軸応力をパラメータとした積層ゴム支承の せん断特性確認実験の再現解析と ゴム支承の局部応力変化に関する検討

 崔 準祜1・成 炫禹2・原 暢彦3・今井 隆4・植田 健介5
¹正会員 九州大学大学院 助教 工学研究院 社会基盤部門(〒819-0395 福岡県福岡市西区元岡744) E-mail: choi@doc.kyushu-u.ac.jp
²正会員 (株)大日本コンサルタント 特殊構造技術室(〒170-0003 東京都豊島区駒込 3-23-1) E-mail:nakashima@doc.kyushu-u.ac.jp
³正会員 ゴム支承協会 技術委員会(〒107-0051 東京都港区元赤坂1丁目 5-26 東部ビル) E-mail: hara@tokyo-fabric.co.jp
⁴正会員 ゴム支承協会 技術委員会(〒107-0051 東京都港区元赤坂1丁目 5-26 東部ビル) E-mail:imai@mgb-gouda.co.jp
⁵正会員 ゴム支承協会 技術委員会(〒107-0051 東京都港区元赤坂1丁目 5-26 東部ビル) E-mail:ueda@mgb-gouda.co.jp

ゴム支承の水平方向に対する力学的特性や耐震性能についてはこれまで多くの実験により確認されてき ており、その設計手法についても確立されているが、ゴム支承の鉛直方向に対する力学的特性に関しては、 これまで検討事例が少なく設計手法が確立されていない状況である。特にゴム支承が引張力を受けた状態 で水平方向の地震力を受けた場合の支承の力学的特性については不明なところが多く、筆者らはゴム系支 承の引張せん断特性を明らかにすることを目的とし、過去に積層ゴム支承(RB)を対象に軸応力をパラ メータとしたせん断実験を実施した.これらの実験に対し、本研究では3次元有限要素解析により実験結 果の再現性を確認するとともに、軸応力とせん断ひずみの変化に伴うゴム支承内部の局部応力変化につい て基礎的検討を行った.

Key Words: rubber bearing, tensile shear loading test, FE analysis, internal stress of rubber bearing

1. はじめに

1995年兵庫県南部地震では、高速道路や幹線道路に おいて鋼製支承に大きな損傷や破壊が生じ、橋梁として の機能を損なった被害が多かったことから¹⁾、近年は粘 性の高いゴム材料を使用したゴム支承を導入し、上部構 造の地震時水平力の分散やエネルギー吸収により橋梁に 作用する地震力の低減を図った橋梁構造物が増えてきて いる.これに伴い、ゴム支承の水平方向に対する力学的 特性や耐震性能については、これまで多くの実験により 確認されてきており、その設計手法についても確立され ている.

一方,ゴム支承の鉛直方向に対する力学的特性に関しては、これまで基本的な性能確認試験は過去に行われているものの²,鉛直力の変動時におけるゴム支承のせん 断特性については実験等による検討事例が少なく、橋梁 設計上考慮されていない.特に引張下におけるゴム支承 のせん断特性についてはこれまで検討事例が無く、地震 時支承部に上陽力と水平力が同時に作用する場合ゴム支 承の限界状態が明らかにされているとは言い難い. そこ で、筆者らは、ゴム支承の引張せん断特性を把握するこ とを目的とし、過去に積層ゴム支承(RB)を対象に軸 応力をパラメータとしたせん断実験を実施した. その実 験より得られた水平荷重-変位履歴から、等価剛性、等 価減衰定数などを軸応力ごとに整理し、ゴム支承に作用 する軸応力がゴム支承のせん断特性に及ぼす影響につい て調査するとともに、外部から確認できるゴム支承の変 形性状の変化について確認した 3,4.しかし、地震時ゴ ム支承の限界状態をより厳密に評価するためには、大き なせん断変形が生じるゴム支承においてその内部の局部 応力を把握する必要があるが、こうしたゴム支承内部の 局部応力状態を評価するためには解析による推定評価し

かできない現状である.

