}$ であり、方法①②より広範 囲となるが、応答値に大きな差はない
viii	方法③は、国内外において既往のFPBに関する文献で使用 実績がある ⁹

図-5 初期剛性設定方法による地震時応答の比較

3. 球面すべり支承の適用性に関する解析

解析ケースを表-4 に、各解析ケースの全体系解析モデル図を図-6に示す。各ケースについて、2. で検討した 減衰マトリクス及び初期剛性の設定方法を基に、支承を LRBとした場合の解析結果を基準として、支承をFPBに 変更した際の変化とFPBのパラメータを変更した場合の 地震時応答について考察を行う。

FPB の諸元は、球面半径 *R*=1,000, 4,000, 8,000, 摩擦 係数 μ=0.05, 0.1, 0.2 とした. なお、比較基準とした LRBのケースにおいて、脚高や支間の変更に伴い、支承 や下部構造の照査が NG となる場合には、照査を満足す るようにケース毎に支承や下部構造の諸元を変更してい る.

(1) LRB と FPB の比較結果

表-5 に、各ケースの LRB と FPB の応答比率を示す. なお、解析モデルは対称構造のため、P1 から P3 の結果 のみを示した.また、比較に用いた LRB の許容変位 は、せん断ひずみ 250%の値である.比較結果より、以 下のように言える.

- *R*=4,000以上及びμ=0.2以下の条件では、ケース3の P3橋脚を除き、塑性ヒンジの回転角がLRBと同等も しくは下回る結果となった。
- ・ケース3のP3橋脚においては、摩擦係数が低く球面 半径が大きい場合に、塑性ヒンジの回転角がLRBの 応答値を大きく超過する傾向となった.
- ・支承変位については、橋軸方向・橋軸直角方向ともに 固有周期が長くなるケースほど変形も大きい傾向とな った。
- ・下部構造の慣性力低減がみられたケースにおける FPB の変位は、LRBに対して橋軸方向で 1~3 倍程度、橋 軸直角方向で 3~5 倍程度となった.橋軸直角方向の 中間橋脚(P3)に対して端部橋脚(P1,P2)で LRB と FPB の 差が大きいは、FPB の橋軸直角方向変位が全橋脚で同 程度であったのに対して、LRB では側径間の変位が 小さい傾向となったためである.

表-4 検討ケース

ケース名	支承	支間長	下部工高さ	地盤 種別
ケース 1	LRB FPB	40m+3@50m+40m	全橋脚:20m	Ⅱ種
ケース 2	LRB FPB	40m+3@50m+40m	P1:12m, P2:12m, P3:20m	Ⅱ種
ケース 3	LRB FPB	40m+3@50m+40m	P1:12m, P2:20m, P3:36m	Ⅱ種

表-5 検討結果(FPB 応答値/LRB 応答値)

(a) 橋軸方向

(b)橋軸直角方向

支承			7-21		7-22		$\tau - \lambda 3$	
		橋脚	塑性 ヒンジ 回転角	支承変位	塑性 ヒンジ 回転角	支承変位	塑性 ヒンジ 回転角	支承変位
		P1	1.00	1.00	1.00	1.00	1.00	1.00
LF	RB	P2	1.00	1.00	1.00	1.00	1.00	1.00
		P3	1.00	1.00	1.00	1.00	1.00	1.00
		P1	1.63	1.88	0.59	1.84	0.71	1.61
	μ=0.05	P2	2.14	1.74	1.40	1.77	0.83	1.53
	<u> </u>	P3	2.22	1.73	2.68	1.85	3.11	2.60
		P1	1.05	1.53	0.52	1.47	0.66	1.35
R=1000	μ=0.1	P2	1.38	1.41	0.97	1.40	0.78	1.31
		P3	1.42	1.40	1.51	1.47	1.29	2.21
		P1	0.72	1.09	0.47	1.07	0.65	1.12
	μ=0.2	P2	0.87	0.99	0.85	0.99	0.54	1.07
		P3	0.89	0.98	0.88	0.98	1.04	1.47
		P1	0.88	2.29	0.31	1.98	0.32	1.69
	μ=0.05	P2	0.86	2.24	0.33	1.97	0.56	1.76
		P3	0.91	2.21	1.04	2.28	5.58	3.86
		P1	0.67	1.83	0.32	1.54	0.33	1.42
R=4000	μ=0.1	P2	0.62	1.79	0.35	1.52	0.47	1.47
		P3	0.66	1.77	0.77	1.80	3.32	3.50
	μ=0.2	P1	0.70	1.26	0.43	1.24	0.51	1.17
		P2	0.75	1.21	0.52	1.21	0.42	1.19
		P3	0.79	1.20	0.86	1.32	1.12	2.50
	μ=0.05	P1	0.73	2.30	0.26	1.86	0.27	1.65
		P2	0.67	2.26	0.26	1.85	0.51	1.75
		P3	0.72	2.23	0.90	2.25	5.78	4.62
	μ=0.1	P1	0.63	1.94	0.30	1.69	0.34	1.48
R=8000		P2	0.60	1.90	0.33	1.68	0.44	1.57
		P3	0.63	1.88	0.74	2.02	3.78	4.15
		P1	0.66	1.49	0.42	1.40	0.49	1.24
	μ=0.2	P2	0.72	1.43	0.51	1.37	0.43	1.30
		P3	0.76	1.42	0.84	1.55	1.54	2.97

