石積み擁壁の耐震性評価のための FEMのモデル化に関する研究

堀井 衿佳1・酒井 久和2・佐々木 尚3・中島 進4・藤原 寅士良5

 1学生会員 法政大学大学院 デザイン工学研究科都市環境デザイン工学専攻 (〒162-0843 東京都新宿区市谷田町2-33)
E-mail: erika.horii.2i@stu.hosei.ac.jp

 ²正会員 法政大学教授 デザイン工学部都市環境デザイン工学科 (〒162-0843 東京都新宿区市谷田町2-33)
E-mail: hisakai@hosei.ac.jp

³非会員 環境工学株式会社 環境防災事業部 (〒190-0022 東京都立川市錦町 2-6-5 立川三恵ビル 4F) E-mail: sasaki-t@kankyo-kogaku.co.jp

> ⁴正会員 公益財団法人鉄道総合技術研究所 構造物技術研究部 (〒185-8540 東京都国分寺市光町 2-8-38)
> E-mail: nakajima.susumu.99@rtri.or.jp

⁵正会員 東日本旅客鉄道株式会社 構造技術センター インド高速鉄道設計照査支援プロジェクト (〒151-8578 東京都渋谷区代々木 2-2-6) E-mail: t-fujiwara@jreast.co.jp

石積み擁壁は大地震で脆性的に破壊する危険性を有し、その被害を軽減するために、地震時挙動の解明 や耐震補強対策の提案、さらに、耐震性能評価が求められている.本研究では、石積み擁壁、並びにその 耐震補強対策の耐震性評価のためのFEMによるモデル化の検討を目的とし、2次元FEM解析を実施した. 石積み擁壁の無対策盛土傾斜実験に対して、要素同士の剥離・滑動を表現するジョイント要素を用いた モデルによる解析を行った結果、ジョイント要素の設置箇所・ばね剛性パラメータの検討により、傾斜実 験における石積み擁壁の孕み出し、積み石の滑動といった変形モードを定性的に再現でき、一定の有用性 をもつ FEM モデルを構築できた.一方、すべり線の発生位置などは実験と差異が生じており、より定性 的な再現のために、解析モデルの改善が必要がある.

Key Words: masonry retaining wall, finite element method, nonlinear analysis, joint element

1. はじめに

石積み擁壁は、現地で産出する石材を有効利用でき、 地域の景観にも溶け込むことから¹⁾、古来より多くの建 築物、土木構造物に用いられてきた.その用途は宅地擁 壁・城壁・鉄道沿線・道路など多岐にわたり、国内にお いて数多く存在している²⁾.しかし、石積み擁壁は大き な地震によって脆性的に破壊する危険性を有し、2011年 3月に発生した東日本大震災や2016年4月に発生した熊 本地震において、石積み擁壁の崩壊や、機能不全などの 被害が多数報告されている^{3,4)}.これらの影響は人的被 害のみに留まらず、崩壊した積み石等が道路や線路を遮 断することにより,救助活動等の遅れにも波及する. さらに、今後発生すると予想される首都直下地震や南海トラフ地震においても石積み擁壁の崩壊による被害が想定される. 地震時の石積み擁壁の被害を軽減するために、 石積み擁壁の地震時挙動や崩壊メカニズムを解明し、耐 震性能の把握や耐震補強対策の提案、およびその適切な 設置にかかる基準の設定が急務とされている².

地震時挙動の解明について、有用な手段として模型実験が挙げられるが、多大な費用や時間を要するため様々な条件について検討することは困難である。そこで、これまで、有限要素法(FEM)^{2,5,6,6}、不連続変形法(DDA)^{2,7,86}、個別要素法(DEM)^{9,10,6}などの数値シミュレーショ

ンによる地震時挙動・崩壊メカニズムの解明がなされて きた.

