過剰間隙水圧の再分配に着目した細粒分を含む 砂質傾斜地盤の側方流動

玉泉 聡士1・上田 恭平2・渦岡 良介3

¹京都大学大学院 工学研究科(〒615-8540 京都市西京区京都大学桂) E-mail: tamaizumi.satoshi.52e@st.kyoto-u.ac.jp

²正会員 京都大学助教 防災研究所(〒611-0011京都府宇治市五ケ庄) E-mail: ueda.kyohei.2v@kyoto-u.ac.jp

³正会員 京都大学教授 防災研究所 (〒611-0011 京都府宇治市五ケ庄) E-mail: uzuoka.ryosuke.6z@kyoto-u.ac.jp

本研究では、シルト層を有する傾斜地盤が液状化した際の、上部の透水性の低いシルト層における過剰 間隙水圧の再分配に着目して、加振後の傾斜地盤の側方流動に対する定量的な評価を試みた。砂傾斜地盤 と砂ーシルト傾斜地盤に対して遠心模型実験を行い、砂ーシルト傾斜地盤での過剰間隙水圧の再分配によ る間隙流体の停滞と、加振後のシルト層の側方流動の発生を確認した。また、シルト層の細粒分含有率が 加振後の側方流動の変位に及ぼす影響について、異なる細粒分含有率ごとのケースの比較により評価した ところ、細粒分含有率が最小のシルト質砂層の側方流動変位が最大となる結果が得られた。その要因とし ては、細粒分含有率によるシルト層の定常状態におけるせん断強度の違いが考えられる。

Key Words : redistribution of excess pore water pressure, fines content, inclined ground, centrifuge model test

1. はじめに

地震による砂層の液状化によって生じる現象に側方流 動が挙げられる¹⁾. 1964年の新潟地震や1983年の日本海 中部地震,また1995年の兵庫県南部地震でも側方流動に よる被害が確認され、一部では地震が収まった後にも側 方流動が生じていたケースも報告されている.液状化に よる傾斜地盤の側方流動の一因として、過剰間隙水圧の 再分配について多くの研究者が言及している. 過剰間隙 水圧の再分配とは、低透水層を有する地盤が地震動など によって加振されると,間隙流体が低透水層と直下の砂 層境界部で停滞し、土粒子と間隙流体が再分布する現象 である. 傾斜地盤の側方流動は、この過剰間隙水圧の再 分配により流体が停滞する層のせん断抵抗力が低下する ことで引き起こされる². 既往の研究では,橋本³が砂-粘土傾斜地盤に対して遠心模型実験を行ったが、粘土層 の作成の都合上、粘土層を介さず間隙流体が消散し、評 価が不十分であったことから、本実験では、作成が容易 なシルト層を用い、間隙流体が低透水層を介するように 地盤を作成した. また、シルト層の細粒分含有率の異な るケースを比較し、細粒分含有率が側方流動量に及ぼす 影響について、定量的な評価を試みた.

2. 研究の方法

以降の数値は、実物スケールで表している.本実験で は、片面がガラス張りのアルミ製剛土槽を用い、下部の 砂層に珪砂6号を、上部のシルト層に珪砂8号または珪 砂8号と珪砂9号を混合したものを使用した. 混合する 際には、各ケースのシルト層の乾燥密度が等しくなるよ うに、重量比で混合した. 上部のシルト層は下部の砂層 を完全に覆っており、加振後の過剰間隙水が排水される 際に、すべての間隙流体が低透水層を通過することを再 現した. また上部シルト層の細粒分含有率は各ケースで 異なっている.ケースは計6ケース行い,全て50G場で 実験を行った(表-1). また CS_silt1 と CS_silt2 は再現 性を確認するために、同じ条件で2回実験を行った.地 盤模型とセンサー配置図を断面図で表しており、各層に 加速度計を1つ、上部層に水圧計を2つ、下部層に6つ 配置した(図-1).地盤変形を測定するためにそばを, 土槽の中央とその左右5cm間隔で7本設置した.間隙流 体は 50cSt のメトローズ溶液を用い,地盤を飽和させた. 加振時の入力波(図-2)は、すべてのケースで同様のも のを入力できた. 側方流動量の計測には、事前に設置し たそばの挙動を高速度カメラで撮影した映像に対して、 画像解析ソフトを用い流動量を算出した.

表-1 実験ケース

実験ケース	上部層(Dr)	下部層(Dr)	上部層の細粒分含有率
CS_sand	珪砂6号(Dr=58%)		Fc=0%
CS_silt1-1	珪砂8号(Dr=52%)	珪砂6号(Dr=58%)	Fc=17.6%
CS_silt1-2	珪砂8号(Dr=52%)	珪砂6号(Dr=58%)	Fc=17.6%
CS_silt2-1	珪砂8号+珪砂9号(Dr=52%)	珪砂6号(Dr=58%)	Fc=22.3%
CS_silt2-2	珪砂8号+珪砂9号(Dr=52%)	珪砂6号(Dr=58%)	Fc=22.3%
CS_silt3	珪砂8号+珪砂9号(Dr=52%)	珪砂6号(Dr=58%)	Fc=27.1%

