2016年熊本地震による横変位拘束構造の 損傷メカニズム推定

高橋 良和¹ · Gong Yucheng²

 ¹正会員 京都大学教授 工学研究科社会基盤工学専攻(〒615-8540京都市西京区京都大学桂) E-mail: takahashi.yoshikazu.4v@kyoto-u.ac.jp
²非会員 工修 マツダ株式会社 R&D PT開発本部(〒730-8670広島県安芸郡府中町3-1)

2016年熊本地震は、震度7を観測する大きな地震が立て続けに発生し、多数の橋梁被害が発生したが、 多数の落橋防止構造が損傷したことに強い関心を示すべきである.落橋防止システムは落橋を防止するための最終手段であり、支承部が破壊した後でも落橋防止の機能が確実に発揮されるよう設置される.しかしながら、設計では水平耐力が規定されているものの、落橋防止装置の望ましい損傷形態が示されておらず、熊本地震でも様々な性状の損傷が発生している.本論は、まず橋梁の横変位拘束構造の被災状況を整理し、設計に対する課題を整理するとともに、また、府領第一橋に対して地震応答解析を行い、横変位拘 束構造に作用した衝突力を推定するとともに、その被災メカニズムの検討を通じ、横変位拘束構造の設計における改善策について検討するものである.

Key Words : Kumamoto Earthquake, bridge, damage, Lateral displacement confining device

1. はじめに

2016年4月14日21時26分に熊本県熊本地方を震源とす るマグニチュード6.5の地震が発生し、熊本県益城町に おいて震度7を観測した.これにより大きな被害が発生 し、平成28年熊本地震の本震と考えられたが、4月16日 1時25分に再び熊本県熊本地方を震源とするマグニチュ ード7.3の地震が発生し、被害が拡大した.以降、4月14 日の地震が熊本地震の前震、4月16日の地震が本震と呼 ばれている.

本地震により,多数の橋梁に被害が発生した.東日 本大震災に引き続き,比較的新しい耐震技術であるゴ ム支承の破断など重大な損傷が確認されているが,多 数の落橋防止構造が損傷したことに強い関心を示すべ きである.二度の大きな地震が連続して発生した熊本 地震は,本震で落橋防止構造を有する府領第一橋が落 橋するなど,横変位拘束構造を含む落橋防止構造が, 地震時あるいは地震後にどのような性能を有するべき か,大きな課題をつきつけた.本研究では,まず橋梁 の横変位拘束構造の被災状況を整理する.次に横変位 拘束構造の設計照査法を示し,被災状況からみる課題 を整理する.また,府領第一橋に対して地震応答解析 を行い,横変位拘束構造に作用した衝突力を推定する とともに,その被災メカニズムの検討を通じ,横変位 拘束構造の設計における改善策について検討する.

2. 道路橋示方書における落橋防止構造

横変位拘束構造は落橋防止構造の一種であり,最初 の規定は昭和46年の道路橋耐震設計指針¹⁰に記載されて いる.当時は,設置規定はあるものの設計荷重の規定 はなかった.昭和53年の宮城県地震において錦桜橋が 落橋し,この被災を踏まえて昭和55年の道路橋示方書V 耐震設計編²⁰では落橋防止構造の設計水平耐力を設計地 震力の2倍に設定された.平成7年兵庫県南部地震によ り甚大な落橋被害が発生したことを受け,同年の兵庫 県南部地震により被災した道路橋の復旧に係る仕様³⁰で は,落橋防止構造の強度強化や,複数の落橋防止構造 を設置するなどの指示が与えられた.平成8年の道路橋 示方書V耐震設計編⁴⁰では,落橋防止構造と横変位拘束 構造が分けて扱われ,横変位拘束構造の設計水平耐力 は設計地震力の3倍に設定された.

平成24年道路橋示方書V耐震設計編⁵では、支承部が 破壊した時に、落橋防止システムは以下の三つの要素 により構成、抵抗する.

(1) 桁かかり長

上部構造が下部構造の頂部から逸脱することを防止

(i) 前震後(4/15撮影)

影) (ii) 本震後(4/16 撮影) 図-1 木山川橋における横変位拘束構造の被害

する機能

(2) 落橋防止構造

橋軸方向の上下部構造間の相対変位が桁かかり長を 超えないようにする機能

(3) 横変位拘束構造

橋の構造的要因等によって上部構造が橋軸直角方向 に変位することを拘束する機能

横変位拘束構造は橋台部が破壊すると用をなさない ため、平成24年道路橋示方書では、横変位拘束構造の 設計水平耐力は、橋台の橋軸直角方向の水平耐力と一 致させることを基本とし、最大で設計地震力の3倍とす るよう変更された.また、その設置すべき位置の合理 化も図られた.

