2016 年熊本地震における益城町 の宅地・建物被害分析

橋本 隆雄1·松下 一樹2

¹正会員 国士舘大学理工学部まちづくり学系教授 (〒154-8515 東京都世田谷区世田谷4-28-1) E-mail: thashimo@kokushikan.ac.jp

² 非会員 国土交通省都市局都市安全課企画専門官 (〒100-8918 東京都千代田区霞が関 2-1-3) E-mail: matsushita-k2jd@mlit.go.jp

2016年熊本地震では、4月14日、16日に発生した震度7の益城町、西原村及び震度6強の南阿蘇村に おいて宅地及び建物に甚大な被害をもたらした.二次災害防止のため宅地・建物の危険度判定が行われた が、結果や益城町における活断活動の影響について十分に分析されていない.そこで、本論文では、益城 町の宅地・建物の全壊データをGIS化し宅地・建物被害の定量的な被害状況を整理し、被害パターン及び その特徴・原因等について分析した.さらに、益城町を事例として推定活断層・地表地震断層・亀裂・地 形勾配・地形分類・地盤変位が宅地・建物の被害への影響について分析を行い、今後の耐震目標の設定に 役立てることを目的としている.

Key Words: the 2016 Kumamoto earthquake, residential land, fault, earthquake damage

1. はじめに

2016年熊本地震では、4月14日、16日に発生した震度7の益城町、西原村及び震度6強の南阿蘇村において宅地及び建物に甚大な被害をもたらした。国は技術的助言として宅地について大地震により人命及び宅地の存続に重大な影響を与えないことを耐震対策の基本的な目標としており、宅地と建物のバランスのとれた対策とすることが望ましいとしている。しかし、そのバランスのとれた目標の設定方法については、具体的な方法が示されていない。断層活動が建物に与える影響について被害調査を行った事例¹⁰はあるものの宅地・建物の双方について調査した事例は余り無いのが実情である。

益城町では、4月14日のM6.5の地震は主に図-1に示 すように奈久断層帯高野-白幡区間が、4月16日の M7.3の地震は主に布田川断層帯布田川区間が活動した と考えられている.この二つの断層はいずれも益城町市 街地に近接していることから、1000galを遥かに超える 強烈な揺れ³と多くの地表地震断層をもたらしており、 これらが甚大な被害をもたらせた要因ではないかと考え られている.

2016 年熊本地震では、二次災害防止のため、被災地 において宅地の被災宅地危険度判定及び建物の応急危険 度判定(上記の判定を宅地・建物の応急危険度判定と略 す)が行われた.しかし、その調査結果について十分な 分析がされていない.

そこで、本論文では益城町の宅地・建物の全壊データ をGIS化し宅地・建物被害の定量的な被害状況を整理し、 被害パターン及びその特徴・原因等について分析した. さらに、益城町を事例として推定活断層・地表地震断 層・亀裂・地形勾配・地形分類・地盤変位が宅地・建物 の被害への影響について分析を行い、今後の宅地・建物 のバランスのとれた耐震対策の目標設定方法の検討に役 立てることを目的としている.

図-1 熊本地震の震源断層³⁾

2. 地震動

(1) 益城町市街地における観測記録

前震の記録は、図-2に示すように益城町市街地の3つ 強震観測点で(やや離れた地点にある K-NET 熊本を含 む)表-1の値が計測されている。また、本震の記録は、 前震の発生後、秦らによる臨時観測が行なわれており

(HATA et al) ために、図-2 に示すように 6 つの強震観 測点で表-2 の値が計測されている。本震では被害が大 きかった範囲に設置されていた臨時観測点 3 点に益城町 役場を加えた 4 地点で震度 7 を記録した。最大加速度も 臨時観測点では 1000gal を上回る大きな地震動を記録し ている。図-3 は各地点の観測地震動のフーリエスペク トル、加速度・速度応答スペクトルで,建築物等に影響 を及ぼすと考えられる 1 秒程度の周期帯では応答レベル も高くなっていることが分かる.

