メナーゼヒンジを有するロッカー橋脚の UBRC 補強による耐震性能向上に関する検討

植村 佳大1·高橋 良和2·長崎 裕貴3

¹学生会員 工修 京都大学大学院工学研究科 (〒615-8540 京都府京都市西京区京都大学桂) E-mail: uemura.keita.35a@st.kyoto-u.ac.jp

²正会員 工博 京都大学教授 京都大学工学研究科 (〒615-8540 京都府京都市西京区京都大学桂) E-mail: takahashi.yoshikazu.4v@kyoto-u.ac.jp

3正会員 工修 株式会社小松製作所 (〒107-8414 東京都港区赤坂 2 丁目 3-6).

柱基部にメナーゼヒンジ構造を有するロッカー橋脚は,設計上の想定を超える変位が生じると不安定状態となることが知られており,水平・鉛直方向に対する安定性の確保が求められている.そこで本研究では、ロッカー橋脚への耐震補強方策として,柱断面外に配置した PC 鋼棒を治具を介して取り付ける UBRC 補強を提案し,正負交番載荷実験によりその耐震性能向上効果を検討した.その結果,UBRC 補強 により抵抗モーメントが増加し,大変形領域におけるロッカー橋脚の水平方向に対する安定性が確保され ることがわかった.また,正負交番載荷実験の再現解析では,標準ロッカー橋脚および UBRC 補強された ロッカー橋脚の実験結果を概ね再現することができた.そして,それらのモデルを用いて動的解析を行っ た結果,UBRC 補強により柱の動的応答特性が向上することがわかった.

Key Words: Rocer pier, Mesnager hinge, Seismic strengthening, Cyclic loading test, Dynamic analysis

1. はじめに

名神高速道路は1963年7月16日に開通した我が国で 初めての高速道路であり、今日で 50 年以上の月日が経 った、名神高速道路は、走行車を安全に、しかも高速で 走行させる構造型式でなくてはならないという点を重視 して設計が行われたが、それだけでなく常に経済的に、 そして路上及び側面からの美観をよくするための努力が なされてきた. 継手を少なくした高速道路の連続性や経 済性、さらには美観性を満たすものとして、名神初期で は支間 15m の 5 径間連続 RC 中空床版橋が採用された. この橋梁は、地震に対する固定を1ヵ所の剛なラーメン 橋脚に集め、中間橋脚は上下端にヒンジを配置した水平 力に抵抗しないロッカー橋脚を採用している点が大きな 特徴であり、ロッカー橋脚の柱断面に大きな曲げ応力を 発生させない合理的な構造をとっている、その一方で、 ロッカー橋脚は、単独では自立できず、変位が生じると 不安定状態となる特殊な構造であり,支承部や横変位拘 束構造等の部分的な破壊が落橋・倒壊等の致命的な被害 につながる可能性が高い点も指摘されている。 Li¹⁾らに よって行われた一連の検討の中でも、ロッカー橋脚に大変形が加わると、柱基部のヒンジ部周辺のコンクリート に発生する縦方向のひび割れ、及び柱の P-ム効果により 負の剛性が現れ、柱が不安定化することが確認されてい る.また、2016年に発生した熊本地震においても、上下 端がヒンジ構造であるという点でロッカー橋脚と同様の 構造形式を有するロッキング橋脚に倒壊被害が発生して いる.

これらの状況を踏まえて、コンクリート橋大規模地震 対策検討委員会報告書³では、ロッカー橋脚の水平・鉛 直方向に対する必要な安定性の確保が必要であるとし、 ロッカー橋脚に対し、RC巻き立てや上部工・基礎との 剛結などの耐震補強案を提案している.また安積ら³は、 既存のロッキング橋脚を対象に、現況のロッキング橋脚 を上端すべり支承・下端剛結とする構造改良に対して動 的解析を行うことで、その耐震補強効果を検討し、現状 の耐震性能を損なうことなく構造改良できることを確認 している.

