軸方向鉄筋のフーチングからの伸び出しが RC柱の曲げ変形挙動に及ぼす影響に関する 非線形有限要素解析に基づく研究

SHAO PEILUN¹・渡邊 学歩²・幸左 賢二³

¹学生会員 山口大学院 創成科学研究科 博士後期課程(〒755-8611宇部市常盤台 2-16-1) E-mail: shaopeilun@yucivil.onmicrosoft.com

²正会員 准教授 山口大学大学院 創成科学研究科 (〒755-8611 宇部市常盤台 2-16-1) E-mail: gakuho.w@yamaguchi-u.ac.jp

³正会員 Ph.D 九州工業大学名誉教授(〒804-8550 北九州市戸畑区仙水町 1-1) E-mail: kosakenji@yahoo.co.jp

鉄筋コンクリート柱構造の曲げ変形の挙動は、軸方向鉄筋のフーチングからの伸び出しに大きく支配される.本研究では鉄筋コンクリート柱模型を用いた正負交番再実験を行い、軸方向鉄筋のひずみ履歴、柱の変形および各部の損傷を詳細に分析するとともに、非線形有限要素解析に基づく構造解析により実験結果の再現を試みた.実験では、両側の軸方向鉄筋のひずみ履歴に顕著な非対称性がみられた.また、ポストピークでは軸方向鉄筋の座屈に伴い水平耐力の低減現象が確認された.非線形有限要素解析では、軸方向鉄筋の付着すべり特性を適切にモデル化することで、実験で得られた荷重変位関係や載荷時のひずみ履歴の傾向を概ね捉えることができた.本論文では、軸方向鉄筋の付着すべり特性が RC 柱構造の曲げ変形挙動に及ぼす影響について報告する.

Key Words: bond-slip-strain, pull-out of the reinforcement, bending behavior, cycle loading test, nonlinear finite element, embedded reinforcements

1. はじめに

正負交番再実験時の鉄筋コンクリート柱の曲げ変形挙 動は、塑性ヒンジ部のコンクリートの損傷だけでなく、 フーチングからの軸方向鉄筋の伸び出しの影響を大きく 受けるされている^{1),2),3)}.フーチングからの軸方向鉄筋 の伸びだしが大きくなると、付随して軸方向鉄筋の塑性 変形も大きくなり、除荷・再載荷時の軸方向鉄筋の塑性 変形も大きくなり、除荷・再載荷時の軸方向鉄筋の健ち みだしを助長し、水平耐力や変形性能の低下を招く恐れ がある.既存の橋梁下部構造の中には、現行の基準で設 計された橋脚に比べて配筋されている軸方向鉄筋の鉄筋 径が小さく、フーチングからの軸方向鉄筋の伸びだしの 影響が大きいものも存在すると考えられる.このような 場合には、軸方向鉄筋の補強やコンクリートの巻き立て を行っても、最大水平耐力以降のポストピーク域で、安 定した変形性能を確保出来ない可能性があるために、十 分な配慮が必要である.

一方,軸方向鉄筋,せん断補強筋及び帯鉄筋の適切な 配置によって,部材が塑性化しても安定した変形性能が 期待される RC 橋梁構造物については,ファイバー要素

図-1 RC供試体の構造寸法及び載荷装置

を用いた構造解析によって、塑性変形挙動をある程度精 度良く推定することが出来る.しかし、前述のようなポ ストピークの曲げ変形挙動が不安定な構造部材の場合に

図-3 ひずみケージの付設位置

は、ファイバー要素によるモデル化は妥当ではない.こ のような背景から、本研究では、鉄筋コンクリート柱模 型を用いた正負交番再実験を行い、軸方向鉄筋のひずみ 履歴、柱の変形および各部の損傷を詳細に分析するとと もに、フーチングからの軸方向鉄筋の伸びだしを考慮し た非線形有限要素解析を行い、その再現性について検討 を行ったので、その結果について報告を行う.

2. RC 柱の曲げ載荷試験

(1) 正負交番載荷実験の概要

RC 柱構造の曲げ変形挙動及び変形性能を調べるため、 正負交番による曲げ載荷試験を実施した. RC 柱供試体 の構造寸法及び RC 柱断面の配筋状況を示すと図-1 の通 りとなる.供試体は、高さ H_p 1856 mm, 400mm* 400mm の正方形断面を有する柱部と、高さ H_f 700 mm, 幅 B_f 1300 mm,奥行き W_f 1100 mm のフーチング部からなる 全高 Hが 2565 mm の RC 柱である. なお、柱部には、曲 げ耐力がせん断耐力上回るように、SD345(降伏点強度 σ_{sy} =345MPa)、D10 の異形鉄筋が軸方向鉄筋として 28 本を,また,SD345,D6の異形鉄筋の帯鉄筋を 50mm 間 隔で鉛直方向に 42 本をそれぞれ配置した.一方,フー チング内部には SD345,D25の異形鉄筋を配置し,載荷 時には外径 26mmの PC 鋼棒で柱供試体を固定している. なお,コンクリートの圧縮強度は 27.6MPa である.