(2) 益城町の地盤振動特性(地盤周期)

図4は益城町の地盤振動特性を把握することを目的に 常時微動計測を行い、益城町における代表的な地形分類 である沖積低地、低位面、中位面、高位面の H/V スペ クトルの平均値である。H/V スペクトルの卓越周波数帯 は、沖積低地が低く(図中左側)、高位面ほど高い(図 中右側)結果となっている。卓越周波数が小さな(長周 期 図中左側)地盤ほど軟弱な地盤であることから、沖 積低地、低位面、中位面、高位面の順に軟弱な地盤であ ることが分かる。

図-2 観測地点図⁵⁾

表-1 益城町周辺での最大加速度及び計測震度 (前震:4月14日21時26分)

観測地点	最大加速度 (gal)	計測震度	震度階
KiK-net 益城	925	6.4	6強
益城町役場 (役場庁舎1F)	732	6.6	7
K-NET熊本	604	5.9	6弱

表-2 益城町周辺での最大加速度及び計測震度

(本震:4月16日1時25分)								
観測地点	最大加速度 (gal)	計測震度	震度階					
KiK-net 益城	1157	6.4	6強					
益城町役場 (役場庁舎 1F)	826	6.7	7					
K-NET熊本 (熊本市東区)	827	6.0	6強					
HATA et al. TMP1 (役場駐車場)	1491	6.6	7					
HATA et al. TMP2	1147	6.7	7					
HATA et al TMP3	1155	69	7					

(b)加速度応答スペクトル

図-3 地震観測記録各種スペクトル図5

3. 宅地・建物被害の特徴

益城町中心市街地においては、宅地・建物の被災が開 発時期の異なる街区単位で連担して発生している. 熊本 地震で益城町の被害の特徴は、地震動による建物被害を 除くと以下のようになる.

a) 建物自体に被害がないが、隣接する建物の影響

建物被害は、宅地被害状況が顕著な場合、併せて建物 も危険と判断されるケースが多く、さらに、密集した街 区においては、隣接地の万年塀の倒壊や建物の全壊被災 を危険とする要因と傾向が多く見られた.

b) 空石積擁壁・練石積擁壁等の滑動・崩落

宅地擁壁が既存不適格な構造強度の無いものが滑動・ 崩壊しているものが多い.

c) 河川沿いの擁壁・ブロックの倒壊等の影響

秋津川支川や水路においては河川構造物である擁壁・ ブロックが脆弱であるため倒壊等により、隣接する宅地 が甚大な被害を受けている.一方、秋津川(本川)沿川 においては堤防天端からセットバックを行った建物配置 が建物の危険度判定を低減していた.

d) 河川沿いの盛土上の道路の陥没の影響

道路・河川構造物との境界敷地における不同沈下も顕 著に見られた.

4. 応急危険度判定結果の分析

(1) 応急危険度判定結果の紙図面の収集

2016年5月時点でまとまった地区単位での応急危険度 判定調査が進捗していた益城町を対象として、宅地の応 急危険度判定本部において各調査区単位の応急危険度判 定結果の紙図面を収集し、現地でスキャンを行い、1枚 の調査結果集約図面の電子データを作成した.

(2) 宅地・建物被害の主なタイプの整理

現地調査を踏まえ、益城町の調査地区で見られた被災 形態と現地の応急危険度判定から建物の立地状況の関係 を整理した.その結果、市街地(街区レベル)の宅地・ 建物被害の主な類型は図-5に示すようになった.

(3) 応急危険度判定結果の GIS データベースの作成

以下の手順で応急危険度判定結果(宅地・建物)の GIS データ化を図り、両データのアドレスマッチング作 業を実施し、図-6 に示すような宅地・建物の組合せに よる集計が可能なデータベースを構築した.

宅地の応急危険度判定結果

②建物の応急危険度判定結果

③GIS で住宅地図ベースに 1/1000 の精度で概ねの重心

をプロットし、各点に「赤、黄色、青」の属性値を入力 ④宅地と建物のポイントデータを別々に色分けして表 示. 宅地のポイントデータは、建物より大き目のサイズ で表示

⑤宅地×建物の判定結果の組合せ(赤赤,赤黄,赤青, 黄赤,黄黄,黄青,青赤,青黄,青青)の9パターンで 建物データを色分けして表示

(4) GISによる宅地・建物の全壊判定結果の組合せ

GIS データベースを用いて,2016年5月末時点における益城町の宅地・建物の応急危険度判定結果の全壊を組合せた結果,図-7のようになった.