そのよう中、筆者らはロッカー橋脚の新たな耐震補強 法として、家村ら⁴が提案した UBRC 橋脚構造に着目し

た. UBRC 橋脚構造では、柱断面内に配置されたアンボ ンド高強度芯材 (PC 鋼棒)が、柱が大変形を起こした時 でも弾性挙動を示すことで、柱の復元力特性に安定した 正の二次剛性を付与することができる. PC 鋼棒を柱断 面内に配置する家村らの手法は、新設の RC 橋脚を対象 としたものであるが,筆者らは, PC 鋼棒を柱断面外に 配置し、橋脚に治具を介して取り付けることで、既存の ロッカー橋脚への耐震補強対策にも応用できると考えた. この手法(以下, UBRC補強とする)では、PC鋼棒の取付 幅や取付高さを変化させることで、PC 鋼棒の作用を制 御することができることが特長である. さらにUBRC補 強では、PC 鋼棒の弾性的な復元力により、ロッカー橋 脚に原点志向型の挙動を発現させることが可能であり, また PC 鋼棒の固定部に空隙を設けることで、PC 鋼棒を 大変形時のみ作用するストッパーとして機能させること も可能である. このように、要求される耐震補強効果に 応じて, 柱に作用する水平復元力を制御することが可能 であるため、ロッカー橋脚の耐震補強対策として有効で あるといえる.

そこで本研究では、柱基部にメナーゼヒンジ³を有す るロッカー橋脚に対し UBRC 補強を行い、P-Δ 効果によ り負の剛性が発生する構造に対し、UBRC 補強による正 の二次剛性を付加する効果を正負交番載荷実験により検 討した.また、標準ロッカー橋脚および UBRC 補強され たロッカー橋脚の解析モデルを作成し、正負交番載荷実 験の再現解析を行うことで、その妥当性を検討した.そ して、それらのモデルを用いて動的解析を行い、UBRC 補強による動的応答改善効果を検討した.

2. 正負交番載荷実験概要

(1) 実験供試体

本実験では、既存のロッカー橋脚を模した供試体 (MH-STD)、および UBRC 補強を行った供試体(MH-UBRC)の、計 2 体の供試体を作製した. コンクリートに は、セメントの種類が早強ポルトランドセメント、スラ ンプ18cm、粗骨材の最大寸法15mmのものを用い、コン クリートの圧縮強度は、テストピースによる圧縮試験に よりフーチング部が 41.6MPa、柱部が 30.1MPa と算出し た.以下、各供試体の詳細を示す.

a) MH-STD (標準構造供試体)

MH-STD (標準構造供試体)の配筋図を図-1 に、断面図 を図-3 に示す. 橋脚部は名神高速深草高架橋橋脚を参考 に、実橋脚の一部を取り出した形状とした. 柱部は 400mm×300mmの矩形断面であり高さは 1150mm, ヒン ジ部は 400mm×160mm の矩形コンクリート断面,高さ は 20mmであり,その位置でメナーゼ筋が交叉している.

図-3 MH-STDおよびMH-UBRCの断面図 [Unit:mm]

また,橋脚部の軸方向鉄筋には SD345-D13 を使用し,帯 鉄筋として, SD345-D10 を使用した.なお,せん断スパ ンは 1000mmとした.

b) MH-UBRC (UBRC 補強供試体)

MH-UBRC (UBRC 補強供試体) は MH-STD に PC 鋼棒による UBRC 補強を施した供試体である.軸方向鉄筋,帯鉄筋およびメナーゼ筋の配筋図と断面図は MH-STD のものと共通である(図-2,図-3).また,PC 鋼棒には φ17mmのC種 PC 鋼棒を用いた.PC 鋼棒の固定位置は柱高さ-400mm(フーチング内部)と柱高さ700mmとなっている.また,UBRC 補強を実施するにあたって,PC 鋼棒による引張力を柱部に伝達するための冶具を設置した.冶具は,中央および左右に固定用の PC 鋼棒を通し,それらを締め付ける形で固定している.なお,PC 鋼棒には引張力

のみを作用させることを狙いとし、PC が圧縮変形する 際に作用する側のナットは取り付けなかった.また、1. で述べたように、UBRC補強では、PC鋼棒の固定部に空 隙を設けることで、PC 鋼棒が作用する変形領域を調節 することが可能であるが、本実験では PC 鋼棒の固定部 に空隙は設けなかった.