(2) 載荷方法とデータ計測

本研究では、図-1に示す載荷試験装置を用いて正負交 番載荷試験を実施した.載荷試験中は、鉛直および水平 方向のジャッキに内蔵されたロードセル及び LVDT(変 位計)により載荷荷重及び載荷変位を計測している.ま た、柱基部位置で軸方向応力度が 1MPa 程度となるよう に、鉛直方向の油圧ジャッキにより 160kN の軸力を導入 した.

一方,水平方向の載荷では,RC柱のせん断スパン比が4程度となるように載荷点高さを1600mmとし,正負交番の変位漸増載荷による載荷を行った.正負交番載荷実験で与えた水平方向変位を図-2に示す.有効高さ0.5%相当変位の8mm(以後,"0.5%Drift"と記述)を基準変位とし,その整数倍の変位を手動で繰り返し与えた.繰り返し回数は,同一変位振幅に対して3回とした.なお,載荷試験前に載荷装置に供試体が十分なじむよう,0.25%Driftで正負に1度ずつ載荷を行った.

また,N面側及びS面側の軸方向鉄筋には,図-3に示 しように,柱基部から800mmの高さまでひずみゲージ を付設して,各載荷ステップにおけるひずみを計測して いる.

(3) RC柱の曲げ変形挙動と損傷状況

実験で得られた荷重変位関係の履歴を示すと図-4のようになる.2mm 程載荷した段階で RC 柱基部にひび割れが発生した(ひび割れ耐力 Q_c = 35kN).また,水平変位 4.5mm で軸方向鉄筋が降伏(降伏耐力 Q_y = 69.7kN)しており、+1.5% Drift時(水平変位+23.88mm)および-1.5%Drift時(水平変位-22.65mm)に,水平力はそれぞれ最大82.2kN及び最小-81.4kNに達した.

同図(b)には、荷重変位関係の履歴に1サイクル目と3 サイクル目の包絡線を示した.2.0% Drift までは水平耐力 が概ね一定値を示しており、RC 柱表面に生じたひび割 れ以外には顕著な損傷は見られなかった.しかし、 2.0% Drift 載荷以降では、水平変位の増加に伴って水平耐 力が減少している.写真-1 には、(a) 2.5% Drift 及び(b) 3.0% Drift 載荷時の RC 柱基部の損傷状況を示す.2.5% Drift 載荷時にコンクリートの剥離が生じ、3.0% Drift 載荷 時には、柱基部でコンクリートが剥落した.これに伴い、 2.5% Drift 以降では、除荷過程から再載荷過程に転ずる際 に、変形が進んでも荷重が増加せずに変位載荷曲線が逆 S 字カーブを描くピンチング現象が発生している.また、

(1) N面 (2)S面(a) 2.5% Drift 載荷時(水平変位40mm)

(1) N面
 (2) S面
 (b) 3.0% Drift 載荷時(水平変位48mm)
 写真-1 各載荷段階でのRC柱基部の損傷状況

1.5% Drift 以降,載荷変位の増加に伴い水平耐力は徐々に 低下,これと連動してピンチング挙動が強く現れるよう になった.同規模の RC 柱を対象とした載荷実験では, 水平力耐力の低下現象が生じないことも多いことから の, 本実験にみられた水平耐力の低下現象は,軸方向鉄筋の 径や本数などの配筋の違いによるものと推察される.

さらに載荷を進めると、3.5% Drift 載荷時には、隅角部の軸方向鉄筋がはらみだしが発生し、4.5% Drift 載荷時に

は、軸方向鉄筋の破断音が確認され、耐力の急激な低下 が見られたため実験を終了した.

(4) RC柱の軸方向鉄筋のひずみ履歴

荷重変位関係は正負対称であったが、南側と北側で軸 方向鉄筋のひずみ履歴に顕著な非対称性が見られた. N 面及びS面に配置した軸方向鉄筋のひずみ履歴を、各高 さ位置で示すと図-5のようになる.高さ位置によってひ ずみ振幅に差異はあるが、南側軸方向鉄筋は概ね弾性領 域内に抑えられている.一方、北側軸方向鉄筋は柱基部 では0.5% Drift時に、柱基部から100mmの高さでは1.0% Drift載荷時にそれぞれ降伏して、ひずみが2000µ(柱基 部)および1000µ(100mm高さ位置)まで増大して、 塑性化が急激に進展している.このように大きなひずみ が軸方向鉄筋に生じるとコンクリートとの間にすべりが 生じることが予想される.また、1.0%Drift載荷時には、 柱基部の軸方向鉄筋が降伏する変位に相当するため、軸 方向鉄筋にはその10倍近いひずみが生じている.これ は、コンクリートに生じたひび割れやコンクリートと鉄

筋の間のすべりによって、軸方向鉄筋の塑性化が特定の 領域に集中したことが影響したとみられる.