FEM は解析対象を適当な大きさの要素に分割し、連 続体の挙動を把握する手法である. 石積み擁壁のような 不連続体の解析においては、破壊が想定される箇所にジ ョイント要素を設定することですべりや分離を表現でき る.しかし、FEM は本来微小変形理論に沿った解析手 法であり, Update Lagrange 法などにより大変形解析も可 能ではあるものの、崩壊挙動の再現は未だ困難である. DDA は不連続面によって区切られた任意形状のブロッ クにおける運動や、ブロック間の接触力などを計算し、 落石や斜面崩壊シミュレーションを定性的に行うことが できるが、DDA 特有のパラメータ設定が難しく、ロバ スト性も低い. DEM は FEM や DDA とは異なり,対象 を粒子の集合体として取り扱い、その挙動を追跡して動 的挙動を解析する. 石積み擁壁の崩壊やその過程など, 大変形を伴う挙動の追跡が可能であるが、パラメータの 物理的意味が不明確であり、また、粒子の大きさや配置 によっては噛み合わせ効果が生じ、接触面などのモデル

前述のように、石積み擁壁や石垣の挙動を数値シミュ レーションによっておおよそ再現することに成功してい る研究もあるが、各手法に課題も残されている.

化が課題とされる.

一方,石積み擁壁の地震時挙動や崩壊メカニズムが明らかになるにつれ、図-1に示すような工法の開発・実用化、及び、その耐震性を評価しようとする研究も進められており^{10,13}、一定の妥当性が確認されているものの、 石積み擁壁やその対策工のモデル化、汎用性などに課題 を残している.

石積み擁壁やその耐震補強工の性能を評価する際,積 み石や栗石層からなる擁壁本体と,アンカー補強などの 対策工をどのようにモデル化するかが重要な課題となる. そこで,本研究では石積み擁壁の模型実験^{14,15}について, FEM を用いた数値シミュレーションを行う.FEM は要 素の種類が豊富であり,材料の形状・特性に合わせて要 素を選択することが可能である.連続体を対象とするた め,崩壊に至るような大変形挙動を表現することは困難 であるが,解析実績も豊富で崩壊前の耐震性評価に際し ては適切な解析手法であると考える.本研究では,解析 モデル,パラメータの改良,解析手法の選択を行い,石 積み擁壁,並びにその耐震補強対策のFEM によるモデ ル化の検討を目的とし,最終的には,これらの耐震性評 価における,FEM 解析の妥当性の検討を目指す.

2. 実験概要

本章では、解析対象である『崩壊防止ネットと地山補

図-1 アンカー補強エ¹¹⁾

図-2 耐震補強工の概要¹⁵⁾

強材による石積み壁の補強方法に関する傾斜実験および 振動台実験^{[4],15}』について説明を行う.この実験は鉄道 総合技術研究所及び JR 東日本によって提案されている, 崩壊防止ネットと地山補強材からなる耐震補強法(図-2 参照)の対策効果の把握,想定した補強メカニズムが得 られるかを確認することを目的に実施された.

(1) 実験条件

実験ケースを表-1に示す.今回の実験では、準静的に 背面地盤の安定性と補強効果を確認する傾斜実験4ケー ス、動的場における補強メカニズムに着目する振動台実 験2ケースの計6ケースが実施された.傾斜実験は石積 み壁前面方向に作用力が増大するよう、毎分1度の傾斜 角度で模型を傾斜させ、振動台実験は5Hz10波の正弦波 を用い、最大加速度を50~100galの増分で漸増させて石 積み壁が大変形するまで振動を継続させている.なお、 ネットによる崩壊防止、引き留めによる一体化効果を確 認することを目的とし、Case3、Case4、Case6 については

一定の変状が生じたのち、ネットを切断して再傾斜・再 加振が行われた. 実験模型の高さは 721mm であり、こ れは、高さ5m程度の石積み擁壁を1/7程度に縮小したモ デルである.補強効果を評価する上で,壁面の一体性と しての安全側の試験条件で布積み・空積みの石積み壁模 型が構築された. 基礎地盤は湿潤状態の稲城砂を用い, 最適含水比における締め固め度 Dc=95%となるように締 め固めて構築されている.背面地盤は盛土と切土の2種 類である. 盛土を想定した模型については、気乾状態の 東北硅砂 6 号を用い、相対密度が Dr=80%となるように、 空中落下法によって製作された. また,背面地盤の安定 性が高い切土を想定した模型については、ベントナイト 混合硅砂を用い,湿潤密度がp=1.767(g/cm³)となるように 製作されている. なお, 積みブロックと背面地盤の間に は排水を促進させること目的とした栗石層(鹿島硅砂 8~12号, p=1.6(g/cm³))がある.