支承			ケース1		ケース2		ケース3	
		橋脚	塑性 ヒンジ 回転角	支承変位	塑性 ヒンジ 回転角	支承変位	塑性 ヒンジ 回転角	支承変位
		P1	1.00	1.00	1.00	1.00	1.00	1.00
LRB		P2	1.00	1.00	1.00	1.00	1.00	1.00
		P3	1.00	1.00	1.00	1.00	1.00	1.00
		P1	1.36	2.57	1.11	4.76	0.69	4.58
	μ=0.05	P2	1.48	2.45	1.42	4.87	1.08	4.89
	·	P3	1.29	1.54	1.49	1.62	1.60	1.91
		P1	1.07	2.13	0.93	3.73	0.58	3.80
R=1000	μ=0.1	P2	1.19	2.02	1.26	3.82	0.94	4.11
		P3	1.04	1.27	1.14	1.31	1.00	1.55
		P1	0.88	1.62	0.94	2.23	0.55	2.87
	<i>μ</i> =0.2	P2	0.96	1.53	1.18	2.68	0.81	3.18
		P3	0.83	0.98	0.91	0.97	1.01	1.25
		P1	0.95	3.44	0.50	5.41	0.26	6.23
	μ =0.05	P2	0.92	3.37	0.52	5.41	0.92	6.56
		P3	0.80	2.11	0.80	1.96	4.80	3.13
		P1	0.76	2.76	0.43	4.25	0.24	4.78
R=4000	μ=0.1	P2	0.74	2.68	0.49	4.29	0.77	5.35
		P3	0.64	1.68	0.65	1.54	2.80	2.75
	μ=0.2	P1	0.72	1.95	0.61	2.76	0.40	3.25
		P2	0.80	1.89	0.76	3.10	0.66	3.69
		P3	0.68	1.20	0.70	1.12	1.19	2.00
	<i>μ</i> =0.05	P1	0.85	3.30	0.34	5.30	0.19	5.51
		P2	0.79	3.23	0.31	5.27	0.83	6.03
		P3	0.69	2.02	0.70	1.91	4.75	3.63
	μ=0.1	P1	0.69	2.90	0.38	4.62	0.24	4.34
R=8000		P2	0.65	2.84	0.47	4.57	0.70	5.47
		P3	0.57	1.78	0.60	1.65	3.02	3.22
		P1	0.71	2.37	0.63	3.24	0.41	3.52
	μ=0.2	P2	0.76	2.32	0.77	3.39	0.68	4.16
		P3	0.65	1.47	0.69	1.21	1.70	2.41

(2) 考察

FPBの支承変位が LRBの支承変位を超過することを 許容した場合, FPBはR=4,000~8,000, μ=0.05~0.2の範 囲でLRBに対して橋脚基部の応答値は小さくなる.た だし、ケース3のP3橋脚のように脚高を高くした橋脚 では、摩擦係数が小さくなると橋脚基部の応答値は大き くなる結果となった.これは、脚高が高い場合では、摩 擦係数の小さい FPB で上部構造の慣性力を遮断した際 に,橋脚に作用する慣性力による曲げモーメントが支配 的となり、それにより橋脚基部の応答値が大きくなった ものと考えられる. また, FPBの摩擦係数が小さいケ ースでは、支承の降伏荷重と橋脚の応答値の大小関係が 逆転する傾向となっており、この傾向は、脚高を基準ケ ースより低く設定したケース2のPl, P2橋脚でも確認 された. この傾向についても、橋脚に作用する慣性力に よる曲げモーメントに起因するものであり、より脚高を 低くした場合には解消されるものと考えられる.なお、 本検討に用いたモデル橋は、橋脚に梁部を有しており、 橋脚に作用する慣性力に起因する曲げモーメントが発生 しやすい構造であったことも支承の降伏荷重と橋脚の応 答値の大小関係が逆転した一因であると考えられる.

FPBにおいては、摩擦係数と球面半径が主要なパラメ ータとなるが、摩擦係数については、環境条件・経年劣 化により設計で想定する性能を確保できなくなることが 懸念されるため、設計の段階でこれらを考慮する必要が ある.なお、実橋の実績のある海外基準においては、基 準環境条件や橋の重要度を考慮して安全係数λが設計に 考慮されている.環境条件が劣悪であり、摩擦係数が2 倍程度変動すると仮定した場合、本検討において、 μ=02以下で慣性力の低減効果が概ね得られていたこと から、環境条件による劣化を考慮した場合でもμ=0.1程 度までは実用可能であると考えられる.