宅地の危険度判定結果の赤は 9,743 件の集計データ① から全体の 12%,建物の危険度判定結果の赤は 7,755 件 の集計データ②から全体の 40%となった. 宅地・建物 の危険度判定結果の組合せのうち,赤赤,赤青,青赤の 組合せの分布状況は 7,314 件の集計データ③から以下の ようになった.

①赤赤(宅地も建物も被災大):9%

②赤青(宅地は被災大で建物はほぼ被災なし):1%
③青赤(宅地はほぼ被災なしで建物が被災大):18%
宅地が赤の建物に限定すると 961 件の集計データ③から約7割が「赤赤」になる.

以上の組み合わせから、宅地被災率よりも建物被災率 が多いことが分かる.この理由としてはこの二つの断層 はいずれも益城町市街地に近接していることから、益城 町市街地で2度の大きな地震動が発生したと考えられる.

(a)宅地・建物判定を別表示 (b)宅地・建物判定を一元化表示 図-6 宅地と建物判定結果のアドレスマッチング作業イメージ

図-7 益城町の宅地・建物応急危険度判定結末

(a)建物自体に被害がないが、隣接する建物の影響

(b)空石積擁壁・練石積擁壁等の滑動・崩落

(c)河川沿いの擁壁・ブロックの倒壊等の影響

(d)河川沿いの盛土上の道路の陥没の影響 図-5 宅地・建物被害の主な類型

図-8 益城町の宅地・建物の応急危険度判定結果分布状況

5. 益城町の亀裂・地表面地震断層・推定活断層 等の影響について分析

(1) 亀裂と全壊との関係

亀裂分布図は、図-9 に示すように国土地理院が航空 写真から判読した布田川断層帯周辺の地表の亀裂分布図 ⁴と益城町の調査による資料を重ね、重複しないように 新たに作成した.

宅地・建物の応急危険度判定結果に基づく被害程度の データ(以下,「応急危険度調査」とする)は,益城町 市街地全域を網羅しているため,これを用いた宅地・建 物の被害状況について述べる.宅地・建物の全壊は,図 -13に示すように県道熊本高森線の南側のエリアの被害 が多く,北側のエリアでも点在している.また,鉄砂川 よりも東側のエリアは,西側に比べ全壊率が高くなって いる.

亀裂付近側 5m, 両側 10m では, 表-3 に示すように全 壊率が 27.7%と高いが,幅が広くなるに従い徐々に小さ くなり,片側 35m,両側 70m になると全壊率 19.3%に なっている.

(2) 地表地震断層と全壊との関係

地表地震断層は、図-11 に示すように国土地理院から 提供をしていただいたものを使用した.地表地震断層付 近側 5m,両側 10m では、表-4 に示すように全壊率が 30.0%と高いが、幅が広くなるに従いさらに徐々に大き くなり、片側 35m,両側 70m になると全壊率 35.2%と なっている.この値は、亀裂と全壊との関係と逆の傾向 となっている.また、地表地震断層間において●(宅地 被害無し、建物被害大)が多い.

この理由としては、地表地震断層に挟まれた区間にお いて地震動による建物の被害が大きくなったことが考え られる.

図-9 亀裂4の重ね図

図-10 亀裂と宅地・建物全壊の重ね図

表-3 亀裂からの影響幅と全壊率

幅((m)	全壊のタイプ				全壊	
片側	両側	全体	赤	緑	青	小計	率(%)
5	10	101	24	0	4	28	27.7
10	20	498	103	6	11	120	24.1
15	30	999	195	14	24	233	23.3
20	40	1468	272	14	24	310	21.1
25	50	1872	322	23	37	382	20.4
30	60	2295	373	23	37	433	18.9
35	70	2655	421	23	68	512	19.3

図-11 地表地震断層と宅地・建物全壊の重ね図

表4 地表地震断層からの影響幅と全壊率

幅	(m)	全壊のタイプ			全壊		
片側	両側	全体	赤	緑	青	小計	率(%)
5	10	40	9	0	3	12	30.0
10	20	107	27	1	6	34	31.8
15	30	161	39	3	10	52	32.3
20	40	223	57	3	11	71	31.8
25	50	282	79	3	15	97	34.4
30	60	332	95	3	17	115	34.6
35	70	381	109	5	20	134	35.2

(3) (地表地震断層+亀裂) と全壊との関係

(地表地震断層+亀裂) との重ね図は,図-12 に示す ように上記(1)と(2)を重ねたものを用いた.地表地震断 層+亀裂) 付近の片側 5m,両側 10m は,表-5 に示すよ うに全壊率が 28.4%と高いが,幅が広くなるに従い小さ くなり,片側 35m,両側 70m 以上になると全壊率 20% 以下になっている.

