常時微動計測による重力式コンクリートダムの 振動特性把握に関する検討

栗田 哲史1・松本 陽介2・中野 靖3・恒川 明伸4・黒瀬 高秀4

¹正会員 東電設計株式会社 (〒135-0062 東京都江東区東雲1-7-12 KDX豊洲グランスクエア9F) E-mail: kurita@tepsco.co.jp

²正会員 東電設計株式会社 (〒135-0062 東京都江東区東雲1-7-12 KDX豊洲グランスクエア9F) E-mail: y.matsumoto@tepsco.co.jp

³正会員 東電設計株式会社 (〒135-0062 東京都江東区東雲1-7-12 KDX豊洲グランスクエア9F)

4正会員 東京電力ホールディングス株式会社 (〒100-8560 東京都千代田区内幸町1-1-3)

重力式コンクリートダムの健全性評価を目的として、地震観測による振動特性把握が行われている.し かし、地震観測記録の取得には長期の時間を要する.また、地震計が設置されているダムの数も限定的で ある.そこで、常時微動計測によるダムの振動特性把握が試みられている.しかし、地震記録から得られ た振動特性と常時微動計測より得られた振動特性との関係性について、十分な検討が行われているとは言 い難い.特に、ダムが位置する山間部では人工的な振動源が殆ど存在しないことから常時微動のレベルが 非常に微小であり、構造物が十分に励起されているか明らかでない.そこで、本研究では地震計が設置さ れた重力式コンクリートダムを対象として常時微動計測を実施して振動特性の評価を行い、地震観測記録 から得られている結果との比較を行った.

Key Words :microtremor measurement, seismic observation record, concrete gravity dam, dynamic characteristics, source of vibration

1. はじめに

我が国において、大規模な重力式コンクリートダムが 地震により重大な損傷を蒙った事例は幸いとして無い. しかし、ダムは供用期間が非常に長い土木構造物であり、 また、被災した場合には公衆災害に至る可能性もあるこ とから、その健全性を継続的にモニタリングしていくこ とは重要である.このような観点から、堤体に地震計を 設置してダムの振動特性を把握することが行われてきて いる^{例えば D}.しかし、地震計設置のための設備投資およ び保守費用が少なからず必要となる.更に、地震観測記 録の取得は周辺の地震活動に依存するため、十分なデー タを得るためには長期の時間を必要とすることが稀でな い.また、地震計が設置されているダムの数も限定的で ある^a.そこで、常時微動計測によってダムの振動特性 を得ようとする試みが行われてきている.しかし、地震 記録から得られた振動特性と常時微動計測より得られた 振動特性とが同様のものであるかどうかを確認しておく 必要がある.特に、ダムが位置する山間部では人工的な 振動源が殆ど存在しないことから常時微動のレベルが非 常に微小であり、構造物が十分に励起されているかどう かとの疑問が残る.

常時微動計測による重力式コンクリートダムの振動特 性把握に関する既往の研究として、宮沢・大町³による 先駆的な取り組みでは、重力式コンクリートダムの天端 で常時微動計測を行い、ダムの振動性状の把握に常時微 動測定は有効であると結論付けている.また、金銅他⁴ は常時微動計測や地震観測記録の分析結果より、ダム堤 体の1次固有振動数が貯水深および外気温の変化の影響 を受け、前者の増加および後者の低下に伴って減少する としている.また、これらの物理特性を考慮できる1次 固有振動数の重回帰モデルを提案している.以上の通り 重力式コンクリートダムに対する常時微動計測による振 動特性把握に関する検討は数が多くないが、同じコンク リートダムの中でアーチダムに対しては幾つかの検討。 [~]"が行われている.

一方, 地震観測記録に基づく検討として, 片桐他 %は, 賀祥ダムおよび田瀬ダムで観測された強震記録から、上 下流方向の卓越周期が一時的に長周期化し、また元に戻 るという可逆的な変動が見られたと報告している.この 原因を動水圧の動きによるものと推察し、数値シミュレ ーションによる再現を試みている.加嶋他 %は,9ダム の地震記録の分析より、ダム堤体の固有振動数が貯水位 と気温の両方の影響を受けて変化する可能性が高いと指 摘している. 柏柳他 10は、重力式コンクリートダムとア ーチダムの地震観測記録の分析より、地震時加速度応答 はダム高さへの依存性が顕著であり、天端の応答はダム 基礎での入力に対して線形関係を示すとしている. また, 堤体の卓越振動数は貯水深に対して明瞭な依存性を示す としている.一方、卓越振動数の経年・季節変動は明瞭 でないとしている. 金銅他 いは、重力式コンクリートダ ムの強震観測記録の分析より、堤体に構造的損傷が生じ ていなくてもダム軸方向で比較的顕著に固有振動数の一 時的な低下が認められたとしている.数値モデルによる 検討結果より、この現象は地震動の作用によって一時的 に横継目部の拘束条件の変化(密着性の低下)が生じて いることが原因と考えられるとしている.