落橋防止システム設計の基本の考え方[®]によれば、地 震時に橋梁が複雑な応答により支承部が破壊されても、 上部構造が落下することを防ぐように配慮しなければ ならない.したがって、支承部が破壊された状態を前 提として、上部構造落下の状況を想定し、それを防止 するための対策に基づき、落橋防止システムの設計が 行われる.また、落橋防止システムは落橋を防止する ための最終手段であり、支承部が破壊した後でも落橋 防止の機能が確実に発揮されるよう、設置しなければ ならない.

3. 熊本地震による横変位拘束構造の被害

(1) 木山川橋

木山川橋は九州自動車道に架かる1975年竣工の鋼連 続橋である.2002年から2004年にかけて耐震補強がなさ れ,木山川を跨ぐ区間において,橋軸直角方向にはコ ンクリートブロックによる横変位拘束構造,橋軸方向 には移動制限装置が設置された.横変位拘束構造は, 最外縁支承部より内側に設置されている. 前震では鋼製ピン支承部に大きな損傷は発生してい なかったが、本震によって支承部が破壊し、横変位拘 束構造に衝突した⁷. これにより桁移動は拘束されたも のの、横変位拘束構造の上部が水平方向に破壊された (図-1).

(2) 桑鶴大橋

桑鶴大橋は熊本県道28号に架かる1997年に竣工した2 径間連続鋼斜張橋である.橋台部にコンクリートブロ ックの横変位拘束構造が支承部より内側に設置されて いる.

地震により、鋼製支承部の上沓と箱桁部の取付部が 外れ、上部構造ではPCケーブルのソケットの緩みと抜 けが確認され、桁全体が橋軸直角方向に移動した.橋 台部では桁と横変位拘束構造が衝突し、大きな斜めひ び割れを伴ったせん断破壊をした(図-2)が、斜張橋 ケーブルにより桁端部が上方に持ち上げられたため、 地震後には桁は横変位拘束構造よりも上部に位置して いた.

(3) 扇の坂橋

扇の坂橋は熊本県道28号に架かる2000年に竣工した 積層ゴム支承を有する5径間連続橋である.橋台部に, コンクリートブロックの横変位拘束構造が,最外縁の 支承部より内側に設置されている.

地震により、桁の南詰は西側、東詰は東側に変位し、 桁全体が時計回りに回転した。桁の伸縮装置は桁が大 きく変位した位置で噛み合い、ゴム支承は残留変位し たまま固定化されていた。横変位拘束構造は桁と衝突 し、大きな斜めひび割れを伴ったせん断破壊をした (図-3).

(4) 南阿蘇橋

南阿蘇橋は国道325号に架かる上路式2ヒンジ鋼アー

(i) 橋台部全景 (ii) 横変位拘束構造の破壊 図-2 桑鶴大橋における横変位拘束構造の被害

(i) 橋台部全景

(ii) 横変位拘束構造の破壊 図-3 扇の坂橋における横変位拘束構造の被害

(i) A1 橋台(西側)

(iii) A2 橋台(西側)

(iv) A2 橋台(東側) 図-4 南阿蘇橋における横変位拘束構造の被害

チ橋である. 1971年に竣工し, 2009年に耐震補強工事 が実施され、橋軸方向には粘性ダンパー、橋軸直角方 向には座屈拘束ブレースが設置された. 橋軸方向ダン パーは桁と橋台部に取り付けられたコンクリートブロ ックに接続されているが、そのコンクリートブロック は横変位拘束構造も兼ねており、最外縁の支承部より

も外側に位置する.

地震後,4つのダンパー取り付け部コンクリートブロ ックと橋台部の接合部が損傷した(図-4).斜めひび 割れの方向から、桁が横変位拘束構造に衝突したよう に思われるものの, 支承部に明確な損傷は見受けられ ず,その被害メカニズムは不明である.最も深刻であ

(i) ダンパー側

図-6 府領第一橋の前震後の桁の橋軸直角方向変位 (NEXCO西日本提供写真に加筆)

ったのはA1橋台西側のダンパー取り付け部(図-5)で あり、コンクリートブロックの根元が橋台から完全に 分離している.横変位拘束構造そのものには破壊が見 受けられないが、横変位拘束構造の定着部が破壊し、 アンカー筋の多くは接着剤が付着したままの状態であ った.破断面の橋台側には鉛直方向にアンカー筋の痕 跡があり、最も内側のアンカー筋位置より外側が押し 出されたことを意味している.同じくA1橋台にある東 側のダンパー取り付け部も横変位拘束構造の基部から 橋台部に大きな斜めひび割れが発生し、外側に傾いて いた.亀裂の中にアンカー筋と補強鉄筋が見え、アン カー筋の周囲の接着剤も確認できる.A2橋台の被害は 南より小さいが、A1橋台同様、両側の横変位拘束構造 の基部から橋台部に斜めひび割れが発生している.

