
 1

 
EFFECTS OF SOIL SPATIAL VARIABILITY ON 

LIQUEFACTION BEHAVIOR OF HORIZONTALLY 
LAYERED GROUND 

 
 

Vargas Tapia Ruben Rodrigo1, Kyohei UEDA2 and Susumu IAI3 
 

1Research student, Disaster Prevention Research Institutte, Kyoto University 
 (Gokasho, Uji, Kyoto 611-0011, Japan) 

E-mail: vargas.rodrigo.35m@st.kyoto-u.ac.jp 
2Member of JSCE, Assistant Professor, Disaster Prevention Research Institutte, Kyoto University 

 (Gokasho, Uji, Kyoto 611-0011, Japan) 
E-mail: ueda.kyohei.2v@kyoto-u.ac.jp 

3Member of JSCE, Professor, Disaster Prevention Research Institute, Kyoto University 
(Gokasho, Uji, Kyoto 611-0011, Japan) 
E-mail: iai.susumu.6x@kyoto-u.ac.jp 

 
 

Effective stress analyses based on the finite element method are often used as a reliable tool to predict 
liquefaction occurrence in soil-structure systems during earthquakes. In the analyses, the soil properties are 
typically specified by using a deterministic model although they intrinsically have spatial variability even 
in the case of horizontally layered ground. In this study, nonlinear finite element analyses are performed to 
investigate the effects of soil heterogeneity on the liquefaction behavior of stochastically heterogeneous 
soil deposits subjected to seismic loading through a Monte Carlo simulation approach. A series of analyses 
has revealed that the heterogeneity of the shear wave velocity (or initial shear modulus) has no significant 
effect on the distribution of the computed excess pore water pressure (EPWP), while the maximum value of 
EPWP ratio is partially influenced and becomes less by considering the spatial variability in the internal 
friction angle and the N value under the given seismic loading. 
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1. INTRODUCTION 
 

In order to predict the liquefaction potential and 
liquefaction-induced damage to soil-structure sys-
tems during earthquakes, effective stress analyses 
based on the finite element method are often used as a 
reliable tool in seismic design. The analyses require 
accurate modeling of liquefiable ground properties 
(e.g. cyclic shear strength), which greatly affect the 
numerical results. Although the soil properties are 
typically specified by using deterministic (uniform) 
models in the standard design, they intrinsically have 
spatial variability even in the case of horizontally 
layered ground. In addition, the heterogeneity of soil 
properties has been proven to affect the dynamic 
behavior of ground and to induce significant varia-
bility in the predicted response for some cases 
(Popescu et al. 1997; 2005, Montgomery and Bou-
langer 2016). However, the effect has not yet been 
fully studied in a quantitative way. 

In this study, two-dimensional nonlinear finite 

element analyses are carried out to investigate the 
effects of soil heterogeneity on the liquefaction po-
tential and dynamic response of stochastically het-
erogeneous soil deposits subjected to seismic load-
ing. The analyses build on a Monte Carlo simulation 
approach following Popescu et al. (1997). The ma-
terial nonlinearity of soils is expressed by using a 
strain space multiple mechanism model (Iai et al. 
1992) proposed by one of the authors. Numerical 
simulation procedures using the model in the finite 
element program FLIP (Iai et al. 1992; 1998) are 
described. In the simulation, the spatial distribution 
of the SPT N1 value, the shear wave velocity (i.e. 
shear modulus) and the internal friction angles in the 
liquefiable deposits are separately taken into account 
by using sample functions of discretized triangular 
and exponential stochastic fields (Kanda and Mo-
tosaka 1995) in addition to Gaussian one. Simulation 
results for stochastic models are compared to those 
for deterministic models by focusing on ground lat-
eral displacement and excess pore water pressure 
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(EPWP) build-up. 
 
 
2. MODELING OF SPATIAL VARIABILI
TY OF SOIL PROPERTIES 
 

The SPT N1 value, shear wave velocity (Vs), and 
internal friction angle (f) are separately considered 
as probabilistic variables in this study. That is to say, 
only one property among them expresses the varia-
bility with the other two properties kept constant for 
simplicity, although correlation between shear wave 
velocity and friction angle has been pointed out (e.g. 
Andrus and Stokoe 2000). However, when the SPT 
N1 value is considered to be a stochastic field, the 
other two properties automatically vary following a 
simplified method for parameter identification of 
FLIP program (Morita et al. 1997, Mikami et al. 
2011) as described later. 