(2) 載荷パターン

載荷パターンは正負交番変位漸増方式を採用し, MH-STDへの載荷では、0.020radまでは0.005radずつ変位 を増加させ、0.020 rad以降は0.010 radの増分で載荷を行 った. MH-UBRCへの載荷は、0.030 radの2サイクルまで はMH-STDと同様の載荷を行った.しかし、-0.030 radの 2回目載荷終了後に変位を0mmに戻したところ、PC鋼 棒の締め付けに緩みが見られた.これは、3.に述べる冶 具の緩みによるものだと判断し、以降は適宜変位を設定 し、載荷を行った.ここで、各供試体の載荷パターン を図-4に示す.また載荷軸応力は1.2MPaとした.

3. 実験結果及び考察

(1) モーメント-回転角関係

各供試体のモーメント-回転角関係を図-5 に示す. なお, 図中には P-Δ 効果による抵抗モーメント低下を表す 補助線を併せて示している.

a) MH-STD

図-5(a)を見ると、正負どちらの載荷方向に対しても、 回転角 0.030rad までは抵抗モーメントが増加し、それ以 降は抵抗モーメントが低下する様子が確認できる.また, 1. でも述べたように、ロッカー橋脚では大きな水平変形 が生じると、 $P-\Delta$ 効果によって履歴曲線に負の剛性が現 れ,柱の挙動が不安定になることが知られている.本実 験においても、MH-STD のモーメント-回転角関係にお いて、回転角 0.040rad 以降のサイクルにおいて履歴曲線 の剛性が負になる現象が確認でき、P-Δ効果の影響がロ ッカー橋脚の挙動を不安定化させていることがわかる. また MH-STD では、変形が進行するにつれて、P-Δ効果 による影響以上の抵抗モーメント低下が発生した. ここ で、回転角-0.04rad における MH-STD の載荷面側面の破 壊性状を見てみると、コンクリートの切り欠き部から縦 方向のひび割れが発生していることがわかる(図-6(a)). 通常、本供試体のような柱基部にコンクリートヒンジを 有する柱では、変形時にヒンジ部のコンクリートの圧縮 力により水平方向の抵抗力が発揮される.しかし、図-6 (a) のような縦ひび割れが発生すると、ヒンジ部のコン クリートによる圧縮力が低下するため、柱の抵抗モーメ ント低下につながることが,Li¹⁾らの実験で確認されて

いる. そのため,本実験でも柱の最大変形時(回転角 0.10 rad)において,柱の抵抗モーメントがほとんど発揮 されていないことが確認できる(図-7).

以上から, MH-STD では, 柱の P-Δ効果およびコンク リートの切り欠き部からの縦ひび割れにより, 柱が不安 定化していることがわかった.

b) MH-UBRC

図-5(b)を見ると、MH-STDで見られたような抵抗モー メント低下が確認されず、最大回転角 0.130 rad の変形領 域においても抵抗モーメントが増加していることがわか る.また、MH-STD と同様、MH-UBRC においてもコン クリートの切り欠き部から縦方向のひび割れが発生した が(図-6(b))、縦ひび割れ発生以降も、柱の抵抗モーメン ト低下は確認されず、柱の変形が進行するにつれて、抵 抗モーメントが増加する様子が確認できた.

この結果から MH-UBRC では、大変形領域においても、 UBRC 補強による正の復元力が付加されたことで、ロッ カー橋脚の水平方向に対する安定性が確保が実現された といえる.

(2) PC 鋼棒が発揮した引張力について

図-8にPC鋼棒の計測ひずみから算出したPC鋼棒の引 張力と水平変位の関係を示す. ここでの PC 鋼棒の引張 力とは、1本の PC 鋼棒が発揮した引張力であり、デー タ欠損のなかったひずみゲージの値から算出している. 図-8 を見ると、繰返し載荷の進行に伴い、PC 鋼棒によ る引張力の発揮開始位置が遅れている様子が確認できる. このことから、大変形領域においては、 PC 鋼棒が柱の 倒壊方向の変形を拘束するストッパーとして機能してい たことがわかる. 1. において, PC 鋼棒を大変形時のみ 作用するストッパーとして機能させることは UBRC 補強 の適用例の一つであると述べた.しかし、本実験におい て、この挙動は意図していたものではなく、繰り返し載 荷の中で PC 鋼棒へ引張力が伝達した際に、その伝達力 に押し負ける形で PC 鋼棒固定用の冶具が下方に移動し てしまい、その移動分が再度 PC 鋼棒が引張力を発揮す る際のギャップとなってしまったことが原因であると考 えられる. そのため, PC 鋼棒を意図通りに作用させる ためには固定用治具の改良が必要であるといえる.