(4) 活断層と全壊との関係

益城町付近の活断層のメカニズムは、国土交通省都市 局の報告書に、図-13 に示すように「益城町付近に位置 する 3 本の活断層 A, B, C (木山断層の一部)は、階 段状断層(平行で同じ方向に落ちた横ズレを伴う正断層 群)で、南側の布田川断層と連動して活動すると推定さ れる.

本地震による活動量(ズレ量)は、活断層 A が最大 35 cmであるが、活断層 B は最大 14 cm、活断層 C は最大 5cm と活断層 A に比べて小さいことから、階段状断層の うち最も南側の活断層 A が主に活動したと推定される. なお、活断層 B, C の東側では、本地震による亀裂は確 認できていないが、表層が軟弱な地盤の場合には、地表 に亀裂等が現れない場合もある。本地震によって活断層 B, C が活動しなかったわけではないと考えられる.」 となっている.

そこで、各活断層と全壊の関係について検証した.活 断層の位置との関係では、図-14 に示すように鉄砂川の 東側のエリアでは、活断層 AB 間で被害が大きい傾向に ある.一方、鉄砂川よりも西側では、活断層 A の南側 で被害が大きい傾向にある.活断層の位置は、国土交通 省都市局が調査を行った報告書から、市街地の東側に 3 本及び西側に1本の活断層の位置を推定しているものを 用いた.活断層付近の片側 5m、両側 10mは、表-6 に示 すように全壊率が 27.4%と高いが、幅が広くなるに従い 小さくなる傾向にある.表-5 は、活断層 A~C上の活断 層毎の全壊率であるが、活断層 C 上が一番高く鉄砂側 の西側で 36.4%、東側で 38.5%となっている.

図-12 益城町市街地の活断層模式図⁹

図-13(地表地震断層+亀裂)と宅地・建物全壊の重ね図

表-5 地表地震断層+亀裂からの影響幅と全壊率

幅((m)	全壊のタイプ				全壊	
片側	両側	全体	赤	緑	青	小計	率(%)
5	10	134	31	1	6	38	28.4
10	20	554	114	7	13	134	24.2
15	30	1046	206	14	25	245	23.4
20	40	1512	283	18	29	330	21.8
25	50	1906	334	23	39	396	20.8
30	60	2312	380	31	53	464	20.1
35	70	2664	425	37	68	530	19.9

図-14 活断層と宅地・建物全壊の重ね図

表-6 活断層からの影響幅と全壊率

幅	(m)		全壊のタイプ				
片側	両側	全体	赤	緑	青	小計	率(%)
5	10	95	17	6	3	26	27.4
10	20	234	47	9	6	62	26.5
15	30	378	76	10	7	93	24.6
20	40	511	95	14	8	117	22.9
25	50	633	124	17	16	157	24.8
30	60	778	153	17	6	176	22.6
35	70	895	176	19	30	225	25.1

(5) (活断層+地表地震断層+亀裂)と全壊の関係

図-18 では、(活断層+地表地震断層+亀裂)と宅 地・建物の全壊を重ねた図である.活断層、地表地震断 層、亀裂は、重なることが多く、鉄砂川を挟んだ東側で は宅地・建物被害が重なっていることが分かる. 亀裂付近側5m、両側10mでは、表-8に示すように全壊 率が27.3%と高いが、幅が広くなるに従い徐々に小さく なり、片側35m、両側70mになると全壊率19.9%にな っている.