4. まとめ

本検討では、球面すべり支承(FPB)の橋梁構造物へ の適用性を検討する目的で、FPBを用いて非線形動的解 析を行う際の解析手法の検討を行った.また、現行基準 で設計された免震橋の積層ゴム支承(LRB)を FPB に変 更した場合の地震時応答を解析的に検討した.検討によ り確認された事項を以下に示す.

・FPBを用いた解析モデルの減衰設定方法について、 Rayleigh減衰を用いた場合の減衰は、初期剛性を基に 算出されるが、FPBの地震時挙動は二次剛性が支配的 となる.そのため、初期剛性を基に設定した減衰は実 際の地震時挙動の減衰と異なる可能性があることか ら、設計上過度な減衰を見込むことのないよう、FPB の減衰には要素別 Rayleigh 減衰を用いるのが適当であると考えられる.

- FPBを用いた解析モデルの初期剛性の設定方法について、反力と球面半径によって決定する方法と、反力と 摩擦係数によって決定する方法の比較検討を行った。
 その結果、本検討の範囲ではそれぞれの方法で算出された応答値に差異はみられなかった。
- ・脚高を高くした橋脚では、摩擦係数が小さくなると橋 脚基部の応答値は大きくなる結果となった.これは、 脚高が極端に高い場合は、上部構造の慣性力を遮断し た際に、橋脚に作用する慣性力による曲げモーメント が支配的となり、それにより橋脚基部の応答値が大き くなったものと考えられる.
- ・今回検討を行った橋梁諸元において、FPBを適用した場合の下部構造の応答値は、*R*=4,000~8,000、μ=0.05~
 0.2 の範囲で LRB と同等もしくは LRB 以下となる結果が得られた。

なお、本検討では、簡略化のため FPB の各種依存性 を無視したモデルで解析を行ったが、これらの各種依存 性が応答値に及ぼす影響については別途確認を行う必要 がある.また、本検討では LRB の応答値との比較検討 が主目的であることから、全ての支点で同じ諸元の FPB を用いることを前提とした解析を行っており、必ずしも 橋の最適設計にはなっていない.反力や下部構造の耐力 によっては各支点で FPB の摩擦係数、球面半径を変え ることや LRB との併用を行う設計も考えられるため、 これらについては今後更なる検討が必要である.

謝辞:本研究は、(株)高速道路総合技術研究所、宇都 宮大学、日鉄エンジニアリング(株)及び(一社)日本 支承協会の共同研究の一環として実施したものである. ここに記して関係各位に感謝の意を表する.

参考文献

- 土木研究センター:道路橋の免震・制震設計法マニ ュアル(案),2011
- 川島一彦:免震設計技術の発展と今後の展望(研究展望),土木学会論文集,Vol.398/1-10, pp.1-12, 1988.
- 東・中・西日本高速道路株式会社:設計要領第二集 橋梁建設編,2016
- 4) 曽田信雄,山田金喜,木水隆夫,広瀬剛,鈴木基行: 東北地方太平洋沖地震により破断した積層ゴム支承 の性能試験,構造工学論文集,V・1.59A, pp.516-526, 2013.
- 5) 大住道生, 星隈順一: 熊本地震により被害を受けた 道路橋の損傷痕に基づく要因分析, 第 20 回性能に基 づく橋梁等の耐震設計に関するシンポジウム講演論 文集, pp.121-128, 2017
- 中村秀司,西本晃治,豊本淳:球面すべり支承 NS-SSB の開発,新日鐵住金エンジニアリング技報, Vol.6, pp.28-35, 2015

- 高橋健太郎:ダブル球面すべり支承免震橋地震時挙 動に関する研究,土木学会論文集 A1 vol.76,No.4, 2020
- 8) 斎藤次郎:摩擦履歴型ダンパーの適用とその実例, 第6回地震時保有水平耐力法に基づく橋梁構造の耐 震設計シンポジウム,2003
- 9) 松田哲夫,土木学会論文集 vol.68,免震すべりシス テムを適用した橋梁における支承部デバイス機能に 関する一考察,2012

(Received August 23, 2021) (Accepted ? ,2021)

ANALYTICAL STUDY ON APPLICATION OF FRICTION PENDULUM BEARING TO BRIDGE STRUCTURES

Toshihide ONDA, Tomoaki NISHITANI, Yoshiki ISHIKAWA and Kazushi NAGOYA

Friction Pendulum Bearing that use the pendulum principle, called spherical sliding bearings, are used for bridge structures overseas, but in Japan, design standards for applying them to bridge structures have not been established. In order to use Friction Pendulum Bearing for bridge structures in Japan, the applicability will be examined in consideration of the characteristics such as the fact that large earthquakes are more likely to occur compared to overseas and the number of bridge points on soft ground. Need to be done. In this study, we examine the analysis method for non-linear dynamic analysis of bridges using Friction Pendulum Bearing, and compare the results of non-linear dynamic analysis of Friction Pendulum Bearing and conventional laminated rubber bearings. The applicability of Friction Pendulum Bearing to bridge structures was examined.