地山補強材は、実物として径 150mm 程度の補強材が 打設された場合が想定され、芯材径 φ=20mmのアルミニ ウム製の円柱の表面に東北硅砂 6 号が接着されている. 崩壊防止ネットは、落石防止に用いられる高分子ネット が敷設された場合を想定し、縮尺率 1/7 に整合するよう に網目寸法を 3mm から 12mm へ変更することで剛性を 調整したポリエチレン製のネットが使用された. このと き、崩壊防止ネットの引張強度は 5.08(kN/m)、破断ひず みは 50.3%、引張剛性は単位奥行あたり 51.62(kN/m)であ った. なお、崩壊防止ネットとブロックとの定着は、 20mm×20mm 程度のアクリル板およびワッシャー等を介 して、ネットを切断しないようブロックにネジ止めされ ている.

(2) 実験結果

模型実験の結果を表-3,壁面水平変位と水平震度との 関係を図-4、無対策条件における実験模型の様子を図-5 に示す.まず、無対策の場合について、Casel は傾斜角 度の増加に従い、壁体中間部で孕み出しが見られ、水平 変位が徐々に増加した. その後,背面地盤すべり面が発 生すると変位が急増し崩壊に至った. Case2 では壁体と 平行に配置された栗石が滑り落ちると共に壁面の変位が 増大した.いずれも傾斜角度が小さい段階で崩壊や大変 形に至り,壁体中間部で最大変位を確認した.切土 (Case2)が盛土(Case1)よりも低い傾斜角で崩壊に至った理 由として, Case2 は栗石層と地山境界部の傾斜角が大き いために栗石層が地山境界部を滑動しやすく、さらに、 壁面を安定性が低い布積み・空積みで構築したために、 背面地盤の自立性の違いよりも、栗石層の安定性の違い が大きく影響を及ぼしたと考えられている ¹⁵. また, Case5(振動台実験)では、314gal 加振後に背面地盤にすべ り面が発生、変位が急増し、最終的に 425gal 加振によっ

表-1 実験ケース¹⁴⁾

実験ケース		背面地盤	耐震補強工		
Case1		盛土	なし		
Case2		切土	なし		
			油油井	3段×2列	
Case3	佰公	盛土	1117311/1	長さ450mm	
	但东北		ネット	あり	
		切土	建改社	2段×2列	
Case4			作用5虫作3	長さ 250mm	
			ネット	あり	
Case5		盛土	なし		
	店動力	盛土	油油井	3段×2列	
Case6	派到口		个用力虫们们	長さ450mm	
			ネット	あり	
実験条件					
・ブロック寸法 66mm×99mm×45mm					
・土槽の傾斜速度 1°/min					

・加振条件 正弦波 5Hz10波

・傾斜および加振終了後にネットを切断し再実験を実施

表-2 地盤材料の物性値¹⁵⁾

土層	材料	単位 重量	内部 摩擦角	粘着力
		(kN/m ³)	(deg)	(kPa)
基礎地盤	稻城砂	17.9	33.0	48.9
背面地盤 (盛土)	ベントナイト 混合硅砂	17.3	38.6	8.9
背面地盤 (切土)	東北硅砂6号	15.8	44.1	2.7
栗石層	鹿島硅砂 8~12号	15.7	36.9	0

(a)背面地盤:盛土,対策有

表-3 実験結果概要¹⁴⁾

	実験条件	実験結果概要			
Case1		14°で崩壊			
Case2		10°で大きなはらみ出し			
		30° まで載荷			
Case3	傾斜実験	→ネット切断後,再載荷			
	1°/min で傾斜	25°で上部が変位,載荷終了			
		27°まで載荷			
Case4		→ネット切断後,再載荷			
		26°で崩壊			
Case5	振動台実験	400gal 加振で崩壊			
	5Hz10波	800gal まで加振			
Case6	正弦波	→ネット切断後,再加振			
	50~100gal 漸增	800gal で崩壊			

(a)Case1 (崩壊直前)

図-5 無対策条件における実験の様子

(c)Case5 (314gal 加振後)

て崩壊に至った. 314gal 加振時に最も変位が大きかったのは壁体上部であり、これは加速度応答の増幅の影響であると考えられている.