表-9 は,鉄砂川を挟んだ東西の活断層・地表地震断 層・亀裂上の全壊率を比較したものである.西側の全壊 率は,全体で7.4%と東側全体19.0%と比較すると少な く,活断層上が11.8%と少なく亀裂上が18.5%と多くな っている.また,東側の全壊率は全体で32.8%と高く, 亀裂上が34.3%,活断層上が32.8%,地表面地震断層が 30.0%になった.活断層・地表地震断層・亀裂上全体の 全壊率は,区域全体14.1%から比較すると,27.8%と非 常に高いと値となっていることが分かる.

(6) 活断層を挟むエリアと全壊率

全壊率については県道熊本高森線の南側のエリアが多 く,北東の辻の城地域と南側の秋津川に近いエリアでは 被害が少なくなっている.全壊率については県道の北側 ~益城町役場周辺の活断層に挟まれたエリアも多くなっ ている.活断層の位置との関係では,図-16及び表-10 に示すように特に活断層 A と活断層 B に挟まれた B エ リアで全壊率 38.7%と非常に高く,活断層 B と活断層 C に挟まれた C エリアと活断層 A と活断層 C に挟まれた F エリアで全壊率 25.3%と被害が大きいことが明らかと なった.

区公	鉄砂川の	全域	
E)	西側	東側	(%)
活断層A上	0	28.6	17.8
活断層B上	—	28.6	28.6
活断層C上	36.4	38.5	37.5
活断層上	11.8	32.8	25.7

表-8 (活断層+地表地震断層+亀裂)と全壊率

幅((m)	全壊のタイプ			全壊		
片側	両側	全体	赤	緑	青	小計	率(%)
5	10	198	41	7	6	54	27.3
10	20	679	140	13	15	168	24.7
15	30	1219	235	19	27	281	23.1
20	40	1707	310	25	31	366	21.4
25	50	2107	359	32	47	438	20.8
30	60	2520	405	38	65	508	20.2
35	70	2835	443	42	78	563	19.9

図-15(活断層+地表地震断層+亀裂)と宅地・建物全壊の 重ね図

表-9	活断層·	地表地震断層	•	亀裂上の全壊率
-----	------	--------	---	---------

区八	鉄砂川の	全域	
区刀	西側	東側	(%)
地表地震断層上	—	30.0	30.0
活断層上	11.8	32.8	25.7
亀裂上	18.5	34.3	29.9
上記全体	14.8	32.8	27.8
区域全体	7.4	19.0	14.1

図-16 活断層を挟むエリアと宅地・建物全壊の重ね図

表-10 活断層を挟むエリアと全壊率

~ 11 7		全壊				
エリノ	全体	赤	緑	青	小計	率(%)
А	663	67	4	20	91	13.7
В	398	100	9	45	154	38.7
С	217	46	5	4	55	25.3
D	1722	201	22	47	270	15.7
東側小計	3000	414	40	116	570	19.0
Е	711	50	8	6	64	9.0
F	99	20	5	0	25	25.3
G	1394	53	17	4	74	5.3
西側小計	2204	123	30	10	163	7.4
合計	5204	537	70	126	733	14.1

6. 益城町の地形・地盤変位の影響等について分析

(1) 地形勾配と宅地・建物被害の関係

国土地理院では標高 5m 毎の等高線図を作成している. 図-17 は西側の等高線と(活断層+地表地震断層+亀 裂)と宅地・建物全壊の重ね図で,図-18 は東側である. この東側は,西側と比較すると等高線が狭い箇所が多く 被害が多い傾向にあることが分かる.宅地・建物被害は, この図から明らかに地形の影響を受けて地表面の勾配が 急なところに●と●が非常に多く,平坦な地形に●が多 くなっていることが分かる.平坦な地形に●が多 くなっていることが分かる.平坦な地形に●が多いのは 地震動による建物被害であると考えられる.図-19 は図-17 及び図-18 の全体図に亀裂,表面地震断層,推定活断 層を更に重ねた図で,特に断層付近及び断層に挟まれた エリアに被害が多く,平坦な箇所でも●の建物被害が多 いことから地震動が大きくなったと考えられる.

図-20 は、等高線から平均地表面勾配を 1~5%未満を 1%ごと、5%以上の勾配別に色分けしたものである. 宅 地・建物被害は、5%以上の勾配の箇所と●と●が一致 していることが分かる. 図-21 は、等高線から平均地表 面勾配を 3~5%未満を黄色、5%以上をピンク色に色分 けしたものである. 宅地・建物被害は、5%以上の勾配 の箇所と●と●が一致していることが分かる.