(3) PC 鋼棒による復元カ付加に伴うヒンジ部への作用 軸力増大

これまでの検討により,ロッカー橋脚に PC 鋼棒を取 り付けることで柱の抵抗モーメントが増加することがわ かった.しかしその一方で,PC 鋼棒が引張力を発揮す ることで,PC 鋼棒固定用の冶具を介して柱基部に軸力 が作用するため,メナーゼヒンジに多大な圧縮力が作用 してしまう可能性が考えられる(図-9).メナーゼヒンジ

(a) MH-STD (0.04rad)

(b) MH-UBRC(0.03rad)

図-6 コンクリート切り欠き部に発生した縦方向のひ び割れ

への作用軸力が増大すると、メナーゼヒンジによる安定 したヒンジ機構発現が保証できなくなり、耐震安全性上 かえって危険側の挙動となってしまう.そこで本節では、 PC 鋼棒を設置することによる柱基部への作用軸力増大 がロッカー橋脚に与えた影響について、メナーゼ筋交叉 部及びコンクリート切り欠き部に作用した力に着目して 検討を行う.

a) メナーゼ筋交叉部に作用した力

本項では、測定したひずみデータから、メナーゼ筋交 叉部にかかる軸力を算出し、検討を行う.その際、鉄筋 の応力-ひずみ関係は完全弾塑性バイリニアと仮定し、 ヤング係数は20000N/mm²、降伏応力は345N/mm²とした. なお、軸力に関しては、引張を正として算出している.

図-10 に各供試体のメナーゼ筋にかかる軸力の合力を 示す.図-10 を見ると、メナーゼ筋における軸力の合力 は、MH-STD と MH-UBRC で概ね等しい値を示している ことが分かる.よって、PC 鋼棒配置により基部へ作用 する軸力が増大したとしても、メナーゼ筋に作用する軸 力は大きく変化しないことがわかった.

a) コンクリート切り欠き部に作用する力

3.(2)a) での検討から、PC 鋼棒配置により基部へ作用 する軸力が増大したとしても、メナーゼ筋に作用する軸 鉛直力は大きく変化しないことがわかった. そのため, PC 鋼棒配置に伴う柱基部への作用軸力の増大は、コン クリート切り欠き部に作用する力に影響を与えると考え られる. そこで、コンクリート切り欠き部への作用軸力 を, 柱に作用している軸力, PC 鋼棒およびメナーゼ筋 の引張力の合力として算出し検討を行う(表-1).表-1を 見ると、MH-UBRCのおいて、回転角-0.03radのサイクル でコンクリート切り欠き部にかかる圧縮力は 267.3kN と なっており、MH-STD と比べて約 1.4 倍の圧縮力を受け ていることがわかる. また, 回転角-0.07rad のサイクル では, MH-UBRC では 461.6kN となり, MH-STD と比べ て、約2.5倍の圧縮力がコンクリート切り欠き部にがか かっていることがわかる.また、実験中の観察により、 MH-UBRC ではコンクリート切り欠き部の縦方向のひび 割れが、MH-STD に比べて早期に発生する様子が確認さ れている. これは、コンクリート切り欠き部にかかる圧 縮力増大が原因であると考えられる.本実験では、縦方 向のひび割れによる MH-UBRC の抵抗モーメント低下は 発生しなかったものの, PC 鋼棒配置に伴う柱基部への 作用軸力増大に対しては、縦方向のひび割れが発生しな いよう炭素繊維や鋼板により側面から拘束力を加えるな どの補強を併せて行うことが必要であると考えられる.