一方,対策工を施した場合,いずれも耐震性能の向上 が確認された. Case3(盛土)では、傾斜角が大きくなるに つれ、壁体上部のみが急激に変位した.ネット切断後も、 壁体中部・下部と比較してその変位は顕著であり、無対 策時(Case1)に孕み出しが生じた壁体中間部は、地山補強 材の引き留め効果により変位が小さかった.対して、 Case4(切土)は、無対策時(Case2)と比較すると、その変位 量は僅かであり、顕著な耐震性の向上が見られた.しか し、Case3 とは異なり、傾斜角度が大きくなるにつれ壁 体中間部の変位が増大する傾向にあり、ネット切断後に より顕著となった.これは、Case4ではCase3よりも補強 材の間隔が開いていたことが原因と考えられており、ネ ット切断後に、補強材を設置したブロック間で壁面の孕 み出し変位が大幅に増加し、最終的にはブロックの抜け 出しが生じることで崩壊に至った. Case6(振動台実験)で は、壁体上部で変形が見られるものの、778gal 加振時に おいてもその変形量はわずかであった.ネット切断後は、 Case4 と同様、崩壊防止ネットで積み石全体を拘束する ことによる一体化効果が失われ、壁体最上部と中間部の 地山補強材間を中心に水平変位が大幅に増加し、ブロッ クの抜け出しによって崩壊に至った.

3. 再現解析

2 章で述べた模型実験のうち,無対策盛土傾斜実験 (Casel)を対象に,2次元 FEM による数値シミュレーショ ンを実施した.

(1) 解析条件

解析モデルを図-6に示す.対策工を設置した実験の再 現解析,及び本研究との比較を想定し,地山補強材の位 置を考慮して解析メッシュを分割した.材料パラメータ は既往研究^{14~18}及び一般値をもとに表-4のように設定し た(以下,パラメータ①.地盤材料のヤング率は一般的 に拘束圧依存性を示す¹⁹が,プログラムの制約上,各々 模型中央の拘束圧より算出した.また,土の非線形特性 を考慮するために, τ_{y} - γ_{y} 関係に Hardin Drnevich モデルを 採用した.サーチャージは実験と等価となるよう質量密 度を 4.08(t/m³)とし,他のパラメータは背面地盤と同じ値 に設定した.

要素は、積み石、背面地盤などの擁壁材料は平面歪要 素とし、さらに、要素同士の剥離・滑動を表現するジョ イント要素を適宜設置する.本研究では積み石同士や栗 石間の滑動などを表現することを目的に、積み石間・根 石一前面地盤間、根石一基礎地盤間、積み石一栗石間、 栗石間の5箇所に設け、設置条件やパラメータを検討す ることで、実験における石積み擁壁の挙動の再現、有用 性を検討した.ジョイント要素のパラメータについて、 粘着力は一般的には考慮しないが、解析の安定化を図る ために微小な値を設定した.摩擦係数は、簡易摩擦試験 ²⁰、および文献²¹⁾を参考に決定した.

拘束条件について、2次元解析を実施するため、z軸 方向(奥行き方向)の並進自由度、及び、x、y、z方向の 回転自由度は全節点について拘束した.さらに、地盤最 底面は、完全固定するためにx、y方向の並進自由度も 拘束し、また、地盤の最前面と最背面は、実験時に土槽 と密着していたため、x方向の並進自由度を拘束した.

解析方法について,傾斜実験は準静的な実験であった ことを考慮し,非線形静解析を実施した.線形解析によ る自重解析結果を初期状態とし,実験時の崩壊直前の傾 斜角度に相当するよう,重力加速度を鉛直・水平方向に 分解してモデルに与え,傾斜状態を再現した.解析には 非線形時刻歴応答プログラムである TDAPIIIを使用した.