RC 柱内の軸方向鉄筋の応力~ひずみ履歴を調べるために、図-6 には柱基部位置での軸方向鉄筋のひずみと水 平力の関係を示す.縦軸に載荷時の水平力を示したのは、 軸方向鉄筋の作用応力が計測出来ていないためである.

正負交番載荷実験では、はじめに南側軸方向鉄筋が引 張ひずみを、北側軸方向鉄筋が圧縮ひずみをそれぞれ受 けるが、同図(a)には、引張→圧縮の順に変形する南側軸 方向鉄筋の結果を示したが、ひずみレベルは概ね弾性領 域内に抑えられている.

一方,同図(b)に示した北側軸方向鉄筋の結果では, 水平力が0になっても,原点に回帰せず永久ひずみが生 じていることから塑性化していることが分かる.また,

図-7 RC 柱構造の非線形 FEA モデル

2.5% Drift までの載荷初期段階では北側軸方向鉄筋は引張 状態(右側)にあるが,3.0%以降徐々に圧縮状態(左側) へと移行している.なお,同図(b)の(2)に示した作用水 平力~ひずみ関係の履歴は,特徴的な履歴形状であるこ とや載荷が進展に付随して作用荷重の低下が生じている. これは,3.0%以降の載荷過程において,軸方向鉄筋がは らみだしていることを示唆している.

3. 非線形有限要素法に基づく RC 柱の曲げ変形挙 動の再現解析

本研究では、汎用構造解析コード DIANA を用いて非 線形有限要素解析を行い、正負交番載荷実験で得られた RC 柱の荷重変位履歴や軸方向鉄筋のひずみ履歴等から 推定される各部の損傷状況と比較を行い、その再現性に ついて考察した.

(1) RC 柱構造および材料構成則のモデル化

本解析で作成した構造モデルを図-7に示すが、コンク リート部を4節点アイソパラメトリック平面応力要素 (Q8MEM 要素),軸方向鉄筋等を埋め込み型鉄筋要素 (Bar Type)で離散化して、RC 柱構造の2次元平面モデ ルを作成した.

コンクリートは引張応力下でのひび割れ挙動や,圧縮 側における横拘束効果および軟化特性などの特徴を有し ており,正負交番載荷時の鉄筋コンクリートの材料非線 形性を表すために,様々な応力状態におけるコンクリー トの挙動を表す必要がある.ここでは,コンクリートの 圧縮強度fc'は圧縮試験結果を参考に 27.6MPa と設定した.

なお、コンクリートの材料非線形性を表すために、正 負交番載荷時の除荷・再載荷過程の応力~ひずみ関係を 統一的に記述可能なモデルとして、図-8に示すMaekawa-

図-8 Maekawa-Fukuura Modelの応力ひずみ曲線³

図-9 JSCE 引張軟化曲線³⁾

Fukuura Model^っを採用した.同モデルでは、各過程にお けるコンクリートの応力~ひずみ関係が次式に示す通り 定義される.

(a) 圧縮載荷 0~1 ($\varepsilon \leq \varepsilon_{cmax}$)

$$\sigma = KE(\varepsilon - \varepsilon_p)$$

$$K = exp\left(-0.73\frac{\varepsilon}{\varepsilon_c}\left(1 - exp\left(-1.25\frac{\varepsilon}{\varepsilon_c}\right)\right)\right)$$

$$\varepsilon_p = \left(\frac{\varepsilon}{\varepsilon_c} - \frac{20}{7}\left(1 - exp\left(-0.35\frac{\varepsilon}{\varepsilon_c}\right)\right)\right)\varepsilon_c$$

(b) 圧縮除荷 1~2

$$\sigma = KE(\varepsilon - \varepsilon_p) \cdot \alpha$$

$$\alpha = K^{2} + \left(\frac{\sigma_{0}}{KE(\varepsilon_{0} - \varepsilon_{p})} - K^{2}\right) \left(\frac{\varepsilon - \varepsilon_{p}}{\varepsilon_{0} - \varepsilon_{p}}\right)^{2}$$

(c) 圧縮再載荷 2~3

$$\sigma = \sigma_{cmax} - (\sigma_{cmax} - \sigma_0) \frac{\varepsilon_{cmax} - \varepsilon}{\varepsilon_{cmax} - \varepsilon_0}$$