(4) 鉄筋ひずみの高さ方向分布

各供試体の軸方向鉄筋およびメナーゼ筋のひずみの高

図-9 UBRC補強によるヒンジ部への作用圧縮力の増大

表-1 コンクリートヒンジ部への作用軸力

	作用軸力 [kN]	
回転角 θ [rad]	MH-STD	MH-UBRC
-0.010	179.6	220.7
-0.030	197.7	267.3
-0.050	179.2	371.0
-0.070	185.6	461.6

さ方向分布を図-11 に示す(W は載荷面, E は載荷面裏側 の鉄筋ひずみを表す). なお, MH-UBRC においては, PC 鋼棒のひずみ分布も併せて示した. 以下, 各供試体 の鉄筋ひずみの高さ方向分布について述べる.

a) MH-STD

軸方向鉄筋に関しては、すべての載荷サイクルにおい て鉄筋の降伏は発生しなかった.このことから、橋脚が 切り欠き部を支点とした剛体変形に近い挙動を示してい ると判断することができる.メナーゼ筋に関しては、ヒ ンジ部においてひずみは増大していった一方で、ヒンジ 部以外では塑性変形が確認されなかった.そのため、 MH-STD では、大変形時においても柱基部を支点とした ヒンジ構造が維持されていたと判断できる.

b) MH-UBRC

回転角 0.090rad のサイクルまでは、MH-STD 同様、軸 方向鉄筋は確認されなかった. PC 鋼棒のひずみは柱高 さ方向に平滑化されており, 弾性的な挙動を示している ことがわかる.しかし、回転角 0.090rad 以降のサイクル になると、軸方向鉄筋の柱高さ 550mm~850mm の区間 のひずみが降伏ひずみに近い値を示した. 図-11(c)に柱 の最大変形時(回転角 0.13rad)の鉄筋ひずみの高さ分布を 示す. 図-11(c)を見ると、柱高さ 550mm~ 850mmの位置 は、ちょうど PC 鋼棒固定用の治具取り付け位置と一致 することから、この位置でのひずみ増大は、PC 鋼棒が 発揮した引張力が治具に伝達されて、柱部に集中モーメ ント荷重として作用したためであると考えられる.また, PC 鋼棒に関しても、フーチング上縁を支点とした曲げ 変形が生じ、柱高さ 0mm において大きく塑性化してい ることがわかる. そのため, PC 鋼棒の弾性的な挙動を 維持するためには、フーチングの貫通穴を大きくし、 PC 鋼棒との間に緩衝材を挿入するなど、フーチングの 貫通穴上縁を支点とした曲げ変形が PC 鋼棒に生じない ような工夫が必要であるといえる。なお、メナーゼ筋に 関しては、MH-STD と同様、ヒンジ部以外では塑性変形 が確認されなかった.

4. 解析的検討

MH-STD および MH-UBRC の解析モデルを作成し,実 験結果と比較することで,そのモデルの妥当性を検討し た.そして,そのモデルを用いて動的解析を行うことで, UBRC 補強による抵抗モーメント増加効果が柱の動的応 答特性に与える影響を考察した.以下にその詳細につい て述べる.

- (1) 解析モデル
- a) MH-STD

供試体をヒンジ部および柱部に分けてモデル化を行った.解析モデルの全体図を図-12に示す.図-12のように,

表-2 コンクリートヒンジ部への作用軸力

	柱部	コンクリートヒンジ部
最大圧縮応力 [kN/mm2]	34.3	30.1
限界圧縮応力 [kN/mm2]	8.33	
最大圧縮応力時のひずみ	0.0024	0.002
限界圧縮応力に達するときのひずみ	0.017	

メナーゼヒンジ部は、メナーゼ筋にあたる部材を高さ 0mmから20mmにクロスするように配置した.また、メ ナーゼ筋、コンクリートヒンジ部および柱部はファイバ ーモデルでモデル化し、節点同士を連結させた.

また,鉄筋の材料モデルは Menegotto-Pinto モデルを採 用し,鉄筋の降伏強度は 345 (kN/mm²),ヤング率は 20000 (kN/mm²)とした.柱部のコンクリートの材料モデ ルには,図-13(a) に示すモデルを採用した.図中におい て, ac は最大圧縮応力, ac は限界圧縮応力, ac は最大 圧縮応力時のひずみ, ac は限界圧縮応力に達するとき のひずみである.なお,帯鉄筋による拘束効果は道路橋 示方書 ®を参考に算出し,かぶりコンクリート及びコア コンクリートそれぞれに対してパラメータを設定した. また,コンクリートヒンジ部のコンクリートには,圧縮 強度に達したら応力が一定になる材料モデルを用いた. ここで,コンクリートの材料モデルにおける各パラメー タの値を表-2に示す.

b) MH-UBRC

MH-UBRC の解析モデルの全体図を図-12 に示す. 解 析モデルにおいて、ロッカー橋脚部はMH-STDと同様の モデル化を行った. UBRC 補強に用いた PC 鋼棒は,材 料モデルとして Menegotto-Pinto モデルを採用し,降伏強 度は1185(kN/mm²),ヤング率は200000(kN/mm²)として, 円形断面のファーバーモデルでモデル化した.