(2) 解析結果

a) ジョイント要素のばね剛性パラメータの検討 (Case.A)

はじめに、壁体の変形モードの再現を目的として、積 み石間のみにジョイント要素を設置し解析を試みたが、 壁体にほとんど孕み出しは確認できず、実験(図-8)と整 合する結果が得られなかった.この原因は、ジョイント 要素のばね剛性が不適であったと考え、パラメータの検 討解析(以下, Case.A)を行った.解析パラメータを表-6

図-6 解析モデル概要図

		質量密度	内部摩擦角	粘着力	ヤング率	ポアソン比	規準ひずみ
		(t/m ³)	(deg)	(kN/m ²)	(kN/m ²)		(HDモデル)
積み石	無収縮モルタル	2.20	0	1.00×10^{20}	2.50×10^{7}	0.20	
背面地盤	東北硅砂6号	1.83	44.1	2.70	1.04×10^{4}	0.33	4.01×10^{-4}
前面地盤	東北硅砂6号	1.83	44.1	2.70	1.04×10^{4}	0.33	4.01×10^{-4}
基礎地盤	稻城砂	1.61	33.0	48.9	1.72×10^{4}	0.33	2.48×10^{-3}
栗石層	鹿島硅砂 8~12 号	1.60	36.9	0	3.64×10 ⁴	0.28	1.60×10^{4}

表-4 材料パラメータ①

表-5 ジョイント要素 材料パラメータ

ジョイント要素	粘着力	摩擦	初期引張
設置箇所	(kN/m ²)	係数	強度(kN/m ²)
積み石間	2.0	0.481	
根石-前面地盤間	2.0	0.405	
根石-基礎地盤間	2.0	0.404	0.0
積み石-栗石層間	4.0	0.334	
栗石間	2.0	0.751	

図-7 ジョイント要素設置箇所

図-8 Case1 実験結果(文献 14 に加筆)

表-6 解析パラメータ(Case.A)

	ばね剛性(kN/m/m ²)		
	せん断方向	鉛直方向	
1-1	2.50×10^{7}	2.50×10^{7}	
1-2	2.50×10^{6}	2.50×10 ⁶	
1-3	2.50×10^{5}	2.50×10 ⁵	
1-4	2.50×10^{6}	2.50×10 ⁵	
1-5	2.50×10^{6}	2.50×10^{4}	

に示す. Case.A-1~3(図-9(b)~(d))より, ばね剛性を小さく することで壁体の中部から下部が孕み出すことを確認し た. また, Case.A-2 について, せん断ばね剛性を更に小 さくして解析を行ったところ, Case.A-5(図-10(a))では壁 体下部の積み石に滑動が生じた.

b) ジョイント要素の追加 (Case.B)

さらに、栗石の挙動、及びそれに伴う壁体への作用を 再現することを目的に、壁体と栗石層の境界、栗石層な どにもジョイント要素を設置して解析(CaseB)を実施し た.積み石間のジョイント要素には CaseA4、5のパラ メータを設定し、その他のパラメータは解析が安定する ように値を調整した(表-7 参照).その結果、CaseB-2(図-11(a))では積み石間のみにジョイント要素を設置した CaseA-5 よりも壁体前面の変位が増加したが、実験では 壁体中央部で最大水平変位が生じたのに対し、CaseB-2 では中央部より 221mm 下で最大変位が生じた.また、 実験では背面地盤前面にすべり線が発生し、それを起因

	ばね岡州生(kN/m/m ²)			
	Case.B-1		Case.B-2	
	せん断方向	鉛直方向	せん断方向	鉛直方向
積み石間	2.50×10 ⁵	2.50×10 ⁶	2.50×10 ⁴	2.50×10^{6}
根石-前面地盤間	2.50×10 ⁷	2.50×10^{7}	2.50×10 ⁷	2.50×10^{7}
根石-基礎地盤間	2.50×10 ⁷	2.50×10^{7}	2.50×10 ⁷	2.50×10^{7}
積み石-栗石層間	2.95×10 ⁴	2.35×10^{4}	2.90×10 ⁴	2.20×10^{4}
栗石間	4.25×10 ⁴	2.30×10^{5}	4.30×10^{4}	3.30×10^{5}