以上の通り既往検討を概観すると、重力式コンクリー トダムの振動特性を把握するための地震記録の分析はあ る程度行われているものの、常時微動計測記録から得ら れた結果と地震観測記録の分析結果との関係について十 分な検討が行われているとは言えない.そこで本研究で は、常時微動計測によって重力式コンクリートダムの振 動特性を把握することを目的として、地震観測記録との 比較による検討を行った.

2. 検討対象ダムと地震観測記録の概要

本研究で対象としたのは地震観測を行っている重力式 コンクリートダムである.以下に検討対象ダムとこれま でに得られている地震観測記録の概要を述べる.

(1) 検討対象ダムの概要

本研究で検討対象としたダムの諸元を表-1に示す. B ダムの規模が若干小さいものの,その他は堤高 100m 超 級のダムである.

no.	name of dam	height of dam (100 m)	length of crest (100 m)
1	A dam	1.2	3.5
2	B dam	0.8	1.8
3	C dam	1.1	2.6
4	D dam	1.0	2.7

表-1 検討対象ダムの諸元

(2) 地震観測記録の概要

いずれのダムも,天端,リムトンネル内,基部監査廊 に地震計が設置されている.各地震計は,上下流,ダム 軸,鉛直の3成分を有している.

本研究で使用した地震記録の監査廊と天端との最大加 速度分布の関係を図-1に示す.なお、図中のnはデータ 数を表す.いずれも天端で100cm/s²以下の記録であり、 十分に線形挙動の範囲内と考えられる記録である.いず れのダムについても、基部に対する天端の応答は増幅し ている様子が見られる.上下流方向の増幅率が最も大き く、ダム軸方向と鉛直方向は同程度で、それに次いでい る.

(3) 監査廊

注) 写真撮影用に微動計の風よけは外している.

(2) リムトンネル内

図-2 Cダムにおける地震計設置位置での常時微動計測の設置状況

3. 常時微動計測

(1) 常時微動計測の概要

常時微動の計測器には、白山工業社製のJU410を使用 した.図-2に示すように、既設の地震計設置位置近傍 に微動計を設置した.微動計3台による3箇所の同時計 測を行い、計測時間は概ね30分とした.計測器はプラ スティック製コンテナの風よけで覆い、計測記録が風の 影響を受けないように配慮した.加速度データ収録のサ ンプリング周波数は100Hzとした.なお、内蔵のディジ タルフィルタにより、40Hz以上の高周波成分が自動的 に遮断されている.

(2) 常時微動計測記録の分析

各計測記録は交通振動などの雑振動部分を避け、重複 を許して継続時間 60秒の区間を 10 セット抽出した.な お, 各抽出区間の前後 1 秒を cos 関数でテーパー処理している.

各ダムで得られた常時微動の加速度時刻歴データの振 幅レベルの比較を図-3 に示す.振幅レベルとしては最 大振幅と ms 振幅の 2 種類を考え,上記 10 セットのデ ータの平均値を求めた.エラーバーは標準偏差を表して いる.また,図にはダム地点との比較のために東京都江 東区内の自由地盤で日中計測した常時微動計測記録を同 様に処理した事例も示している.ダム地点の地山におけ る常時微動の振幅は,都内の自由地盤と比較して 1~2 桁小さい.全ダム地点のデータは,天端の振幅が最も大 きく,リムトンネル内および監査廊は明確に小さい.ま た,天端の記録は上下流方向,ダム軸方向,鉛直方向の 順で大きいが,リムトンネル内や監査廊では方向による 差異は小さい.このような特性は地震記録に見られるも のと同様である.