For the each soil property, a one-variate, 
two-dimensional (1V-2D) stochastic field 
(Vanmarcke 1984), which produces the probability 
and cumulative distribution functions (PDF, CDF), is 
required in order to perform stochastic analyses. In 
this study, nine sample functions of the 1V-2D field 
are generated for the Monte Carlo simulation by 
using sample functions of discretized Gaussian, tri-
angular, and exponential stochastic fields. In other 
words, each type of stochastic fields creates three 
possible realizations for the each soil property over 
the analysis domain. 

Spectral density functions of the two-dimensional 
stochastic fields are given as shown in Table 1 by 
applying the following Wiener-Khinchin theorem 
(Kanda and Motosaka 1995) 
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where R(x, y) is the correlation function (CF) of the 
stochastic fields, x (=x1-x2) and y (=y1-y2) is the 
distance between two points in x and y direction, 
respectively, and =(x, y)T is a wave number vec-
tor. In Table1,  denotes the standard deviation of 
variational parameters, and dx, dy is the correlation 
distance in x and y direction, respectively. By fol-
lowing Nadim et al. (2005), dx=10.0 m and dy=1.0 m 
were used in this study. 

According to Shinozuka and Deodatis (1996), a 
random process following the spectral density func-
tions are derived, by assuming the mean value is 
zero, as follows: 
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where kl is an independent random phase angle 
distributed with uniformity between 0 and 2. Kx and 
Ky is the division number for calculating wave 
number in x and y direction, respectively, and may be 
different from the division number of finite element 
mesh, and =(x, y)T is an incremental vector of 
wave number. In this study, Kx=Ky=1000 
andx=y=0.01 were used. Finally, the spatial 
distribution F of stochastic variables representing the 
heterogeneity of soil properties is given as follows: 
 
Table 1 Spectral density functions of two-dimensional stochastic 

fields. 

Type Spectral density function  ,x yS    

Gaussian 

22
2 2 2exp

4 4 4
x y yx

x y

d d dd
  



            
 

Triangular 
   2 2

2
2 2 2

4sin / 2 sin / 2x x y y

x y x y

d d

d d

 


  
  

Exponential  
2

2 2 2 2 2

221

1 12

yx

x x y y

dd

d d


 

  
        

 

  

 
(a) Gaussian 

 

 
(b) Triangular 

 

 

 
(c) Exponential 

Figure 1 Spatial distribution of SPT N1 value. 
 
 

3. NUMERICAL SIMULATION PROCEDU
RE 
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(a) Gaussian 
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(b) Triangular 
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(c) Exponential 

Figure 2 Cumulative distribution function for N1. 
 

Two dimensional nonlinear seismic response 
analyses were performed on a liquefiable sand de-
posit shown in Fig. 4 using a finite element program 
for soil-structure systems (FLIP) (Iai et al. 1992; 
1998). The finite element mesh has 64 rows with 128 
columns, for a total of 16,384 elements (including 
8,192 pore water elements). The liquefiable deposit, 
consisting of clean sand, was modeled using a strain 
space multiple mechanism model, called multi-spring 
model (Iai et al. 1992). Model parameters (e.g. initial 
shear modulus (Gma=Vs

2), internal friction angle 
(f)), including dilatancy parameters, were deter-
mined by a simplified method for parameter identi-
fication of FLIP program (Morita et al. 1997, Mikami 
et al. 2011) based on the SPT N value (=5 in this 
study) with effective overburden pressure (=98 kPa) 
and fines content (=0%). Simulated liquefaction re-
sistance curve is shown in Fig. 5 with the cases of 
N=10 and 15. 

The boundary conditions for displacement were 
selected to replicate horizontally layered ground. The 
displacement degrees of freedom on the left side 
boundary were slaved to move together with their 
counterparts on the right boundary. Rigid base 
boundaries were used at the bottom of the model,  
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(a) Gaussian 
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(b) Triangular 
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(c) Exponential 

Figure 3 Correlation function for N1. 
 
with the input motion shown in Fig. 6. The ground 
water table was set at the ground surface. In the 
simulation, stochastic variability for the SPT N1 
value, the shear wave velocity (Vs), and the internal 
friction angle (f) described in the previous section 
was separately taken into account to investigate the 
effects of soil heterogeneity on the dynamic response 
of stochastically heterogeneous liquefiable deposits 
subjected to seismic loading. The simulation was 
carried out under undrained condition, and thus the 
ground settlement after shaking is out of scope in this 
study. 
 

16 m

32 m

Liquefiable sand

MPC for translational degrees of freedom 
(lateral and vertical) 

 
Figure 4 Finite element mesh of horizontally layered liquefiable 

ground. 
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Figure 5 Liquefaction resistance curve. 
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Figure 6 Input ground motion. 