本研究では、筆者らが過去に実施した軸応力をパラメ ータとしたゴム支承のせん断特性確認実験に対し、3次 元有限要素解析により実験結果の再現性を確認するとと もに、軸応力とせん断ひずみの変化に伴うゴム支承内部 の局部応力変化に関する検討を行った。

2. 解析概要

(1) 解析対象ゴム支承の諸元

本解析では、筆者らによる過去のゴム支承せん断特性 確認実験に用いた実験供試体を対象とした.本解析に用 いた実験供試体の構造図を図-1 に、諸元を表-1 に示す. 実験供試体は積層ゴム支承(RB, G10)であり、供試 体寸法はJISの標準試験体⁹に合わせ、平面寸法を 400mm×400mmとした.また、総ゴム厚は54mmとし、 1層のゴム厚を18mmとして3層とした.一次形状係数 S1と二次形状係数S2は、道路橋支承便覧⁹に基づき、 式(1a)、(1b)を用いて求めた.S1については道路橋支承 便覧における最小値4から最大値12の範囲で設定して おり、今回解析対象とした実験供試体の場合ゴム単層が 18mmと厚く、一次形状係数が5.56である.本検討では、 ゴム支承の形状条件をできるだけ厳しいと考えられるゴ ム厚を用いることとした.

$$S_1 = \frac{A_e}{2(a+b)t_e} \tag{1a}$$

$$S_2 = \frac{\min(a,b)}{\sum t_e} \tag{1b}$$

ここに, A_e:ゴムの断面積 *a, b*:ゴム支承の平面寸法 *t_e:ゴム*1層の厚さ

(2) 解析モデル

解析モデルを図-2 に示す.本解析では汎用有限要素 解析ソフト ADINA (Ver.9.2.5)を用い,載荷板,ゴム, 内部鋼板,上下鋼板に対しそれぞれソリッド要素でモデ ル化した.ゴム部の要素分割については,安定した解が 得られるように Z 軸方向(鉛直方向)に対しても多く 分割した.ゴム支承の高さ方向の要素分割数による影響 を把握するため,ゴム支承の鉛直方向に載荷したケース に対し,要素分割数をパラメータとした検討を行った. 図-3 にはゴム 1 層の高さ方向に対し,要素分割数を 1, 2, 3, 4, 5, 10, 20 とし,ゴム支承の高さ方向に引張応 力 3MPaを載荷した結果を示す.要素分割数が 1 の場合, 他の結果と離れた値を示しており,より多く分割する必

図-1 解析対象の実験供試体の構造図(単位:mm)

表-1 実験供試体の諸元

平面形状	(mm)	400 × 400
単層厚	(mm)	18
総ゴム厚	(mm)	54
内部鋼板厚	(mm)	2
1次形状係数	-	5.56
2次形状係数	-	7.41
ゴム材の呼び	-	G10
内部鋼板の材質	-	SS400

要があることがわかる.本モデルの場合,要素分割数を 4,5以上にすると結果が一定の値に収束していく結果 となり、本検討ではゴム支承の高さ方向に対する要素分割数を10とした.

(3) ゴム材料の超弾性モデル

ゴム材料は応力とひずみの強い非線形を有しており, 有限要素法では超弾性体として取り扱われる場合が多い. 超弾性体の応力ひずみについては,有限要素法では一般 にひずみエネルギー関数を用いて表しており,これまで 様々な種類のひずみエネルギー関数が提案されている. 本検討では,ゴム材料のひずみエネルギー関数として多 く用いられている Ogden モデル^のを採用して解析を実施 した. Ogden モデルは Ogden が 1972 年提案したものであ り,そのひずみエネルギー関数を式(2)に示す.

$$W = \sum_{n=1}^{N} \frac{\mu_n}{\alpha_n} (\lambda_1^{\alpha_n} + \lambda_2^{\alpha_n} + \lambda_3^{\alpha_n} - 3)$$
(2)

- ここに, W: ひずみエネルギー関数
 - λ:ゴム実験体の各辺の伸長比
 - α: Ogdenモデルの材料定数(単位は無次 元)
 - μ: Ogdenモデルの材料定数(単位は弾性係 数と同じ)

このひずみエネルギー関数を求めるためには、本来3 種の材料試験(単軸引張、二軸均等引張、純せん断)に より関数を同定する必要があるが、本検討ではこれら材 料試験を実施せず、非線形 CAE 協会が公開している材 料試験データに基づくひずみエネルギー関数^のを引用す ることとした.非線形 CAE 協会が公開しているひずみ エネルギー関数を図4に示す.