図-3 各ダムにおける常時微動の振幅レベル比較

各計測点ごとに得られた継続時間 60 秒の時刻歴デー タ 10 セットのフーリエスペクトルのアンサンブル平均 を図-4 に示す.なお、平均化処理前の各フーリエスペ クトルには 0.2Hz の Parzen window で平滑化処理を施して いる.図-4 の(1)~(3)は A ダムの天端、左岸リムトンネ ル内、監査廊の同時計測、(4)~(6)は B ダムの天端、左 岸リムトンネル内、監査廊の同時計測、(7)~(9)は B ダ ムの天端、左岸リムトンネル内、堤敷の同時計測、(10) ~(12)は C ダムの天端、右岸リムトンネル内、右岸アバ ットメントの同時計測、(13)~(15)は C ダムの天端、左 岸リムトンネル内、左岸アバットメントの同時計測、 (16)~(18)は D ダムの天端, 監査廊の同時計測, をそれ ぞれ表している. なお, C ダムでは天端, 左岸リムトン ネル内, 監査廊の同時計測を実施しているが, この時の 天端の記録に異常が見られたため,本検討からは除外し た. また, D ダムについては, 計測作業のスケジュール の都合により, 天端および監査廊とリムトンネル内との 同時計測を行えなかった.

図より、フーリエスペクトルに見られる顕著な特徴は、 1Hz 以下と 10Hz 以上の振幅が大きく全体として凹形状 を示すことである.比較のために、前述の都内の自由地 盤で計測した常時微動記録のアンサンブル平均フーリエ

スペクトルを図-5 に示す. 1~10Hz 間に十分なパワーを 有し,堆積平野の計測で一般的に見られる凸型のスペク トル形状を示している.一方,ダム地点で得られたデー タでは,主に1~10Hzの周波数帯の振幅が最も小さくな る傾向を示している.特に,リムトンネル内や監査廊な ど地山の記録では,顕著にその傾向が見られる.これは, ダム地点における地山の常時微動が,ダムの1次固有振 動数の存在する1~10Hzの周波数帯でパワーが小さいこ とを示しており、ダム構造物が励起され難い環境にある ことを示している.一般に、常時微動のうち、1Hz 以下 の周波数帯のものは低気圧や波浪などの自然由来のもの であり、1Hz 以上の周波数帯のものは人間の活動に起因 するものと言われている¹⁰.計測結果は、ダムが立地す るような山間部で後者が殆ど存在していないことを如実 に表している.

図-4の(7)~(9)に示した B ダム 2 では、堤敷(図中 river

と表記)で計測を行っている.この計測点はダムの維持 放流のための放水口付近の地盤上に位置する.堤敷の計 測記録に着目すると、同ダム地点における全計測点中で 最大の振幅を示している.また、高周波数側スペクトル の 30Hz 付近にピークを生じる特徴は全計測点で一致し ている.以上より、地山で計測される 10Hz 以上の高周 波数側の常時微動は、維持放流に起因するものであり、 それによって堤体が励起されている可能性が高いと考え られる. 次に C ダムに着目すると、坑口から 40mの位置に地 震計が設置されている右岸リムトンネル内で若干 1次ピ ーク付近の振動が見られる(図中の矢印)ものの堤体の 振動の影響は極めて小さいといえる.一方、坑口から 25mの位置に地震計が設置されている左岸リムトンネル 内では、堤体の振動の影響が明確に認められる(図中の 矢印).

C ダム以外の上下流方向に着目すると、後述するダム の1次固有振動数に該当する周波数で天端の記録にピー

図-6 Aダムにおける地震記録と常時微動計測結果の平均フーリエスペクトル比の比較

クが認められるが、同一の周波数で監査廊の記録にも大きさは僅かではあるもののピークが認められ(図中の矢印),堤体の振動が多少含まれていることを窺わせる.

4. ダムの振動特性

図-6~図-9には各ダムの地震観測記録から得られた幾 何平均フーリエスペクトル比と常時微動計測記録から求 めた幾何平均フーリエスペクトル比の比較を示す.ここ で、地震観測記録については、全て天端のフーリエスペ クトルを監査廊のフーリエスペクトルで除したものであ り、これをダムの振動特性の基準とする.既往の検討 4

		conditions at earthquake measument			conditi microtremor	conditions at microtremor measurment			
no.	name of dam	averaged waterhead (m)	averaged daily mean air temperature (°C)	number of earthquakes	waterhead (m)	daily mean air temperature (°C)			
1	Adam	816.7	13.4	3	815.5	13.4			
2	B dam	535.9	17.0	6	528.5	17.8			
3	Cdam	724.5	16.8	7	725.5	16.8			
4	Ddam	692.0	12.4	8	692.0	13.6			