表-7 解析パラメータ(Case.B)

(a)ジョイント要素なし

(b)Case.A-1

(c)Case.A-2

(d)Case.A-3

図-9 変形状態(ジョイント要素なし、Case.A-1~3 変形状態(変位 100 倍))

(a)変形状態(変位 100 倍) (b)最大せん断ひずみ分布 図-10 解析結果(Case.A-5)

(a)変形状態(変位 100 倍) (b)最大せん断ひずみ分布 図-11 解析結果(Case.B-2)

として孕み出しが進展,崩壊に至ったのに対し,解析では、栗石層,背面地盤下部で特に大きなせん断ひずみが 生じており(図-10(b),図-11(b)),実験時の変形を再現で きていない.

これらは地盤中央における拘束圧から剛性を設定した ために,地盤下部の強度を過小評価したことが原因であ ると考えられる.そこで,地盤材料パラメータの見直し を行った.

c) 地盤材料パラメータの検討 (Case.C)

上記の問題を解決するため、新たなパラメータ(以下、 パラメータ②について検討を行った.

パラメータ①は各地盤模型中央の拘束圧から剛性を設 定したのに対し、パラメータ②は同一種の地盤をいくつ かのエリアに分け、それぞれに剛性を設定した.エリア 分割図を図-12 に示す.背面地盤、栗石層は地盤全体を 3 層に分割し、それぞれ上層から 1~3 とした.また、基 礎地盤は前面地盤下部のエリアを 1、それ以外を 2 とし た.パラメータ②のヤング率、規準ひずみを表-8 に示す. なお、その他の材料パラメータはパラメータ①と同一で ある.

Case.Bと同様、ジョイント要素を5箇所に設置して解 析(Case.C)を実施した. ばね剛性パラメータについて, 積み石間には Case.A-5 の値を設定し、積み石一栗石間、 栗石間は解析が安定するように値を調整した。結果を図 -12 に示す. 壁体中部から下部にかけて孕み出しが見ら れた Case.A-5, B-2 と比較すると, Case.C では, 壁体下部 の積み石に滑動が見られるものの、壁体や栗石層がほぼ 一体のまま前面に押し出されるような挙動を示し、孕み 出しは緩やかであった.また、前者は背面地盤前方(栗 石層との境界部)の沈下量が少なく、後方にかけて変位 量が増加したのに対し、Case.C では背面地盤全体の沈下 量はほぼ同一であった. さらに、ひずみ分布について Case.B-2 と比較すると、栗石層上部では増幅、背面地盤 下部では減少していることからパラメータ変更による剛 性への影響が確認できるが,依然として,実験のような 背面地盤前方のすべり線は再現できなかった.

4. まとめ

本研究では、石積み擁壁の耐震性評価手法の確立する ため、石積み擁壁、並びにその耐震補強対策の FEM に よるモデル化の検討を目的とした数値シミュレーション を実施した.以下に、無対策盛土傾斜実験に対する非線 形静解析により得られた結果を示す.

石積み擁壁のモデル化において、積み石間にジョイント要素を設置し、そのばね剛性パラメータについて検討した結果、実験と比較するとかなり過小評価

図-12 パラメータ②エリア分割図

表-8 材料パラメータ②

	ヤング率	規準ひずみ	
<u></u> у)	(kN/m ²)	(HDモデル)	
背面地盤1	6.74×10^{3}	3.59×10 ⁴	
背面地盤2	1.06×10^{4}	4.03×10^{-4}	
背面地盤3	1.33×10 ⁴	4.57×10^{-4}	
前面地盤	2.25×10^{3}	5.72×10^{4}	
基礎地盤1	4.77×10^{3}	7.64×10 ⁻³	
基礎地盤2	1.72×10^{4}	2.48×10 ⁻³	
栗石層1	1.93×10 ⁴	8.45×10 ⁻⁵	
栗石層2	3.38×10 ⁴	1.49×10^{4}	
栗石層3	4.38×10 ⁴	1.92×10 ⁴	
サーチャージ	4.24×10^{3}		