(5) 府領第一橋

府領第一橋は1972年に竣工した九州自動車道を跨ぐ PC3径間連続中空床版をロッキング橋脚で支持する跨道 橋である.2002年に耐震補強工事が実施され,桁かか り長が拡幅されるとともに,斜角を有する側のA1橋台 部に横変位拘束構造が設置された.コンクリートブロ ックの横変位拘束構造は最外縁の支承部より外側に設置されている.

前震後,橋軸直角方向に約16cmの横ずれが発生して いることが確認されており,橋台東側の横変位拘束構 造が外側に傾き,橋台にもひび割れが発生しているよ うに見える(図-6).そのため,横変位拘束構造は前 震によってある程度機能を低下していると考えられる が,落橋には至っていない.

本震により、本橋は落橋した(図-7). つまり、前 震で機能が低下したと考えられる横変位拘束構造が落 橋を防止できなかった.横変位拘束構造が落下し(図-8)、桁の橋軸直角方向の変形を制限することができな くなり、ロッキング橋脚のヒンジ部が外れたため、桁 は水平変位拘束と中間部鉛直支持力を失い、落橋した、 と考えられる.落下した横変位拘束構造を確認すると、 横変位拘束構造自体に大きな損傷は確認されず、図-6 と図-8の橋台部を比較すると分かるように、前震時に 橋台側面に入っているひび割れ部より上部のコンクリ ート部が無くなっており、横変位拘束構造の破壊は定 着部破壊によるものと考えられる.18本のアンカー筋 は曲がっているものの破断しておらず、一部接着剤が

図-7 府領第一橋の本震による落橋(2016/4/16撮影)

(i)横変位拘束構造(ii)橋台側図-8 落下した府領第一橋の横変位拘束構造(2016/4/16 撮影)

(i) 橋台部全景(ii) 横変位拘束構造の破壊図-9 東原橋における横変位拘束構造の被害(NEXCO 西日本提供)

付着したものがあるものの,ほぼ鉄筋むき出しのアン カー筋も少なくない.

(6) 東原橋

東原橋は、PC3径間連続中空床版をロッキング橋脚で 支持する跨道橋である.橋長47.3mのロッキング橋脚を 有する国道57号を跨ぐ九州自動車道の熊本ICランプ橋 であり、1971年に竣工した.1995年に耐震補強が実施さ れ、横変位拘束構造の設置と縁端拡幅がなされている. 横変位拘束構造は最外縁の支承部より外側に設置され ている.

地震により,A2橋台側の2つの横変位拘束構造は、と もに橋台部に大きな斜めひび割れを伴う破壊が生じた. 本震後の被害の状況を図-9に示す.この被害の結果, 上部構造は回転変形し,A2橋台側で約350mmの横変位 が発生,ロッキング橋脚は約4度傾斜した.上部構造の 過大な変形,落橋は免れたものの,横変位拘束構造が 大きく損傷するなど,軽微な損傷に留まらなかった.

4. 横変位拘束構造の一般的な設計照査法

(1) 概要

道路橋示方書では、横変位拘束構造に対する設計荷 重、すなわち設計水平耐力が記載されているものの、 その構造詳細や照査法は記載されていない.筆者らの ヒアリングによる横変位拘束構造の一般的な設計照査 法は、構造基部における曲げ耐力およびせん断耐力の 2点である.

(2) 曲げ耐力照査

横変位拘束構造に設計水平耐力と作用高さを乗じて 得られる設計断面曲げモーメントを算出し、コンクリ ートと鉄筋の負担応力度が許容応力度を上回らないこ とを照査する.

(3) せん断耐力照査

耐震補強で落橋防止構造を設置する場合には,設置 スペースに制約がある場合が多い.横変位拘束構造の 設置面積より,コンクリートのせん断応力度に基づく 負担せん断力を算出し,横変位拘束構造の設計水平耐 力から差し引いた分をアンカー筋のせん断力で負担す ることが基本である.鉄筋の許容せん断応力度に基づ き,アンカー筋の断面積,本数が決定される.

5. 被災状況から見る設計照査法の課題

熊本地震による横変位拘束構造の被災は概して二つ の破壊性状に分けられる.

一つは木山川橋や桑鶴大橋の様な,横変位拘束構造 が一支承線の内側に設置され,横変位拘束構造がせん 断破壊で被災し,変位拘束機能を失ったケース,もう 一つは府領第一橋と南阿蘇橋の様な,横変位拘束構造 が一支承線の外側に設置され,横変位拘束構造自体の 損傷はほとんど見られなかったものの,取り付け部の 橋台が破壊され,変位拘束機能を失ったケースである.