(d) 圧縮再除荷 3~4, 同 1~2 及び引張載荷 4~6

$$\sigma = R_f f^{TFC} (\varepsilon - \varepsilon_p)$$

(e) 引張除荷 6~7

$$\sigma = E_{b0}(\varepsilon - \varepsilon_p) \cdot \alpha + \sigma_b$$

$$\sigma_b = -f_t \left(0.05 + 0.15 \frac{\varepsilon_{tmax} - \varepsilon_p}{5\varepsilon_u} \right) > -0.2f_t$$

$$\alpha = \left(\frac{\sigma_0}{E_{b0}(\varepsilon - \varepsilon_p)} \right) \left(\frac{\varepsilon - \varepsilon_p}{\varepsilon_0 - \varepsilon_p} \right)^3$$

$$E_{b0} = \frac{\sigma_{tmax} - \sigma_b}{\varepsilon_{tmax} - \varepsilon_p}$$

(f) 引張再載荷 7~8, 引張再除荷 8~9, 同 6~7, 圧縮再載 荷 9~10 及び同 2~3

$$\sigma = R_f f^{TFC} (\varepsilon - \varepsilon_p)$$

ここで

 ε : 要素の全ひずみ. σ : 全ひずみ ε に対応する全応力.

 ε_n : コンクリートの塑性ひずみ.

 σ_0 : 増分開始する時 ϵ_0 に対応する応力.

 $f_c': コンクリートの圧縮強度.$

- ε_c : f_c' に対応する一軸ひずみ.
- ここで、 ε_c は f_c 'により次式で求められる.

$$\varepsilon_c = 2.0 \frac{f_c}{E}$$

本研究では引張側の構成則は図-9 に示す JSCE 軟化曲線 ⁸を採用した. Maekawa-Fukuura Model と併用する場合には、軟化曲線と水平軸で囲まれる領域の面積は、要素内で消費されるエネルギーあるいは破壊エネルギー G_f と破壊エネルギーに等価になるように応力ーひずみ関係を設定するために用いられる要素長さに支配される. 2 次元一次要素の場合、 $h = \sqrt{2A}$, Aは解析で用いた要素の面積により定義される.

一方,軸方向鉄筋の塑性域における構成則は移動硬化 則型のモデルとして,図-10に示す Menegotto-Pinto Model⁹ を用いた.なお,同図の(a)にはひずみの載荷履歴を, (b)には鉄筋の応力~ひずみ関係の履歴をそれぞれ示す.

同モデルは、塑性化後の除荷・再載荷過程における応力 ~ひずみ関係をMasing則で表すことで、地震時のような 除荷・再載荷が繰り返される応力~ひずみ履歴や、鉄筋 のバウシンガー効果を再現可能とされている.

軸方向鉄筋の降伏点強度 σ_y は材料試験の結果を参考 に 345MPa と設定した.軸方向鉄筋の応力ひずみ関係の 骨格は完全弾塑性体としてモデル化したが,構造解析時 に数値解析的に不安定となるのを避ける為に,鉄筋の 2 次剛性比は 0.1%と設定した.Menegotto-Pinto Model は無次 元比例応力 σ^* と比例ひずみ ϵ^* で下式のように表す.

$$\varepsilon^* = \frac{\varepsilon - \varepsilon_r^n}{\varepsilon_y^{n+1} - \varepsilon_r^n}$$
$$\sigma^* = \frac{\sigma - \sigma_r^n}{\sigma_y^{n+1} - \sigma_r^n}$$

$$\sigma^* = b\varepsilon^* + \frac{(1-b)\varepsilon^*}{(1+\varepsilon^{*R})^{\frac{1}{R}}}$$

 σ_r^n : 最終履歴(第nサイクル)載荷反転時の応力 ε_r^n : 同時点でのひずみ σ_y^{n+1} :載荷反転点後に更新された降伏応力 ε_v^{n+1} : 同時点のひずみ

b: 鉄筋の硬化係数(二次剛性比)

$$R = R^{0} - \frac{A_{1}\xi_{p}^{max}}{A_{2} + \xi_{p}^{max}}$$
$$\frac{\sigma_{sh}}{\sigma_{y0}} = A_{3} \cdot \left(\frac{\varepsilon_{max}^{t}}{\varepsilon_{y0}} - A_{4}\right)$$

 $R^{0}
 : 初期バウシンガー係数(毎サイクルで更新)
 <math>
 \xi_{p}^{max}
 : -回前の載荷反転点(<math>\varepsilon_{r}^{n}, \sigma_{r}^{n}$)から現在の載荷反

 $A_1 \sim A_2$: 材料定数

A₃~A₄:材料の等方硬化定数

 $\sigma_{y0}, \epsilon_{y0}$:初期降伏応力とひずみ

σ_{sh}:等方硬化により応力の増加量

ε^tmax:載荷反転点までの最大塑性ひずみ

(2) 非線形 FEM 解析による RC 柱載荷実験結果の検討

後述する付着すべり現象を考慮した解析と比較検討す るために、軸方向鉄筋とコンクリート間が完全定着して いると仮定したモデルを、RC 柱構造の基本ケース (Case-1)として解析を行った.なお、後述するケース を含め、コンクリートと鉄筋の材料構成則をそれぞれ、 上述した Maekawa-Fukuura Model 及び Menegotto-Pinto Model を用いてモデル化した.