また、ゴム材料のような高分子物質は弾性的かつ流体的 であるため粘弾性を有しているが、本解析では上述した Ogden モデルに Holzapfel が提案した粘弾性効果[®]を考慮 することとした.この粘弾性効果を考慮することによっ て、ゴム支承の繰り返しせん断変形による履歴エネルギ ーを現すことが可能となる.なお、ゴム材料の内部摩擦 等による損傷モデル(ダメージモデル)は採用していな い.

(4) 上下部載荷板および内部鋼板のモデル

上下載荷板や内部鋼板については鋼部材として設定し ており、実験でこれらの部材が大きな変形を示していな かったことから、本解析ではまず弾性モデルとして検討 を行った.また、ゴム層と内部鋼板の接着については、 著者らが過去に実施した加硫接着されたテストピースに よる接着剥離試験で剥離(接着界面の破壊)よりもゴム 材料の破断(ゴム部での破断)が先行となり、ゴムの材

図-4 ゴム材料のひずみエネルギー関数7

料強度より接着強度の方が強いことが確認されたことや 各種のせん断破壊実験ではゴムと内部鋼板の剥離現象が 生じていないこと,また本研究で対象としている実験に おいてもゴムと内部鋼板が剥がれることが見られていな かったことから,本解析ではゴム層と内部鋼板を剛結合 とした.

(5) 解析ケースおよび載荷条件

過去に実施した実験では、軸応力を圧縮 6MPa, 0MPa, 引張 1MPa, 引張 2MPa とし、せん断ひずみ 175%、250%、 300%を繰り返して与えた.本解析検討では、軸応力と

図-5 載荷方法および境界条件

図-6 載荷ステップ

して圧縮 6MPa と引張 2MPa を載荷したケースに対して のみ再現解析を実施した.載荷方法としては、軸応力に ついては応力載荷、水平変位については強制変位を載荷 する方法とした.載荷方法と境界条件を図-5に示す. 軸応力の載荷はスタート時点から載荷が終わるまで同じ 軸応力を載荷することにしており、水平変位載荷は実験 で用いた載荷荷重と同じく sin 波形で入力した. また, 本解析では上述のようにゴム材料の超弾性モデルに粘弾 性効果を考慮しているが、粘弾性効果を考慮すると応答 が速度に依存するため、実験時の水平方向載荷速度と同 じ速度に設定して載荷した.入力した荷重の時間関数を 図-6に示す.

3. 解析結果

(1) 実験結果に対する再現性

図-7 と図-8 は、ゴム支承に対して軸応力を圧縮 6MPa と引張 2MPa を載荷した状態で、せん断ひずみ 175%、 250%を10回繰り返し載荷、せん断ひずみ300%を1回繰 り返し載荷を行った際の水平荷重-水平変位履歴を実験 と解析で比較したものである.本検討では、上述のよう に粘弾性効果を考慮しており、解析モデルに粘性特性を 与える必要があるが、ここでは解析により得られる履歴 形状が実験で得られた履歴形状に近づくよう、繰り返し

計算により粘性特性を決定した.履歴形状において、解 析で得られた切片荷重,最大荷重,履歴吸収エネルギー が実験値に近づくように設定した.