表-9 解析パラメータ(Case.C)

	せん断方向	鉛直方向
積み石間	2.50×10^{4}	2.50×10^{6}
根石-前面地盤間	2.50×10^{7}	2.50×10^{7}
根石-基礎地盤間	2.50×10^{7}	2.50×10^{7}
積み石-栗石層間	2.05×10^{4}	1.00×10^{4}
栗石間	4.20×104	5.80×10^{5}

(a)変形状態(変位 100 倍) (b)最大せん断ひずみ分布 図-12 解析結果(Case.C)

ではあるが,壁体の孕み出しや積み石の滑動を表現 した.

2) 栗石層などにもジョイント要素を追加すると、変位 量はわずかに増加したが、孕み出し位置は実験より 下部であった.また、せん断ひずみは栗石層、背面 地盤下部に集中しており、すべり線の発生箇所も実 験とは異なった. 3) 地盤下部の剛性の過小評価により、実験と整合する 結果が得られなかったと考え、地盤材料パラメータ の検討を行った.壁体や背面地盤の変形モードは変 化したものの、依然として、背面地盤下部に特にひ ずみが集中した.

以上より,実験と比較するとかなり過小評価ではある が,壁体の孕み出しや積み石の滑動を表現しうる FEM モデルを構築できたと考える.しかし,壁体の最大孕み 出し位置やすべり線の発生位置は実験と異なっており, 今後,地盤材料の材料特性,及び構成則をさらに吟味す る必要がある.また,ジョイント要素について,解析の 安定化のために設定した粘着力により,特に壁体上部で 積み石が接着したような状態になったため,壁体の変形 が抑制されたと考えられる.ばね剛性パラメータの検討 と共に,粘着力や摩擦係数についても見直しを行い,ま た,ジョイント要素の適切な設置個所の検討を行うこと で,より定性的な実験の再現を目指す.さらに,より実 際に即したモデルを構築するために,解析の3次元化が 必要であると考える.

謝辞:実験データを提供して頂いた土木学会石積擁壁の 耐震・補強に関する小委員会に謝意を表する.

参考文献

- 国土交通省河川局河川環境課:河川の景観形成に資 する石積み構造物の整備に関する資料,2006.
- 橋本隆雄,宮島昌克,池本敏和:石積擁壁の耐震診 断・補強に関する研究,土木学会第33回地震工学研 究発表会講演論文集,pp.1-18,2013.
- 3) 土木学会東日本大震災調査団(地盤工学委員会):土 木学会東日本大震災調査団緊急地震被害調査報告書 第6章造成地の被害,2011., http://committees.jsce.or.jp/report/system/files/Chapter6_1.pdf(最終閲覧日 2018.8.26)
- 国土交通省国土技術政策総合研究所,国立研究開発法人建築研究所:平成28年熊本地震建築物被害調査報告(速報)第5章地震動による建築物等の被害,国総研資料第929号,建築研究資料第173号,2016., http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0929pdf/ks092911.pdf(最終閲覧日2018.8.26)
- 5) 石垣の地震時挙動解析に FEM を適用する手法の可能 性:田中邦熙, 土木史研究講演集, Vol.26, pp.287-298, 2006.
- 6) 鈴木智貴,若井明彦,平出務,源田真宏:石積み擁 壁の耐震性能を定量化するための基礎的研究,第43 回地盤工学研究発表会発表講演集,pp.1385-1386, 2008.7.