表-11 は、これを基に 3%未満、3%~5%未満、5%以上 の地表面の勾配毎に宅地・建物の全壊率を算出したもの である.この結果から、地表面の勾配が 5%以上 45.3% と非常に多いことから勾配が急なものほど全壊率が高い ことが分かる.この理由としては、勾配が急なほど地盤 変状を受けているからであると考えられる.

表-11 には、平均地表面勾配と亀裂の割合を出したものである。 亀裂は複数ある場合と1本連続している場合では異なるため、必ずしも正確なものではないが、5%以上で亀裂数が211となっている.

図-18 東側の等高線と宅地・建物全壊の重ね図"

図-19 等高線東側と(活断層+地表地震断層+亀裂)と 宅地・建物全壊の重ね図

図-17 西側の等高線と宅地・建物全壊の重ね図⁵

図-20 平均地表面勾配分布図

(2) 地形区分と宅地・建物被害の関係

地震による被害と地形との関係把握に用いる基礎資料 とするため、益城町周辺の地形区分図が作成³されてい る.地形区分図の作成は、既刊の地形分類図、旧版地形 図等を参照し、昭和31年・平成9年・平成28年撮影の 空中写真を用いて地形の判読が行われている.この結果、 地形区分図から以下のことが言える.

①益城町周辺の地形は、大局的に北から南へ向けた緩 傾斜地形であるが、高位面・中位面・低位面・沖積低地 に区切られる.

②各面の境界付近には一部で人工改変地形がある.

③東から流れる秋津川流域,及び秋津川に北側から合 流する迫川及び鉄砂川の流域が沖積低地となっており, 周囲では最も低くなる.

④鉄砂川西側には秋津川の旧河道が位置し,現河道と の間に中州状の高まりが形成されている.また,更に西 側の妙見川の東側には低位面が分布する.

⑤益城町役場は高位面の最も南側~高位面の人工改変 地との境界付近に位置する.また今回被害が甚大であっ た鉄砂川東側かつ県道熊本高森線の南側のエリアは主に 中位面に相当する.

図-22 及び図-23 はこの地形区分図に宅地・建物全壊 の重ねたものである. 表-12 はその地形区分毎の宅地・ 建物の全壊率である. この結果,中位面(人工改変)で は 70.0%と非常に多く,崖下緩斜面(人工改変)では 49.4%,高位面(人工改変)で 41.7%,低位面で 40.4%と なっている. 特に,人工改変している箇所で非常に多く なっていることが分かる.

被害が顕著な中位面は、益城町市街地の県道沿い両側 に東西に広がり、東部の木山城跡、文化会館周辺では段 丘地形の様相を呈する一方、西側地域は人工改変により 階段状になっており全体としては段丘面の特徴は少なく なるが、低位面や沖積面に対しては 5m以下の段差地形 で臨んでいるところが多い.地質構成は、表層はかく乱 されているが、その下にアカボク土と二次堆積層、火砕 流堆積物が分布している.

また,次に被害が多かった崖下緩斜面(人工改変)は, 迫川より東側の回廊状の地帯とさらに東の急崖の下には 崖錐斜面を人工的に改変したとみられる緩斜面が続き,

一部段丘のようなところもあるが連続性に乏しいので基本的に人工改変地としたところである.地質構成は,盛土材として Aso-4 火砕流堆積物の崖錐等を使用しているとみられる.

図-24 の東側は、中位面(人工改変), 崖下緩斜面 (人工改変), 高位面(人工改変), 低位面で, かつ等 高線が狭く断層がある箇所が,明らかに地形の影響を受 けて地表面の勾配が急なところに●と●が非常に多く, 平坦な地形に●が多くなっていることが分かる.