 
 
4. ANALYSIS RESULTS 
 
(1) Maximum Lateral Displacement 

The variations of maximum lateral displacement at 
the right (or left) boundary with depth are shown in 
Fig. 7 with the results of three uniform (i.e. deter-
ministic) models. For each stochastic model, an av-
eraged profile over three realizations is depicted. 
When the SPT N1 value is treated as a stochastic 
variable (see Figs. 1 through 3), a similar profile is 
obtained regardless of the type of stochastic fields in 
Fig. 7(a). The surface displacements for these sto-
chastic realizations are less than those for uniform 
models with N1 value between the 20th and 80th 
percentiles. This may be because a domain-averaged 
EPWP ratio in the stochastic models is less than that 
in the deterministic models as shown in Fig. 9(a) later 
and the difference affects the shear strain develop-
ment. 

When the shear wave velocity and internal friction 
angle are treated as a stochastic variable, the differ-
ence in the type of stochastic fields has no significant 
effect on the displacement profiles (Fig. 7(b)(c)) as is 
the case with the SPT N1 value. Figure 7(c) indicates 
that The surface displacements for the stochastic 
realizations are closest to that for a uniform model 
with an internal friction angle of the 20th percentile 
(f=31.2 degree), but the precise representative f  
value is currently hard to be specified because 
whether less percentile values give a closer profile to 
the stochastic cases was not tested. The less surface 
displacements in the stochastic models may be due to 
the difference in the averaged EPWP ratio between 
the deterministic and stochastic models as shown in 
Fig. 9(c). When the shear wave velocity is variable,  
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(a) The case of variable SPT N1 value 
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(b) The case of variable shear wave velocity 
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(c) The case of variable internal friction angle 

Figure 7 Maximum lateral displacement profiles. 
the 50th percentile is closest to the stochastic models 
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in Fig. 7(b) focusing on the ground surface response. 
However, the discrepancy among the three uniform 
models is not so large. Thus, the heterogeneity of 
shear wave velocity (or initial shear modulus) is 
considered to have no significant effect on lateral 
displacement profiles. 
 
(2) Excess Pore Water Pressure Ratio 

Time history of simulated EPWP ratio is shown in 
Figs. 8 and 9. Figure 8 shows the largest value (Pmax) 
among 8,192 soil elements while Fig. 9 does the 
domain-averaged value (Pave) over the elements. The 
difference between Pmax and Pave is considered to 
indicate the magnitude in the simulated EPWP vari-
ation in location. When the SPT N1 value is treated as 
a stochastic variable, a similar response is observed 
regardless of the type of stochastic fields in Figs. 8(a) 
and 9(a) as is the case with the lateral displacement 
profiles. Pmax eventually results in the same value 
(=0.97) after shaking between the uniform and sto-
chastic models, although the build-up process is 
different during shaking (Fig. 8(a)). In contrast, a 
final value of Pave in the stochastic models is about 
0.1 smaller than that in the uniform models between 
the 20th and 80th percentiles (Fig. 9(a)). 

The comparison of the time history of EPWP ratio 
for stochastic and deterministic models in Figs. 8(a) 
and 9(a) with the lateral displacement profiles in Fig. 
7 illustrate how the representative N1 value depends 
on the specific response measure and the timing of 
concern. Different from the value for the lateral dis-
placement profiles, the representative N1 value is 
almost the same as the mean N1 value (i.e. the 50th 
percentile) during and after shaking if Pmax is the 
response measure of concern. In contrast, the repre-
sentative N1 value varies depending on the timing if 
Pave is the response measure of concern. After 3 s, we 
cannot find the representative value between the 20th 
and 80th percentiles. 

When the shear wave velocity is treated as a sto-
chastic variable, no significant difference is recog-
nized among the uniform and stochastic models for 
both Pmax and Pave shown in Figs. 8(b) and 9(b), re-
spectively, as is the case with the lateral displacement 
profiles (Fig. 7(b)). This is because the variation of 
shear wave velocity (or Initial shear modulus) may 
only affect linear elastic behavior within a small 
strain range, whereas a strength parameter (e.g. in-
ternal friction angle, undrained shear strength at 
steady state) is thought to exercise a dominant in-
fluence on nonlinear behavior such as liquefaction. 

Figures 8(c) and 9(c) show the time history of 
EPWP ratio obtained from stochastic simulations in 
which the variability of internal friction angle is 
taken into account. The overall trend is similar to the 

case of SPT N1 value being a stochastic variable 
(Figs. 8(a) and 9(a)). As described in a former para-
graph, the representative f value depends on the 
specific response measure and the timing of concern. 
The f value is between the 20th and 50th percentiles 
during shaking and almost the same as the mean N1 
value after shaking if Pmax is the response measure of 
concern. In contrast, no difference is observed before 
3 s among the three uniform and three stochastic 
models when Pave is the response measure of concern. 
The difference of the uniform and stochastic models 
becomes larger and larger between 3 and 5 s, and is 
kept constant after 5 s up to the end of shaking. The 
final difference of Pave is between 0.15 and 0.2, which 
are larger than that in the case of SPT N1 value  
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(a) The case of variable SPT N1 value 
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(b) The case of variable shear wave velocity 
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(c) The case of variable internal friction angle 

Figure 8 Time history of maximum EPWP ratio. 
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(a) The case of variable SPT N1 value 
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(b) The case of variable shear wave velocity 
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(c) The case of variable internal friction angle 

Figure 9 Time history of averaged EPWP ratio. 
 
being a stochastic variable (Fig. 9(a)). 