- 7) 池谷清次,梁川俊晃,西山哲,関文夫:石積み擁壁の道路構造物への適用に対する課題と展望,土木計 画学研究・講演集,第29巻,(94),2004.6.
- 酒井久和、山地智仁、小川悟史:不連続変形法に基づく2001年芸予地震時の石積み擁壁の崩壊シミュレーション、土木学会論文集 A1(構造・地震工学)、 Vol.65, No.1(地震工学論文集第30巻), pp.575-580, 2009.
- 9) 野間康隆,山本浩之,西村毅,笠博義,西形達明, 西田一彦:城郭石垣の地震時変形予測と安定性評価 に関する研究,土木学会論文集 C(地圏工学), Vol.69, No.4, pp.444-456, 2013.
- 10) 笠博義,西田一彦,西形達明,森本浩行,阿波谷宜 徳,山本浩之:個別要素法による城郭石垣の安定性 解析の試み,土木史研究論文集,Vol.27, pp.45-51, 2008.
- 環境工学株式会社:ラップブロック工法≪擁壁用≫ 多段積工,http://www.kankyo-kogaku.co.jp/wall/lblock /tadan.html (最終閲覧日 2018.8.26)
- 12) 村上友基, 沼田宗純, 目黒公郎:2 次元拡張個別要 素法による石垣構造物の地震動応答解析, 土木学会 論文集 A1(構造・地震工学), Vol.70, No.4(地震工学 論文集第 33 巻), I_506-I_512, 2014.
- 13) 伊吹竜一,小野祐輔,酒井久和,太田直之,中島進,藤原寅士良,高柳剛,湯浅友輝,池田勇司:SPH-DEM法に基づく石積み擁壁の模型実験に対する数値 シミュレーション,第2回擁壁の耐震診断及び補強 法に関するシンポジウム論文集,pp.20-30,2017.
- 14) 窪田勇輝,中島進,佐々木徹也,渡辺健治,藤原寅 士良,高崎秀明,橘内真太郎:崩壊防止ネットと地 山補強材による石積み壁の補強方法に関する傾斜実 験および振動台実験,ジオシンセティックス論文集, 第 28 巻, pp.9-16, 2013.
- 15) 中島進,渡辺健治,神田政幸,藤原寅士良,高崎秀明,池本宏文:崩壊防止ネットと地山補強材による既設石積み壁の補強方法の開発,土木学会論文集 C(地圏工学), Vol.71, No.4, pp.317-334, 2015.
- 16) 中島進,加藤久也,窪田勇輝,三平伸吾,藤原寅士 良,池本宏文,鬼頭和也,橘内真太郎:崩壊防止ネ ットと地山補強材で耐震補強された石積み壁の非線 形梁ばね解析,土木学会第69回年次学術講演会講演 概要集, pp.681-682, 2014.9.
- 17) 吉田望:地盤の地震応答解析,鹿島出版会,2010.
- 今井常雄,横田耕一郎,近野政志:振動三軸試験に よる土のポアソン比の測定,応用地質調査事務所年 報, No.1, pp.43-53, 1979.
- 19) 浦野和彦,西村毅,足立有史,河邑眞:固化改良隊 による地中構造物の耐震補強効果に関する検討,安 藤ハザマ研究年報, Vol.1, pp.1-6, 2013.
- 20) 石原研而:土質動力学の基礎,鹿島出版会, 1976.
- 大林組技術研究所:擁壁基礎をパラメータとした石 積壁の模型振動台実験作業報告書, pp.2-23, 2003.2.
- 22) 日本道路協会:道路土工 擁壁工指針, 2012.7.

NUMERICAL STUDY ON FEM MODELING OF MASONRY RETAINING WALL FOR SEISMIC STABILITY ASSESSMENT

Erika HORII, Hisakazu SAKAI, Takashi SASAKI, Susumu NAKAJIMA and Torajiro FUJIWARA

Since a large number of damages of masonry retaining walls such as collapse and malfunction caused by severe earthquakes have been reported, the walls have a risk of brittle destruction by future strong earthquakes. Seismic countermeasures are crucial for mitigating the disaster, therefore, we conducted several 2D FEM simulations of the unreinforced embankment inclination tests in order to examine FEM modeling for seismic stability assessment of masonry retaining walls and their seismic retrofitting measures. We made several types of numerical models with joint elements and some material characteristics. As the results, we could qualitatively simulate the deformation mode of the masonry retaining walls, such as bulging and sliding, as the one obtained from the tilting experiments.