また、本実験で確認された PC 鋼棒固定用の冶具の緩み、およびその緩みによる PC 鋼棒の作用開始位置の遅れが UBRC 補強効果に与えた影響を考察するため、PC 鋼棒の上部の節点と柱部との連結用部材の節点との間に、 図-13(b)の挙動を示す部材 (以下、ジョイント部材とする)を挿入した. 図-13(b)に示すように、ジョイント部材のパラメータは、ジョイント部材の剛性 k と引張力の作用開始位置 g であり、PC 鋼棒固定部での冶具の緩みを k で、PC 鋼棒の引張力の作用開始位置の遅れを g で表現できると考えた.

そこで本検討では、「治具の緩みあり(k<(PC 鋼棒の 剛性)),かつPC鋼棒の作用開始遅れなし(g=0)」の場合と 「治具の緩みなし(k≫PC 鋼棒の剛性),かつPC 鋼棒の作 用開始遅れあり(g>0)」の2種類のモデルを作成し、MH-UBRC の検討を行った.なお、ジョイント部材は圧縮力 を伝達しないため、ジョイント部材と連結した PC 鋼棒 は、実験と同様に引張力のみ発揮するモデル化となって いる.

(2) 正負交番載荷実験の再現解析

4.(1)で作成した解析モデルの妥当性を検証するため, 正負交番載荷実験の再現解析を行った.以下にその詳細 を示す.

a) MH-STD

解析により算出したモーメント-回転角関係,および その比較として実験でのモーメント-回転角関係を図-14(a)に示す.図-14(a)を見ると,最大抵抗モーメントお よび履歴形状が精度よく再現できていることがわかる. また,解析により算出された軸方向鉄筋およびメナーゼ 筋のひずみの高さ分布(図-15)を見ると,実験同様,軸方 向鉄筋に大きな変形は発生しておらず,メナーゼ筋はヒ ンジ部のみ塑性化していることがわかる.そのため,本 検討における解析モデルは,ロッカー橋脚の挙動を再現 する上で妥当であると判断することができる.

しかし一方で,解析により算出したモーメント-回転 角関係において,実験で確認された P-Δ 効果による影響 以上の抵抗モーメント低下は再現できていないことがわ かる.これは,本検討で用いたコンクリートヒンジ部の 材料モデルにおいて,コンクリートの応力低下を考慮し ていないことが原因であると考えられる.そのため,実 験で発生した P-Δ効果による影響以上の抵抗モーメント 低下を再現するためには,コンクリートの割裂ひび割れ による応力低下を反映できる材料モデルをコンクリート ヒンジ部に用いる必要があるといえる.

b) MH-UBRC

「治具の緩みあり(k < (PC 鋼棒の剛性)), かつ PC 鋼棒 の作用開始遅れなし(g=0)」とした場合のモーメント-回 転角関係,およびその比較として MH-UBRC の実験結果 を図-14(b) に示す. なお解析では, 柱の最大抵抗モーメ ントの値が実験で計測された値と概ね等しくなるように ジョイント部材の k を設定することとし、k=3000 (kN/mm)としている. 図-14(b)を見ると,回転角 0.07radか ら回転角0.13radまでの領域では、包絡線および履歴形状 に実験との差異が確認できるものの、回転角0.07radまで の領域ではモーメント-回転角関係の包絡線が概ね再現 できており、履歴形状も類似していることがわかる.次 に「治具の緩みなし(k》PC鋼棒の剛性),かつPC鋼棒の 作用開始遅れあり(g>0)」の場合のモーメント-回転角関 係を図-14(c) に示す. なお本ケースにおいても、柱の最 大抵抗モーメントの値が実験で計測された値と概ね等し くなるようにgとkを設定することとし,g=15mm,k= 1.0×10¹⁰(kN/mm)としている. 図-14(c)を見ると,回転角 が大きい変形領域(回転角 0.07rad から回転角 0.13rad まで の領域)において実験の履歴形状を表現できていること がわかる.以上の検討から、本実験でのMH-UBRCの挙 動では大きな変形になると PC 鋼棒の作用開始位置の遅 れの影響が健在しているため、モーメント回転角関係の 履歴特性の再現には、PC 鋼棒の作用開始位置の遅れを 考慮したモデル化が必要である一方で、PC 鋼棒の作用 開始位置の遅れが健在しない程度の変形領域 (回転角 0.07rad までの領域) においては、治具の緩みのみを考慮 したモデル化により、履歴特性の再現が可能であること がわかった.