表-11 平均地表面勾配毎の宅地・建物の全壊率

勾配	宅地・建物の全壊率			亀裂数
(%)				(本)
3%未満	4.2	0.9	1.8	932
3%~5%未満	19.9	3.8	3.0	40
5%以上	45.3	2.7	2.4	211

図-22 地形分類西側と宅地・建物全壊の重ね図 5

図-23 地形分類東側と宅地・建物全壊の重ね図"

の重ね図

(3) 水平方向の地盤変位と宅地・建物被害の関係

国土交通省都市局の報告書には、図-25 に示すように 益城町付近熊本地震(前震・本震含む)による水平方向 の地盤変位をレーザーで計測したものが記載されている. 図-26 はこの変位図に宅地・建物全壊を重ねたものであ る.この図から地盤変位が大きい赤→またはオレンジ 色→の箇所が宅地・建物全壊箇所の●と●と一致して いることが分かる.一方,青→の地盤変位が小さい箇 所に●の建物被害が多いことが分かる.

図-27 は図-26 に地表地震断層と亀裂を重ねたもので ある.地表地震断層の箇所は地盤変位が大きい赤→ま たはオレンジ色→の箇所が宅地・建物全壊箇所の●と ●と一致していることが分かる.

図-28 は図-27 に等高線を重ねたものである。等高線 は標高 5m ごとになっているが、間隔が非常に狭い箇所 に宅地・建物全壊箇所の●と●と一致していることが分 かる。

図-29 は図-25 の水平方向の地盤変位図にこの変位図 に平均地表面勾配分布図を重ねたものである.この図の 平均地表面勾配分布図の 5%以上の紫色部分が,図-26 の宅地・建物全壊箇所の●と●と一致していることが分 かる.

図-25 熊本地震(前震·本震含む)による水平方向の
地盤変位(レーザー計測)⁹

図-26 水平方向の地盤変位図と宅地・建物全壊の重ね図

表-12 地形区分毎の宅地・建物の全壊率

豆八	鉄砂川の	全域	
	西側	東側	(%)
崖錐	5	0	4.8
沖積低地	10	11.4	10.7
谷底低地	0	0	0
崖下緩斜面	0	40.4	40.4
(人工改変)	0	49.4	49.4
低位面	86	20.1	11.9
(人工改変)	0.0	20.1	11.0
低位面		40.4	40.4
中位面		70.0	70.0
(人工改変)		/0.0	/0.0.
中位面	10.5	39.2	35.3
高位面		41.7	41.7
(人工改変)		41./	41.7
高位面	6.3	15.1	11.4
Aso-4 露頭	なし	0	0
全体	7.5	19.6	13.1

図-27 水平方向の地盤変位図と(地表地震断層+亀裂)と 宅地・建物全壊の重ね図

7. まとめ

(1) 宅地·建物被害率

宅地被害は全体の 12%, 建物被害は全体の 40%となった.赤赤(宅地も建物も被災大)は 9%,赤青(宅地は被災大で建物はほぼ被災なし)は 1%と少なく,青赤(宅地はほぼ被災なしで建物が被災大)は 18%となった.

建物被害が多い理由としては、この2つの断層はいず れも益城町市街地に近接していることから、益城町市街 地で2度の大きな地震動が発生したと考えられる.

(2) 益城町の亀裂・地表面地震断層・推定活断層等の 影響について分析

a) 亀裂と全壊との関係

亀裂付近では全壊率が 27.7%と高いが,幅が広くなる に従い徐々に小さくなっている.

b) 地表地震断層と全壊との関係

地表地震断層付の全壊率は 30.0%と高いが,幅が広く なるに従いさらに徐々に大きくっている.この値は, 亀 裂と全壊との関係と逆の傾向となっている.この理由と しては,地表地震断層に挟まれた区間において地震動に よる建物の被害が大きくなったことが考えられる.

c) (地表地震断層+亀裂)と全壊との関係

地表地震断層+亀裂) 付近の片側 5m, 両側 10m は, 全壊率が 28.4%と高いが,幅が広くなるに従い小さくな っている.

d) 活断層と全壊との関係

活断層付近は全壊率が 27.4%と高いが,幅が広くなる に従い小さくなる傾向にある.活断層 C 上が一番高く 鉄砂側の西側で 36.4%,東側で 38.5%となっている.

e) (活断層+地表地震断層+亀裂)と全壊の関係

西側全体の全壊率は、で東側全体 19.0%と比較すると 7.4%と少なくなっている.西側では活断層上 11.8%、亀 裂上 18.5%となり、東側では亀裂上 34.3%、活断層上 32.8%、地表面地震断層 30.0%と非常に高くなっている.

f) 活断層を挟むエリアと全壊率

活断層 A と活断層 B に挟まれた B エリアで全壊率 38.7%と非常に高く,活断層 B と活断層 C に挟まれた C エリアと活断層 A と活断層 C に挟まれた F エリアで全 壊率 25.3%と被害が大きいことが明らかとなった.