解析により得られた載荷点位置での水平力~水平変位 関係の履歴を、実験で得られたそれと合わせて図-11 に 示す.基本モデル(Case-1)を用いた解析結果は、実験 時の最大および最小水平力だけでなく、除荷履歴の細部 についても精度良く再現している、ただし、第2および 第4象限の荷重変位関係の履歴は実験結果と比較して大 きく外側に膨らんでおり、実験で載荷が除荷から再載荷 に転じる際に見らた逆S字カーブを再現できていない.

柱基部位置の軸方向鉄筋のひずみの履歴を図-12 に示 す.両側軸方向鉄筋は載荷変位の増加につれて交互にピ ークを迎え,2章で詳述した軸方向鉄筋の挙動と全く異 なる結果となった.

また, 図-13には, 3.0% Drift (24mm) 時点での柱基部

表-1 本研究で検討した各ケースの付着モデル

図-13 付着効果を考慮しない場合の 3.0% Drift 載荷時の 柱基部位置のひび割れ分布

位置のひび割れ分布の解析結果を示す.ひび割れが柱基部から高さ 200mm まで集中し,写真-1(b)に示した実験時の損傷領域と概ね整合しており.RC 構造物の損傷状況を概ね再現しているといえる.

4. 軸方向鉄筋の付着すべり現象を考慮したモデ ルの改良と曲げ変形挙動に及ぼす影響

前章の結果から、コンクリートと鉄筋の材料構成則を 考慮することによって、実験時の荷重変位関係を再現す ることはできた.しかし、解析では軸方向鉄筋に生じる ひずみは北側と南側で同レベルとなっており、実験で見 られたように、載荷初期段階から北側のみ塑性化が生じ るといった、軸方向鉄筋の損傷の非対称性は再現出来て いない.本章では、埋込み鉄筋に沿って鉄筋~コンクリ ート間のすべりを表すために、図-14 に示す前章の構造 モデルの埋込み鉄筋に、付着すべり特性をモデル化した インターフェース要素を配置して、フーチングからの軸 方向的筋の伸び出しを考慮した構造解析を行った.なお、 付着特性のモデル化のパラメーターは、表-1 に示すとお りとした.

図-15 異なる付着強度を有する付着すべりモデル

(1) 付着強度の違いが曲げ挙動等に及ぼす影響

島らは鉄筋径, コンクリート強度, 定着長および境界 条件を変化させて RC 部材の一軸引抜き試験を行い, 付 着応カーすべり関係式を提案している¹⁰. しかし, 島ら のモデルはマッシブなコンクリートに対する十分定着長 さを持つ鉄筋の一方向抜出し実験結果に基づき提案され ている. このため, 中村ら¹¹は, かぶりの薄い RC 柱の ような構造物に対しては, 同モデルは付着強度を過大に 評価することを指摘し, 同モデルの最大付着強度を 0.4 倍程度とすべきであると提案している. ここでは, 図-15 に示すように, 島らのモデル (Case2) と, 最大付着 強度を 0.4 倍に低下させたモデル (Case3) を用いて解析

図-16 付着強度の異なる場合の RC 柱の荷重変位関係

(a) CEB-FIP Bond-Slip Model

図-17 基部位置軸鉄筋の付着強度-すべり関係

(b) CEB-FIP 2010 εsによる付着強度の低下

図-18 CEB-FIP 付着すべりモデル¹²

し、それらの比較検討を行った.載荷点位置における荷 重変位関係の解析結果を図-16 に示す.最大水平耐力や 除荷履歴に僅かな違いがみられるが、付着強度が変わっ ても大きな違いはみられなかった.また、除荷・再載荷 過程におけるピンチング挙動も再現できてていない.

なお、柱基部位置軸鉄筋の付着応力-すべり関係の履 歴を図-17 に示す.付着応力-すべり関係にオリジナルの 島らのモデルを適用したケースでは、設定した付着強度 が高かったために、鉄筋~コンクリート間の付着すべり が抑えられて、付着すべり量は 0.05mm に留まっている. 一方、付着すべり強度を 0.4 倍に引き下げたケースでは、 すべり量は倍増する.しかし、付着強度が最大付着強度 $\tau_{max} = 3.3$ MPa で維持されるために、すべり量は最大で も 0.2 mm 程度と小さく抑えられ、付着すべり挙動を考 慮しない場合(Casel)の結果と殆ど違いは見られない.