図-7 と図-8 より、切片荷重、最大荷重、履歴吸収エ ネルギーに関しては、実験値と解析値が近似しているこ とが確認できるが、せん断ひずみが 100%程度を超えて からは履歴形状が両者少し異なっていることがわかる. 特にハードニング領域において実験と解析結果の乖離が 大きくなっているが、これは本解析で用いたゴム材料の ひずみエネルギー関数が実験で用いたゴム材料に基づい ておらず、高ひずみ領域においてひずみエネルギー関数 が適切に反映されていないためと考えられる. これにつ いては、今後実験で用いた材料に近いひずみエネルギー 関数を求める必要があるが,切片荷重,最大荷重,履歴 吸収エネルギーに関しては圧縮 6MPa, 引張 2MPa の両 載荷ともに解析値が実験値に近似しており、実験時の軸 応力の変化に伴うゴム支承内部の局部応力変化の傾向を 把握するには、精度上大きな問題は無いと思われる.

(2) ゴム支承の局部応力状態評価

a) XZ 平面上の応力

ここでは(1)にて紹介した実験ケースに対し、解析に より図-2の XZ 平面上におけるゴム支承内部の局部応力 状態を評価した. 各ケースの内部応力を評価するにあた っては、平均応力(静水圧応力)により応力状態を評価

図-7 水平荷重-水平変位履歴の比較(軸応力: 圧縮 6MPa)

図-10 静水圧応力の比較(軸応力引張 2MPa)

することとした.

図-9は、軸応力を圧縮 6MPa、せん断ひずみを 175%、 250%、300%に載荷した場合のゴム支承中央部における XZ 平面の静水圧応力分布を示したものである. 図-9 か ら、せん断ひずみを 175%載荷した場合には、圧縮応力 が作用する領域が支承中央部を中心にして広範囲で広が っているが、せん断ひずみが大きくなるにつれて圧縮応 力を受ける領域が徐々に減っていくことが確認された. せん断ひずみを 300%載荷した場合には、圧縮応力を受 ける領域が半分程度まで減り、せん断ひずみを厳しく受 ける左右の端部には引張応力を受けるところも現れ、せ ん断ひずみの変化によってゴム支承の内部応力が大きく 変化していくことがわかった.

図-10 は、軸応力を引張 2MPa, せん断ひずみを 175%, 250%, 300%に載荷した場合の静水圧応力分布を示した ものである. せん断ひずみ 175%を載荷した場合には、 圧縮応力載荷時と同様に支承中央部を中心に引張応力を 受ける領域が広がっているが、せん断を受けることでゴ ム部材がさらに引張を受けることになり、せん断ひずみ が大きくなるにつれて支承中央部の引張応力がより上昇 していく傾向を示した. しかし、せん断ひずみの増大に 伴い、引張応力の分布も変化しており、ゴム内部で最大 引張応力 が発生する領域はせん断変形方向の反対の対 角方向に分布することがわかった.このことより,ゴム 支承が引張応力下においてせん断を受ける場合には,ゴ ムの上下層の端部で引張応力を厳しく受けることが考え られる.実験においてもゴム層間でゴムの伸びが不均等 に大きく内部鋼板がそれに沿って変形していたが,破断 には至らず荷重解放後の外観に異常は見られなかった (写真-1).

写真-1 軸応力引張 2MPa, せん断ひずみ 300%を載荷した後のゴム支承の変形様子(Si=5.56)

写真-2 軸応力引張 2MPa, せん断ひずみ 300%を載荷し た後のゴム支承の変形様子(Si=11.11)

また、参考までに写真-2 に一次形状係数が大きい供 試体(Si=11.11)の軸応力を引張 2MPa, せん断ひずみを 300%載荷した後の変形様子を示す.ゴムが鉛直方向に 延びているものの内部鋼板の変状等はみられておらず、 一次形状係数が小さいケース(Si=5.56)とは異なる結果

となった. 今後, 一次形状係数が大きい供試体 (Si=11.11) についても 3 次元有限要素解析を実施し, ゴムの内部応力や内部鋼板の応力状態等を調べる予定で ある.

b) XY 平面上の応力

ここでは、図-2の XY 平面上におけるゴム支承内部の 局部応力状態を評価した.軸応力として圧縮 6MPa を載 荷したケースと引張 2MPa を載荷したケースに分けて、 支承上部と中央部断面における局部応力状態を比較した.