(3) 益城町の地形・地盤変位の影響等について分析

a) 地形勾配と宅地・建物被害の関係

地表面の勾配が5%以上45.3%と非常に多いことから 勾配が急なものほど全壊率が高いことが分かる.この理 由としては、勾配が急なほど地盤変状を受けているから であると考えられる.

図-29 水平方向の地盤変位図と平均地表面勾配分布図 の重ね図

b) 地形区分と宅地・建物被害の関係

地形区分毎の宅地・建物の全壊率は、中位面(人工改変)では 70.0%と非常に多く、崖下緩斜面(人工改変) では 49.4%、高位面(人工改変)で 41.7%、低位面で 40.4%となっている.特に、人工改変している箇所で非 常に多くなっていることが分かる.

c) 水平方向の地盤変位と宅地・建物被害の関係

水平方向の地盤変位図にこの変位図に平均地表面勾配 分布図を重ねた結果,平均地表面勾配分布図の5%以上 の部分が,宅地・建物全壊箇所と一致していることが分 かる.

謝辞:最後に,被災宅地危険度判定士の活動調査票の資料は,熊本県,各市町村から提供していただきました. GISの使用に当たって、㈱日測の西川 穣氏に御指導をいただきました.図面作成に当たって、国士舘大学まちづくり学系佐藤 将大氏に御協力をいただきました.多くの方々にご尽力を頂き,誠にありがとうございました. これらの機関・関係者にこの誌面を借りまして深く感謝申し上げます.

参考文献

- 久田嘉章,久保智弘,松澤佳,松本俊明,田邉朗仁, 森川淳:2011年福島県浜通り地震の地表地震断層 の近傍における建物被害調査,日本地震工学会論文 集第12巻,第4号(特集号),2012
- 2) Hata. Y., H. Goto, and M. Yoshimi : Preliminary Analysis of Strong Ground Motions in the Heavily Damaged Zone in Mashiki Town, Kumamoto, Japan, during the Mainshock of the 2016Kumamoto Earthquake (Mw 7.0) Observed by 5 a Dense Seismic Array, Seismo. Res. Lett., Vol.87, No.5, 2016
- 国土地理院:平成28年熊本地震の震源断層モデル (暫定), http://www.gsi.go.jp/common/000140781.pdf(2017年8 月28日閲覧).
- 4) 国土地理院:空から見た(航空写真判読による)布

田川断層帯周辺の地表の亀裂分布図

http://www.gsi.go.jp/BOUSAI/H27-kumamoto- earthquake-index.html(2017年8月28日閲覧).

5) 国土交通省都市局:熊本地震からの益城町の市街地 復興に向けた安全対策のあり方等に関する報告書最 終報告, 2017.3., http://www.mlit.go.jp/report/press/toshi08_hh_000034.ht ml (2017年8月28日閲覧).

 国土地理院:地理院タイル, https://maps.gsi.go.jp/help/use.html (2017年8月28日 閲覧).

ANALYSIS OF RESIDENTIAL LAND AND BUILDING DAMAGE OF MASHIKI TOWN IN 2016 KUMAMOTO EARTHQUAKE

Takao HASHIMOTO, Kazuki MATUSHITA

Mashiki Town suffered serious damage in residential land and the building by the 2016 Kumamoto earthquakes. Post-earthquake safety assessment was carried out afterwards about residential land and a building. However, examination is not carried out about analysis of the findings and the influence of the active fault of Mashiki Town enough. However, examination is not carried out about analysis of the findings and the influence of the active fault of Mashiki Town enough.

Therefore this paper analyzes the damage of residential land, the building using GIS. Furthermore, I analyzed it whether residential land, a building of Mashiki Town was affected by an active fault, a crack, the topography, the ground.