(2) 付着軟化域と残留付着強度のモデル化が RC 柱の曲 げ変形挙動に及ぼす影響

軸方向鉄筋~コンクリート間の付着すべり現象を表す モデルについては様々な提案がなされているが、ヨーロ ッパ国際コンクリート委員会(CEB)及び国際プレスト レストコンクリート連合(FIP)は、Eligehausenらの研究 ¹³に基づいて、図-18(a)に示す Bond-Slip Model、及び同図 (b)に示す Bond-Slip-Strain Modelを提案している¹⁴⁾.特に Bond-Slip-Strain Model は、軸方向鉄筋のひずみだけでな く、コンクリートとの間の付着すべり量が大きくなるに つれて、付着強度が低減する特徴も表現されている.

ヨーロッパの最新改訂版 CEB-FIP 設計基準 ¹⁵には,付 着破壊の型式毎に付着パラメータが細かく定められてお り,付着破壊型式の選択が重要である.ただし,細長い 鉄筋を多数配置した場合には付着割裂破壊が生じやすい ことから,ここで, Case-4~6 には表-1 に示すパラメー タを設定した.

Bond-Slip-Strain Model では、軸方向鉄筋のひずみの増加による付着強度の低減が指数関数で与えられている. ただし、解析コード Diana にはこれを実装するモデルがないことから、付着強度の低下率を軸方向鉄筋の平均ひずみ ($\varepsilon_p \cong 4000\mu$)を元に求めた低下率の値0.4を与えた.

各ケースに用いた付着すべりモデルは図-19 に示す. 最大付着強度は全て 3.47MPa として,付着すべり強度が 低下および喪失するすべり量の閾値は,前出の解析 (Case2)の最大すべり量 0.2mm を参考に $s_{1,2,3}$ を,それぞれ 0.1mm, 0.1mm,及び 0.3mm とした.また,残留付着強 度を 0.4 τ_{max} (Case4), 0.2 τ_{max} (Case5) および 0 (Case6)の 3 種類とした.また,最大付着強度 τ_{max} は全て 3.47MPa と して解析を行った.

図-20 には各ケースの荷重変位関係の履歴を示すが Case4およびCase5では前出の解析と殆ど変わっていない.

図-21 柱基部位置軸鉄筋のひずみ履歴の比較

一方,付着すべり量が閾値0.3mmを超えた場合に付着 強度が完全に失われると仮定した解析(Case6)では, 2.0% Drift載荷時に顕著な水平耐力の低下がみられた.除 荷履歴におけるピンチング挙動も見られ,荷重変位関係 を精度良く再現している.

柱基部位置での軸方向鉄筋のひずみ履歴(Case6)を 実験結果と合わせて図-21に示す.なお、Case4,5につ いても、同様にひずみ履歴を示したが.図-12に示した 結果と概ね一致しており、実験結果を整合していない.

Case6 の解析結果では、南北両側の鉄筋とも 1.0% Drift 以降ひずみは、常に正側(引張状態)で変動し、載荷変 位の増減と連動してひずみが増減している. 一方, 2.0% Drift 以降は軸方向鉄筋のひずみが一様に 増加する傾向を示しており,実験結果とは大きく異なっ ている.また,同一振幅で繰り返し載荷をおこなっても, ひずみは徐々に増加するだけで,載荷変位の増減とひず みの変動が連動していない.これは,鉄筋とコンクリー ト間に顕著なすべりが生じ,載荷変位が増減しても軸方 向鉄筋に力が伝達されなかったためと考えられる.これ は,実験において 0.5% Drift 以降,北側軸方向鉄筋のひ ずみ履歴が載荷変位の増減に反応しなくなった結果とも 整合する.ただし,南北両側の鉄筋とも実験結果とは大 きな乖離がみられ,軸方向鉄筋の損傷状況を再現してい るとは言えない.

(c) 2.0% Drift図-22 軸方向鉄筋~コンクリート間の付着すべり分布

このような違いがなぜ発生したかを考察するために、 軸方向鉄筋のすべり分布に着目した.図-22には、1.0% Driftから 2.0% Driftまでの、軸方向鉄筋~コンクリート間 の付着すべり分布を示す.1.0% Drift時には軸方向鉄筋に 目立ったすべりは発生していない.1.5% Drift時には、最 外縁鉄筋にフーチング表面付近ですべりが発生し、2.0% Drift時にはそのすべりがフーチング内部を貫通している. 圧縮側の鉄筋にそって青色で示したすべりが発生してい る.これは圧縮側最外縁軸方向鉄筋がフーチング内部に 押し込まれる形ですべりが生じていることを示しており 引張時に抜け出しが生じる実験結果とは真逆の結果を示 している.このような、軸方向鉄筋の付着すべり挙動の 違いが、ひずみ履歴の再現性を低下させたと考えられる.