Figure 10 shows some examples of the distribution 
of EPWP ratio after shaking when the SPT N1 value 
is treated as a stochastic variable. Each figure cor-
responds to the counterpart in Fig. 1 (e.g. the left 
figure in Fig. 10(a) was obtained using the spatial 
distribution located on the left side of Fig. 1(a)). 
Whereas uniform distribution of EPWP ratio (=0.97) 
is obtained except for the bottom layer of the ana-
lytical domain in the deterministic model, the con-
trast between looser (i.e. higher EPWP ratio) and 
denser zones (i.e. lower EPWP ratio) is clearly rec-
ognized in the stochastic models. The difference 
among the three types of stochastic fields in Fig. 10 
has a superficial similarity to that of the spatial dis-
tribution of SPT N1 value shown in Fig. 1. Therefore, 
the distribution of EPWP ratio after shaking is con-
sidered to be affected by the spatial variability of 

input soil parameters. The reason EPWP is locally 
hard to build up in the case of stochastic models may 
be that liquefaction of locally looser zones (see Fig. 
1) decreases the amount of shear stress (or accelera-
tion) on surrounding denser zones essentially having 
higher resistance to liquefaction. This interpretation 
may hold only in the given condition (e.g. soil 
properties such as SPT N1 value, model geometry, 
input motions), and further studies are required in 
order to clarify whether deterministic models are 
more prone to liquefaction than stochastic ones under 
other conditions. 
 

 
(a) Stochastic model: Gaussian 

 

 
(b) Stochastic model: Triangular 

 

 
(c) Stochastic model: Exponential 

 

 
(d) Deterministic model (N1=5) 

Figure 10 Distribution of EPWP ratio after shaking (the case of 
variable SPT N1 value). 

 
 
5. CONCLUSIONS 
 

The effects of soil heterogeneity on the liquefac-
tion potential and dynamic response of stochastically 
heterogeneous soil deposits was examined using 
two-dimensional nonlinear seismic response anal-
yses. In order to consider the spatial variability of soil 
properties, three types of sample functions (i.e. 
Gaussian, triangular, and exponential) of discretized 
stochastic fields were used for the spatial distribution 
of the SPT N1 value, shear wave velocity, and inter-
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nal friction angle in the liquefiable deposits. 
A series of the analyses has revealed that the het-

erogeneity of shear modulus has no significant effect 
on the maximum lateral displacement profiles and the 
distribution of excess pore water pressure ratio if 
other parameters remain constant. In contrast, the 
results were influenced by the spatial variability in 
SPT N value and internal friction angle. The average 
value of excess pore water pressure ratio for the 
stochastic models became less than that for the de-
terministic models. In particular, the heterogeneity of 
internal friction angle has been recognized to reduce 
the average value to about 80 % of that in the case of 
homogeneity. This is because the variation of shear 
wave velocity (or Initial shear modulus) may only 
affect linear elastic behavior, whereas a strength 
parameter (e.g. internal friction angle) is considered 
to exercise a dominant influence on nonlinear be-
havior such as liquefaction. 

Comparison between the stochastic and deter-
ministic models has illustrated how the representa-
tive value depends on the specific response measure 
and the timing of concern. When the SPT N1 value 
and the internal friction angle were treated as a sto-
chastic variable for loose sandy ground, the lateral 
displacements for the stochastic realizations were out 
of the range between the 20th and 80th percentiles. 
With regard to the time history of excess pore water 
pressure ratio, the representative N1 value was almost 
the same as a mean N1 value (i.e. the 50th percentile) 
if the maximum value of excess pore water pressure 
ratio during and after shaking was the response 
measure of concern. In contrast, the representative 
value has been confirmed to vary depending on the 
timing if the average value of excess pore water 
pressure ratio is the response measure of concern. 

The consequence obtained from this study may 
hold only in the given analytical conditions (e.g. soil 
properties such as SPT N1 value, model geometry, 
input motions). Thus, further studies are required in 
order to clarify whether stochastic models are more 
prone to liquefaction than deterministic ones under 
other conditions. 
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