また,鉄筋ひずみ(図-15(b),(c))に関しては、両ケース ともにPC鋼棒の引張力の伝達によりPC固定部の高さの 軸方向鉄筋にひずみが発生しており、メナーゼ筋に関し ては、ヒンジ部のみ大きく塑性化している.これは、 3.(4)b)で示した実験結果と同様であり、実験結果を再現 できているといえる.

次に、両ケースにおいて PC 鋼棒が発揮した引張力と 回転角の関係を図-16に示す.図-16を見ると、両ケース とも引張力の大きさを過大評価していることがわかる. これは、解析では PC 鋼棒固定部の緩みと PC 鋼棒の作用 開始位置の遅れのどちらか一方のみをモデル化している ためであると考えられる.また、本解析では載荷の中で PC 鋼棒の作用開始位置の遅れは変化させていないが、 実験では載荷が進行するにつれて PC 鋼棒の作用開始位 置の遅れが大きくなっている.そのため、本実験におけ る MH-UBRC の挙動をより正確にモデル化するためには、 PC 鋼棒の固定部の緩みおよび PC 鋼棒の作用開始位置の 遅れをより詳細にモデルに反映させる必要があるといえ る.

(3) 動的解析

UBRC 補強による抵抗モーメント増加効果が柱の動的 応答特性に与える影響について、4.(1)で作成した解析モ デルを用いて、動的解析を行った.なお、UBRC 補強し たロッカー橋脚を想定したモデルのうち、「治具の緩み あり、かつ PC 鋼棒の作用開始遅れなし」のモデルでは

UBRC 補強による原点志向型の挙動の発現を狙った場合 を、「治具の緩みなし、かつ PC 鋼棒の作用開始遅れあ り」のモデルでは PC 鋼棒が大変形時のみ作用するスト ッパーとして機能することを期待した場合を想定してお り、両ケースにおける UBRC 補強の動的応答改善効果を 検討することとした.

a) 入力地震動

入力地震動として 1995 年兵庫県南部地震 JR 鷹取記録 の EW 成分を 0.5 倍したものを用い,水平方向に入力した.

b) 解析結果

図-17 に動的解析により算出したモーメント-回転角関 係を,図-18 に回転角の時刻歴を示す.MH-STD では, P-Δ効果により履歴に負の剛性が表れることで復元力を 喪失し,柱が倒壊する現象が確認された.

一方,MH-UBRCのk=3000kN/mm,g=0mmとしたケ ースでは、UBRC 補強による抵抗モーメント増加効果に より柱の変形が抑制されていることがわかる.また,履 歴に常に正の剛性が付加されていることで,原点志向型 の挙動を示しており,残留変位が大きく低減しているこ とがわかる.また,MH-UBRCのk=1.0×10¹⁰(kN/mm),g =15 mmとしたケースでは、回転角約 0.06 radまでの挙動 は MH-STD の解析結果と同様である一方で、回転角約 0.06 rad以降の挙動においては PC 鋼棒の引張力が作用し, 柱の抵抗モーメントが増加していることがわかる.その 結果,PC 鋼棒が大変形領域における変形を拘束するス トッパーとして機能することで,柱の変形を抑制して倒 壊を防いでいることがわかる.

以上から, UBRC 補強を想定した両ケースとも狙いと していた耐震性能向上効果が表れており, UBRC 補強に より柱の動的応答特性が向上することがわかった.

図-18動的解析による回転角時刻歴

5. まとめ

本研究では、柱基部にメナーゼヒンジ構造を有するロ ッカー橋脚に対しUBRC補強を行い、その耐震性能向上 効果を検討した.以下に本研究で得られた知見および現 状の課題を示す.