図-11, 図-12 は、軸応力を圧縮 6MPa、 せん断ひずみ を 175%, 250%, 300%に載荷した場合の XY 平面の静水 圧応力分布を示したものである. 図-11 はゴム支承の上 部プレート付近における応力を,図-12 はゴム支承中央 部の応力をそれぞれ示したものである.まず、上部断面 においては、図-11 より、せん断ひずんみが大きくなる につれて圧縮領域が中央からせん断変形する方向の側面 側に移行していることがわかる.一方,中央断面におい ては、図-12より、中央の圧縮領域が徐々に小さくなっ ていくことがわかる.また、引張領域について上部と中 央断面で比較してみると、上部断面において引張領域が 広がっていく傾向にあることが確認された.

図-13, 図-14 は、軸応力を引張 2MPa、 せん断ひずみ を 175%, 250%, 300%に載荷した場合の XY 平面の静水 圧応力分布を示したものである. 圧縮 6MPa を載荷した 場合と同様に図-13 にゴム支承の上部プレート付近にお ける応力を、図-14 にゴム支承中央部の応力をそれぞれ 示したものである.まず、上部断面においては、図-13 より、せん断ひずんみが大きくなるにつれて引張領域が 全体的に広がっていく傾向を示すが、せん断ひずみ

(b) せん断ひずみ 250%

(a) せん断ひずみ 175%

(c) せん断ひずみ 300%

図-11 上部断面の静水圧応力(軸応力圧縮 6MPa)

(a) せん断ひずみ 175%

(b) せん断ひずみ 250%

(c) せん断ひずみ 300%

図-12 中央断面の静水圧応力の比較(軸応力圧縮 6MPa)

(a) せん断ひずみ 175%

(b) せん断ひずみ 250%

(c) せん断ひずみ 300%

図-13 上部断面の静水圧応力の比較(軸応力引張 2MPa)

250%を超えると最大引張応力が側面側に集中することがわかった.一方,中央断面においては,図-14より,上部断面と同様にせん断ひずみが大きくなるにつれて引張領域が全体的に広がっていく傾向を示すが,最大引張応力が中央部に集中することがわかった.

以上の結果より、ゴム材料が引張に弱いことに着眼し てゴム支承内部で引張領域が集中する箇所を整理してみ ると、軸応力にかかわらず中央部より上部断面の側面部 において引張領域が多く分布していることがわかった. ゴム支承が地震時軸応力と純せん断を受けると想定する と、中央部より上部もしくは下部の側面部が脆弱になる と考えられる.

(3) 内部鋼板の局部応力状態評価

実験では、軸応力として引張 2MPa とし、せん断ひず みを 300%載荷した際にゴム支承の側面側において内部 鋼板が変形しており⁴,軸応力を引張 2MPa,せん断ひ ずみを 300%を与えた解析結果を基に内部鋼板の応力調 査を行った.図-15 に軸応力を引張 2MPa,せん断ひず みを 300%を与えたときの内部鋼板のミーゼス応力を示 す.内部鋼板においてもせん断ひずみが大きくなると側 面側に応力が大きくなることが確認された.また、その 最大応力が発生する箇所は側面端部より 8cm~10cm ほ ど内部に入ったところで確認されており、写真-1 に示 す鋼板の変形位置に近いことがわかった.

また,解析における最大応力は 147.5MPa と内部鋼板 に用いられた SS400 鋼材の降伏点よりは低く評価された. 実験時に内部鋼板の応力を調査していないため,正確な 比較評価はできないが,写真-1 に示すせん断載荷直後 の変状から考えてみると,解析での応力が多少なり低く 評価されている可能性があると考えられる.内部鋼板の メッシュ分割や,解析では被服ゴムをモデル化していな いため,側面部の境界条件が実験供試体と異なっている ことなどが影響していると考えられる.