表-2 各ダムの検討用地震記録観測時の平均貯水位および平均外気温

(7) 天端/堤敷:上下流方向
(8) 天端/堤敷:ダム軸方向
(9) 天端/堤敷:鉛直方向
図-7 Bダムにおける地震記録と常時微動計測結果の平均フーリエスペクトル比の比較

9.10より、重力式コンクリートダムの固有振動数が貯水 位および外気温の影響を受けるとの指摘があることから, ここで検討に使用する地震観測記録については、表-2 に示す通り,これらの条件が常時微動計測時と同程度に なるものを図-1のデータセットの中から選択して使用 した. 貯水位については1時間刻みのデータの中から計 測時のものを選択し、外気温については1時間刻みのデ

ータを 24 時間分平均して日平均気温とした.表-2 の中 の地震に対する値は、抽出したデータ分の算術平均値で ある. 常時微動の計測結果については、ダム基部 (監査 廊もしくは堤敷)に対する天端のフーリエスペクトル比 および地山(リムトンネル内およびアバットメント)に 対する天端のフーリエスペクトル比を算定した. なお, 全てのフーリエスペクトル比算定には、0.2HzのParzen

図-8 Cダムにおける地震記録と常時微動計測結果の平均フーリエスペクトル比の比較

window で平滑化したフーリエスペクトルを用いている.

図より、Cダムのアバットメントに対する天端のフー リエスペクトル比は、全方向で地震記録に見られるピー クと常時微動のそれとの対応が良いものの、それ以外の ダムでは、上下流方向については概ねピーク周波数が対 応するものの、ダム軸方向および鉛直方向では常時微動 計測記録にピークが表れていない.これは前述の通り、 ダムサイトにおける地山の常時微動は1~10Hzのパワー が弱いことから、堤体が十分に励起されるに至っていな いものと考えられる.ダムの構造上ダム軸方向の両岸お よび鉛直方向の下端は拘束されているため相対的に振動 し難い傾向にあることから、このような現象が表れてい るものと思われる.

図-7(7)~(9)は B ダムの堤敷に対する天端のフーリエス ペクトル比であるが、ダム軸方向および鉛直方向ではス ペクトル比が 10 倍以下となって、天端の振動が基部に 対して減衰していることを示している.図-4 で述べた 通り、堤敷の計測点が放水口に近いことから、同地点で は振動源である維持放流の振動がほぼ直接的に計測され ているため、そのパワーが卓越しているものと思われる. 一方、天端ではその振動が減衰していることから、この ような形状のフーリエスペクトル比になったと思われる.

各ダムの上下流方向の1次卓越周波数に着目すると, 地震記録(図中の矢印 A)に比べて,常時微動計測結果 (図中の矢印 B)は高周波数側に位置している.この現 象は既往の研究^{8,11)}で指摘されている強震時に固有周波 数が低周波数側に変化することと整合している.また, その時の応答倍率については,常時微動の方が地震記録 よりも小さい傾向にある.

5. まとめ

本研究では、常時微動計測によって重力式コンクリー トダムの振動特性を把握することを目的として複数のダ ムを対象に計測データに基づく検討を行った.検討の結 果、常時微動計測の有用性とともに限界も確認された. 本研究で得られた知見を以下にまとめる.

- 各ダム地点の地山の常時微動は IHz 以下の長周期帯 と 10Hz 以上の短周期帯から構成されており、ダム 堤体の 1 次固有振動数である 1Hz~10Hz 間のパワー を十分有していない.これにより、ダム堤体の 1 次 固有振動数が励起され難い環境にある.
- ・ B ダムの堤敷の計測結果より、常時微動の短周期側の振動源はダムの維持放流に起因するものと推察される. なお、全地点で計測されている 1Hz以下の長周期側の微動は脈動(自然由来の振動)と思われる.
- ・ 各ダム地点の常時微動計測記録のフーリエスペクト

ルより、ダム監査廊の記録には堤体の振動が多少含 まれていることが確認された.一方、Cダムを除く 地点のリムトンネル内の記録には堤体の影響が殆ど 認められない.C地点では、リムトンネルの坑口に 近いほど堤体の振動の影響を受けている傾向が明確 に認められた.アバットメントの常時微動記録の振 動レベルは天端とリムトンネルの間にあり、堤体の 振動の影響を多少含んでいる.