- 無対策の供試体では、柱の P-ム効果およびコンク リートの切り欠き部からの縦ひび割れにより、履 歴に負の剛性が現れ、柱が不安定化している様子 が確認された。
- UBRC 補強した供試体では、柱の抵抗モーメント は低下せず、柱の変形が進行するにつれて、抵抗 モーメントが増加する様子が確認できた.この結 果から、UBRC補強により、大変形領域におけるロ ッカー橋脚の水平方向に対する安定性が確保され ることがわかった.
- UBRC 補強した供試体において、PC 鋼棒固定部の 緩みが確認され、PC 鋼棒が大変形時のみ作用する ストッパーとして機能していた.PC 鋼棒を変形の ストッパーとして機能させることは、UBRC補強の 適用例の一つであるものの、本実験においては意 図していなかった挙動であった.そのため、PC 鋼 棒を意図通りに作用させるために固定用治具の改 良が必要であるといえる.
- UBRC補強におけるPC鋼棒配置により基部へ作用 する軸力が増大する現象が確認され、この軸力の 増加により、コンクリート切り欠き部にかかる圧 縮力が増大することがわかった.また、PC鋼棒固 定部にかかる集中モーメントにより、軸方向鉄筋 に無対策供試体では見られなかったひずみが発生 することがわかった.そのため、UBRC補強を行 う際は、これらに対する照査を併せて行う必要が あることがわかった.
- 正負交番載荷実験の再現解析において、無対策試 験体である標準ロッカー橋脚の挙動を再現することができた.また、UBRC補強されたロッカー橋脚

の再現解析では, PC 鋼棒固定部の緩みを考慮した モデル化を行うことで,実験結果を概ね再現する ことができた.

- 動的解析を行った結果,無対策のロッカー橋脚で 柱の倒壊が発生したのに対し,UBRC補強したロッ カー橋脚では,抵抗モーメント増加効果により, 残留変位の低減や柱の変形を抑制して倒壊を防ぐ 効果が確認された.この結果から,UBRC補強により り柱の動的応答特性が向上することがわかった.
- 謝辞:本研究の一部は一般財団法人大成学術財団および 科学研究費補助金基盤研究(A)16H02357の助成を 受けて実施した.謝意を表します.

M. : An examination of the seismic performance of rocker pier bridges in Japans oldest expressway, Proc. of International Conference on Bridge Maintenance, Safety and Management, 2016.

- 西日本高速道路株式会社 関西支部:名神高速道路 コンクリート橋大規模地震対策検討委員会報告書, 2016.
- 安積恭子,杉岡弘一,光川直宏:ロッキング橋脚を 有する橋梁におけるすべり支承を用いた構造改良提 案,第37回地震工学研究発表会概要集,2017.
- 家村浩和,高橋良和,曽我部直樹:アンボンド芯材 を活用した高耐震性能 RC 構造の開発,土木学会論文 集, No.710, I-60, pp.283-296, 2002.
- Mesnager : Experiences sur une semi-articulation pour voutes en Béton armé, Annales de Ponts de Chaussees, 2, pp.180-201, 1907.
- 6) 日本道路協会:道路橋示方書・同解説 耐震設計編, 2017.11

参考文献

1) Li, S., Ikawa, Y., Ohshiro, T., Takahashi, Y. and Hashinoki,

SEISMIC STRENGTHENING BY UNBONDED BAR REINFORCED CONCRETE STRUCTURE FOR ROCER PIERS WITH MESNAGER HINGES

Keita UEMURA, Yoshikazu TAKAHASHI and Hiroki NAGASAKI

The rocker piers with the mesnager hinges are known to become unstable when large displacement occurs, and it is necessary to secure the stability in the horizontal and vertical directions. Therefore, in this research, a unbonded bar reinforced concrete reinforcement (UBRC reinforcement) for rocker piers was proposed, and the effect of improving seismic performance was examined by cyclic loading test. As a result, it was found that resistance moment was increased by UBRC reinforcement and stability of the rocker piers in the horizontal direction was secured. Moreover, in the static analysis of the cyclic loading test, the experimental results of the test specimens could be reproduced. By dynamic analysis with these models, UBRC reinforcement was found to improve dynamic response characteristics of rocker piers.