5. 鉄筋の定着長さが RC 柱の曲げ変形能力及び鉄 筋の挙動に与える影響

鉄筋の定着長の差異が RC 柱の曲げ変形能力及び鉄筋 のひずみ履歴や付着現象に与える影響を考察するために, 図-23に示すような,フーチング内の定着長(600mm)を半 減させて 300mm とした解析モデル(Case-7)を用いて解析 を行った.

解析で得られた荷重変位関係の履歴を図-24 に示す. 除荷・再載荷の履歴では、水平変位が変化しても荷重が 増加しないピンチング挙動が再現されており、実験結果 の曲げ変形挙動を概ね捉えている.ただし、再載荷の履 歴パス部分では、細かな微小変動を繰り返しており、不

図-26 2.0% Drift 時の軸方向鉄筋~コンクリート間の付着すべり分布

釣り合い力の計算が十分に収束していない.また,1.0% Drift 以降,水平耐力が実験結果以上に低下しているため に,実験結果の再現性が低下している.

図-25 には、Case-7 の場合について、柱基部位置での 軸方向鉄筋のひずみ履歴を実験結果と併せて示す.これ まで、いずれの解析でも、同一サイクルでの最外縁の軸 方向鉄筋のひずみレベル(損傷レベル)は、南北で同程 度であった.しかし、本ケース(Case-7)では、最初に 引張側で降伏する南側軸方向鉄筋のひずみ履歴が、1.5% 以降、北側軸方向鉄筋に比べて大きくなっている.また、 北側の最外縁軸方向鉄筋のひずみ履歴は2000 μ程度に抑 えられており、南側と北側の軸方向鉄筋で異なる損傷レベルを示す結果となった.前述してきた通り、実験では 軸方向鉄筋の損傷レベルが非対称となっており、この点 に於いて、本解析ケースと実験結果は整合している.

この時の,軸方向鉄筋~コンクリート間の付着すべり 分布を2.0% Drift載荷を例に示すと,図-26の通りとなる. 一部圧縮状態(青色)のものもあるが,引張側の鉄筋を 中心に大きなすべりが生じている.これは,引張によっ て軸方向鉄筋がフーチング内部から伸び出している様子 を示しており,実験結果とも整合する.

6. 結論

本研究では、RC 柱の正負交番曲げ載荷実験の結果を 詳細に分析するとともに、非線形有限要素解析により荷 重変位曲線や軸方向鉄筋のひずみ履歴の再現性について 検討を行った.軸方向鉄筋の付着すべり現象が、RC 柱 の曲げ耐荷性能や終局変形性能に大きな影響を及ぼす影 響について検討を行ったが、本研究で得られた結論を以 下に示す.

- RC柱の正負交番曲げ載荷実験では、正負両側で概ね とも1.5% Drift 載荷時に水平耐力が最大となった.その後水平耐力は徐々に低下し、ピンチング現象が顕 著になった.
- 曲げ載荷時,南側軸方向鉄筋は弾性領域内に抑えら れたが,北側軸方向鉄筋は 0.5% Drift で塑性化が急激 に進展した. その後は 2.5% Drift まで,約 4000μのひ ずみε_pが残留し,北側軸方向鉄筋のひずみにだけ強 い非線形性が見られた.
- 3) 0.5%Drift 載荷段階以降,引張降伏した北側軸方向鉄筋が載荷変位の増減に反応しなくっていることから, 北側軸方向鉄筋がフーチングから抜け出した可能性 が示唆される.
- 4) 0.5% Drift 以降,北側の軸方向鉄筋のひずみがマイナ ス方向増加につれて,RC柱の耐荷力が下がることが 見られて,北側の軸方向鉄筋が座屈発生したと示唆 される.
- 5) 付着すべり現象を考慮せずとも、非線形有限要素法 に基づく解析結果は概ね良好な精度を有していて、 ひび割れの追跡もよくできたが、ピンチング現象や 北側軸方向鉄筋のひずみ履歴は再現できなかった.
- 6) 付着すべり量が閾値を超える場合に付着縁強度が完 全に失われると仮定した解析(Case6)では、顕著な 水平耐力の低下と、除荷履歴におけるピンチング挙 動も見られた、荷重変位関係を精度良く再現してい る.
- 7) また、2.0% Drift 載荷以降、軸方向鉄筋に顕著なすべりが生じたことで、軸方向鉄筋のひずみが載荷変位の増減に鋭敏に反応しなくなっており、実験時に0.5% Drift 以降、北側軸方向鉄筋のひずみ履歴が載荷変位の増減に反応しなくなった結果とも整合する.
- 8) ただし、軸方向鉄筋の押し込み時にフーチング内部 で軸方向鉄筋に抜けが生じており、引張時に抜け出 しが生じる実験結果とは整合せず、軸方向鉄筋のひ ずみ履歴の再現性の低下を招いたと考えられる.
- 9) 解析モデルにおいて、付着すべり領域を限定することで、荷重変位関係にピンチング現象が観察されるようになった。
- 10) また、最外縁軸方向鉄筋のひずみ履歴が南北で非対