4. まとめ

本検討では、筆者らが過去に実施した軸応力をパラメ ータとしたゴム支承のせん断特性確認実験に対し、3次 元有限要素解析を行った.本解析検討により、実験結果 の再現性を調査するとともに、軸応力の変化に伴うゴム 支承内部の局部応力変化について分析した.本検討によ り得られた知見を以下に述べる.

(1) 実験結果に対する再現性

実験と解析で得られたゴム支承の水平荷重-水平変位 の履歴を比較したところ、ハードニング領域において両

図-14 中央断面の静水圧応力の比較(軸応力引張 2MPa)

図-15 内部鋼板の応力状態(軸応力引張 2MPa, せん断ひ ずみ 300%))

者の履歴形状に乖離があるものの、切片荷重、最大荷重、 履歴吸収エネルギーに関しては両者近似する結果となっ た.ハードニング領域における再現性を向上するために は、今後実験で用いた材料に近いひずみエネルギー関数 を用いて検討する必要がある.

(2) ゴム支承の局部応力状態評価

本解析検討より、せん断ひずみの変化によってゴム支 承の内部応力が大きく変化していくことがわかった.特 に軸応力として引張応力を受ける場合には、せん断ひず みが大きくなるにつれて引張応力が増大し、上下層の端 部において引張応力を厳しく受けることが考えられる.

謝辞:本研究は JSPS 科研費 15K18107 の助成を受けたものです.また、本解析検討を遂行するにあたり、(株) 構造計画研究所の秦逸平氏より多大な助言を頂きました. ここに感謝の意を表します.

参考文献

1) 兵庫県南部地震道路橋震災対策委員会:兵庫県南部 地震における道路橋の被災に関する調査報告書, 1995.

- 2) (社)日本道路協会:道路橋支承便覧, 2004.
- 3) 崔準祜,原暢彦,今井隆,植田健介,成炫禹:軸応 力をパラメータとした積層ゴム支承のせん断特性確 認実験,土木学会第19回性能に基づく橋梁等の耐 震設計に関するシンポジウム,pp.295-300,2016.
- 4) 崔準祜,原暢彦,今井隆,植田健介,成炫禹:軸応 力をパラメータとした積層ゴム支承のせん断特性確 認実験,第36回土木学会地震工学研究発表会,CD-ROM Paper No.947,2016.
- 5) 日本工業標準調査会:道路橋免震用ゴム支承に用い る積層ゴム試験方法,JISK 6411,2012.
- Ogden, R.W., Proc.Roy.Soc.London, A326, pp.565-584, 1972.
- 7) 特定非営利活動法人非線形 CAE 協会ホームページ: http://www.jancae.org/cgi-bin/gatex/annex2006DB/gatex.cgi
- Holzapfel, G. A., Int.J.Num. Methods Eng., 39, pp.3903-3926, 1996.

FF ANALYSES OF EXPERIMENTS FOR SHEAR PROPERTIES OF RUBBER BEARINGS WITH AXIAL STRESS PARAMETERS AND EVALUATION OF LOCAL INTERNAL STRESS OF RUBBER BEARINGS

Joon-Ho CHOI, Hyunwoo SUNG, Nobuhiko HARA, Takashi IMAI and Kensuke UEDA

Couple of rubber bearings on highway bridges were damaged by 2011 Tohoku Pacific Offshore Earthquake and 2016 Kumamoto Earthquake. Even though the seismic design method using the rubber bearings has been widely used since 1995 Kobe Earthquake, the vertical and shear properties of the rubber bearing has not been identified due to lack of related experimental studies. In our past study, in order to investigate the shear behavior and shear properties of Rubber Bearings (RB) subjected to tensile force, cyclic loading tests using 4 test specimens of RB were conducted. Here in, in order to evaluate the reproducibility of the past experiments by analyses, FE analyses considered the hyperelastic and viscoelasticity properties of a rubber bearing were conducted. Furthermore, the internal stress of RB affected to external axial forces chanages were investigated.