- 常時微動のフーリエスペクトル比より、上下流方向の1次ピークは明確に確認できるが、ダム軸方向および鉛直方向では地震記録の1次ピークに対応するものが殆ど確認できない.これは、上述の通り微動の起振源が1~10Hz間でパワーが非常に小さいことと関係しているものと思われる.
- 上下流方向の常時微動計測結果のフーリエスペクト ル比の1次卓越周波数は、地震記録から求めたそれ よりも若干高周波数側にある. この現象は、既往 の研究で述べられた地震動の大きさに応じて固有周 波数が変化すること(強震動ほど低周波数側になる) と調和的である.

参考文献

- 1) Japan Commission on Large Dams: Acceleration Records on Dams and Foundations No.3, 2014.
- 経済産業省 第4回 産業構造審議会 保安分科会 電力安全小委員会 電気設備自然災害等対策ワーキ ンググループ:高さ15m以上の発電専用ダムにおけ る地震計の設置状況,別添資料2, https://www.meti.go.jp/shingikai/sankoshin/hoan_shohi/d enryoku_anzen/denki_setsubi/pdf/004_10_02.pdf (2019.08.30閲覧)
- 宮沢直季,大町達夫:常時微動によるコンクリート 重力ダムの動的挙動測定,土木学会 年次学術講演 会講演概要集第1部, pp. 577-578, 1982.
- 4) 金銅将史,小堀俊秀,加嶋武志,佐々木隆:重力式 コンクリートダムの固有振動数変化と重回帰分析, ダム工学,25巻,1号,pp.16-28,2015.
- 5) 大熊 信之,松田 泰治,金澤 健司,池田 浩一:2基 の大規模アーチダムでの常時微動計測に基づく動的 特性の周期的変動評価,土木学会 地震工学研究発 表会講演論文集,第31巻,p.3-040,2011.
- 仲村成貴,塩尻弘雄,上島照幸,有賀義明:常時微 動観測と三次元有限要素解析に基づく実在アーチダ ムの振動特性把握,土木学会 地震工学研究発表会 講演論文集,第32巻,3-362,2012.
- 7) 上島照幸,塩尻弘雄,金澤健司:常時微動・地震動の長期継続観測によるアーチダムの構造健全性モニタリング技術の適用-ダムの振動特性変動の検出:常時微動と地震時変動-,日本地震工学会論文集,第15巻,第7号,pp.284-294,2015.
- 8) 片桐信幸,大町達夫,井上修作:重力式コンクリー トダムの強震記録に見られる地震時卓越周期の可逆 的変動について,土木学会 地震工学研究発表会講

演論文集, 第28巻, No.0106, 2005.

- 9) 加嶋武志,小堀俊秀,金銅将史:地震動観測記録を 用いた重力式コンクリートダムの固有振動数の分析, 土木学会 年次学術講演会講演概要集 第6部,第69 巻,pp.931-932,2014.
- 10) 柏柳正之,大西豪昭,長田直之,早川誠一:地震時応答記録に基づくコンクリートダムの動的応答特性の評価,土木学会 岩盤力学に関するシンポジウム

講演集, Vol.44, pp.166-171, 2016.

- 金銅将史,小堀俊秀,佐々木隆:地震動がコンクリー トダムの振動特性に及ぼす影響,ダム工学,27 巻,4 号,pp.265-278,2017.
- 12) 堀家正則:微動研究について,地震,第2輯,第46巻, pp.343-350,1993.

STUDY ON THE DYNAMIC CHARACTERISTICS OF CONCRETE GRAVITY DAMS OBTAINED BY MICROTREMOR MEASURMENT

Tetsushi KURITA, Yosuke MATSUMOTO, Yasushi NAKANO, Akinobu TSUNEKAWA and Takahide KUROSE

In order to evaluate the soundness of gravity concrete dams, the dynamic characteristics are estimated by seismic observations. However, it takes a lot of time to acquire seismic observation records. There are also a limited number of dams where seismometers are installed. Therefore, the dynamic characteristics of dams are being estimated by microtremor measurement. However, it is hard to say that sufficient investigations have been made on the relationship between the dynamic characteristics obtained from earthquake records and those obtained from microtremor measurements. In particular, since there is almost no artificial vibration source in the mountainous area where the dams are located, the level of microtremor is very small, and there is a question as to whether the structures are sufficiently excited. Therefore, in this study, microtremor measurements were performed at the concrete gravity dams where seismometers are installed to evaluate the dynamic characteristics, and compared with the results obtained from seismic observation records.