称な履歴を描いており、実験結果とも整合している.

参考文献

- 石橋 忠良,小林 薫,海原 卓也:大変形領域の交番 荷重を受ける RC 橋脚のフーチングからの鉄筋抜出し 量算定法に関する研究,土木学会論文集,No.648/V-47, pp.43-54, 2000.
- 2) 星隈 順一,運上 茂樹,長屋 和宏:実大 RC 橋脚にお ける軸方向鉄筋のフーチングからの伸び出し特性と その評価,コンクリート工学年次論文集, Vol.22, No.3, pp.1471-1476, 2000.
- 3) 近藤 益央,運上 茂樹:鉄筋コンクリート橋脚における軸方向鉄筋の伸び出し量に関する研究,地震工学研究発表会講演論文集, Vol. 25, pp. 825-828, 1999.
- 川島 一彦,渡邊 学歩,畑田 俊輔,早川 涼二:逆L 字型鉄筋コンクリート橋脚の耐震性に関する実験的 研究,土木学会論文集,No.745/I-65, pp.171-189, 2003.
- Maekawa, K., and Fukuura, N. Nonlinear Modeling of 3D Structural Reinforced Concrete and Seismic Performance Assessment. In Infrastructure Systems for Nuclear Energy, T. T. C. Hsu, C. L. Wu, and J. L. Lin, Eds. John Wiley & Sons Ltd., 2014, Chapter. 11, pp. 153–184.
- 6) JSCE. JSCE Guidelines for Concrete No. 15: Standard Specifications for Concrete Structures - 2007 "Design". Tech. rep., Japan Society of Civil Engineers, 2010.C.R.
- 7) Menegotto, M. and Pinto, RE.: Method of Analysis for Cyclically Loaded RC. Plane Frames Including Changes in Geometry and Non-Elastic Behavior of Elements under Combined Normal Force and Bending, Proc. of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, pp15-22, 1973.
- 島 弘,周 礼良,岡村 甫:マッシブなコンクリートに 埋め込まれた異形鉄筋の付着応力-すべり-ひずみ 関係,土木学会論文集,第 378 号, pp.165-174, 1987.
- 9) 菅 満宣,中村光,檜貝勇,斉藤 成彦: RC はりの力
 学的挙動に及ぼす付着特性の影響.コンクリート工
 学年次論文集, Vol.23, pp.295-300, 2001.
- 10) Diana User's Manual 10.3
- Eligehausen, R., Popov, E.P., Bertero, V. V.: Local bond stress-slippage relationships of deformed bars under generalized excitations. Rep. No. 83/23, Earthquake Engineering, Res, Ctr, (EERC), Univ. of California, Berkley. pp.162-169, 1983.
- CEB: CEB-FIP Model Code 1990, Bulletin D'Information, N. 213/214, 1990.
- CEB: CEB-FIP Model Code 2010- Final draft, vol. 1.Comité Euro-International du Béton, 2012

(Received July 1,2009) (Accepted November 1,2009)

Evaluation of Bending Behavior of RC Column Under the Cyclic Force Based on the Non-Linear Finite Element Analysis Focusing on the Bond-Strain-Slip Relationship Between Rebars and Concrete at the Column Base

Peilun SHAO, Gakuho WATANABE and Kenji KOSA

The bending behavior of the reinforced concrete column structure is governed by the pull-out behavior of axial reinforcement. In this study, we performed a cyclic loading test of a reinforced concrete column and investigated the step history, distribution of the strain of axial rebars, and the damage of the columns in detail. The remarkably asymmetrical damage distribution has been observed in the axial reinforcement at the base of the RC column. And the buckling induced in the axial reinforcements caused the deterioration of the lateral force capacity at the post-peak. To reproduce the above bending behavior, we performed the structural analysis in detail based on the nonlinear finite element analysis. As a result, we found that the appropriate modeling of the bond-slip-strain phenomena between the reinforcement and the concrete can reproduce the bending behavior of the RC column.

In this paper, we reported the effect of bond-slip characteristics of axial reinforcing bars on the bending behavior of RC column structures.