図-2 入力波

3. 実験結果

砂傾斜地盤と砂ーシルト傾斜地盤の過剰間隙水圧比時 刻歴(図-3)より,砂傾斜地盤では,どの水圧計も加振 後消散が速やかに進行しているのに対して,砂ーシルト 傾斜地盤では、シルト層とその直下の砂層領域の水圧計 P1とP2から低透水層の介在による間隙流体の停滞が確 認できる.また加振前後の地盤変形図(図-4)と側方変 位時刻歴(図-5)を示す.図-5の側方変位時刻歴の対象 は、砂ーシルト傾斜地盤のシルト層中央を赤色で、シル ト層直下の砂層領域を青色で表示しており,加振終了を 示す緑色の垂線を引いている.これらの図より,砂地盤 の流動は加振中のみに対して,加振後もシルト層が流動 していることがわかる.これは過剰間隙水圧の再分配に よるせん断抵抗力の低下によるものに他ならない.次に, シルト層の細粒分含有率の異なるケース間の加振終了後 の側方流動量(図-6)を示す.この図では、シルト層中 央を対象とした加振終了時のそばの位置との相対変位を 表しており,細粒分含有率ごとに色で区分けしている. これらの図からわかるように,加振後のシルト層の側方 流動量は、細粒分含有率により明確な違いが見られる. 本実験では、細粒分含有率が最小のシルト層がより流動 する結果となったが、これは細粒分含有率の違いにより、 定常状態におけるせん断強度が異なっていると考えられ る.

図-3 過剰間隙水圧比時刻歴(左:CS_sand,右:CS_silt1)

図-4 加振前後の地盤変形図(左: CS_sand,右: CS_silt1)

Time(s)

図-5 側方変位時刻歷(左:CS_sand,右:CS_silt1)

図-6 加振後のシルト層の側方変位時刻歴

4. 結論

本研究では、傾斜地盤における低透水層の有無がもたら す液状化時の地盤挙動の比較、また細粒分含有率が加振 終了後遅れ側方流動変位に及ぼす影響について定量的な 評価を行った.

・均質な地盤が加振により液状化すると、水圧の消散は 迅速に進行し、地盤の変形は加振中のみ発生するが、細 粒分を含む層を有する地盤が加振され液状化に至る場合、 シルト層とその直下の領域で流体が停滞し、加振後の側 方流動が生じることを確認した.

・低透水層の細粒分含有率がもたらす遅れ側方流動の変 位への影響として、細粒分含有率が異なるケースを比較 することで、本実験では細粒分含有率が低いCS_silt1-1や CS_silt1-2が大きく流動する結果となったが、要因として 加振後停滞する間隙流体によるシルト層のせん断強度の 低下が考えられ、細粒分含有率によりその値が変化する と思われる.

今後の課題として以下のことが挙げられる.

・中空ねじり試験による、細粒分含有率の異なる供試体の定常状態におけるせん断強度の計測.

・間隙比一定の場合細粒分の増加に伴い透水係数は減少 する⁴とされるが、本実験で用いたシルト質砂の透水性 の評価.

参考文献

- 國生剛治, "水膜現象が液状化砂層の側方流動へ与 える影響,"土と基礎, 47-4, 1998.
- 井合進, "地震時の複合地盤災害研究の動向と展 望," DPRI Annuals, No,60 A, 2017
- 橋本卓磨, "過剰間隙水圧の再分配を伴う難透水層 を含む複合地盤の液状化挙動,"京都大学大学院工 学研究科社会基盤工学専攻修士論文, 2017.
- 4) 新城俊也, "さんご砂の透水係数に及ぼす細粒分の影響," 琉球大学農学部学術報告, 67-74, 2000

(2018. ??. ?? 受付)

LATERAL FLOW OF AN INCLINED GROUND COMPOSED OF SAND AND SILT LAYERS, FOCUSING ON THE REDISTRIBUTION OF EXCESS PORE WATER PRESSURE

Satoshi TAMAIZUMI, Kyohei UEDA and Ryosuke UZUOKA

Lateral flow is a phenomenon caused by liquefaction of sandy layers due to vibratory loading, such as earthquakes. In order to investigate the effect of the fines content on delayed lateral flow, a two-layered, and 10 degree-inclined sandy ground was selected as a study case in this paper; the lower layer (i.e., sandy layer) was made up of silica sand No.6, and the upper layer (i.e., silty layer) composed of a mixture of silica sand No.8 and No.9. Four centrifuge model tests in a rigid box were conducted in order to simulate the stagnation of excess pore water pressure (EPWP) immediately below the low water permeability layer (i.e., upper layer) during shaking, and the subsequent occurrence of lateral flow due to the redistribution of EPWP after shaking. One of these tests was made of uniform material ground (i.e., upper and lower layers were made of silica sand No.6), and the others were composed of two layers by varying the fines content (FC=17%, 23%, 27%) in the upper layer. It is important to mention that no displacements after shaking were recorded in the uniform ground condition. In contrast, the other three tests showed the occurrence of delayed lateral flow of the upper layer which was thought to be caused by a decrease in the shear strength of the sandy layer due to the redistribution of EPWP. Also, the maximum displacement was observed after shaking when the minimum fines content was used.