前者の破壊性状の方が,落橋防止構造そのものが終 局状態に至るまで抵抗したことを意味していることか ら望ましいと考えられるものの,設計では基部が一番 の弱点となることを想定しており,基部より上の構造 が破壊することは想定していない.現状の設計で許容 応力度設計法を適用している以上,基部の実耐力は設 計水平耐力以上であることは確実なものの,その余裕 度を確認しておらず,設計地震力より大きい力が作用 したときの挙動は不定である.ただし,橋を落橋から 守るための最終手段として設置される横変位拘束構造 は,そもそも設計上の想定と異なる事象に対するフェ ールセーフであることから,設計地震力より大きな作 用とはいえ,その挙動が不定,あるいは,せん断破壊 のように機能を急激に失う状態になることが許される かどうか,議論が必要である.熊本地震のように大き な地震が連続して発生する場合があること,またフェ ールセーフとしての位置づけを考えると,設計耐力よ り大きな外力を受けても,脆性的な破壊をするのでは なく,本震後の余震等にも機能を発揮すべきだと考え る.

後者の破壊性状は、横変位拘束構造自体の強度が十 分大きい、あるいは相対的に取付部が弱い、という状 況を示している. 落橋防止構造の設計思想から、横変 位拘束構造は破壊されないよう十分強く作るべきと考 えることは自然であり、その意味で、必ずしもこの破 壊性状が不適切とはいえない. ただし, 設計で剛と仮 定している取付部の強度が十分であったかどうかは検 証が必要である.取付部破壊が生じた橋梁は、いずれ も横変位拘束構造が桁部より外側に配置されていた. つまり、橋台端部に設置されることから、橋座部の押 し抜きせん断のような破壊性状を示す可能性は高い. また, 耐震補強として既存の橋台部に設置する場合, アンカー筋のための削孔をする必要があること、また 多くの本数のアンカー筋が埋め込まれている取付部の コンクリートのせん断抵抗が期待通りであるかどうか, 検証することが重要である.

府領第一橋を対象とした横変位拘束構造の損 傷メカニズムの推定

(1) 目的

府領第一橋は前震では横変位拘束構造は機能したと 考えられる一方,最終的には落橋防止構造が設置され ていたにも関わらず落橋を防ぐことができなかった. 府領第一橋の落橋については,ロッキング橋脚を有す る特殊構造であり,大きな変形が発生した場合に不安 定となる構造であったことが主要因のように議論され ることが多いが,そもそもそのような大きな変形が生 じないように横変位拘束構造が設置されていたのであ り,本橋の落橋の主要因は横変位拘束構造の損傷であ ると考えるべきである.本章では,府領第一橋に対す る地震応答解析を行い,横変位拘束構造への衝突力を 概算するとともに,その破壊性状について,より詳細 に検討する.

(2) 地震応答解析

a) 解析モデル

府領第一橋の一般図と横変位拘束構造の配筋図をそ

脱落

図-12 府領第一橋の解析モデル

れぞれ図-10,図-11に示し、解析モデルを図-12に示す. 本解析は、横変位拘束構造への衝突力を概算すること を目的としていることから、支承は破壊後の状態を想 定し、橋軸直角方向には摩擦力相当のバネでモデル化 している. 桁部は斜角を有するフレーム構造として, 桁部と橋台部との衝突を模擬するため, 衝突バネを設

図-13 府領第一橋の横変位拘束構造と桁との間隙

定し、斜橋の回転挙動も再現できるようにしている. また、ロッキング橋脚はトラス部材としてモデル化し た.

横変位拘束構造は配筋図をもとにファイバーモデル によりモデル化した. 道路橋示方書による設計水平耐 力は2240 kNであるのに対し、4章で示した設計照査法に

よると、本構造はせん断耐力の方が厳しく、コンクリート分担せん断力が約562 kN、アンカー筋分担せん断力が約2025 kNの計2586 kNであり、設計を満足している.

横変位拘束構造と桁との間隔は100 mmであるが,50 mmの緩衝ゴムが設置されている(図-13).このゴムの剛性を複数設定し,解析を実施している.

b) 入力地震動

府領第一橋から約3.5 km離れた位置に御船ICがあり, この料金所において前震と本震が観測されている.気 象庁や防災科学技術研究所などの地震観測点より近い こと,また地盤状況がよく似ていることから,本観測 記録を入力地震動として用いた.前震および本震の加 速度時刻歴波形(NS成分)を図-14に,本震の応答スペク トルを図-15に示す.

c) 前震観測記録を用いた解析結果

被害調査結果では、府領第一橋は前震で既に橋軸直 角方向に16 cm程度移動しており、図-13によると、既に 桁と横変位拘束構造は接触していることになる.前震 観測記録を用いた解析では、支承部が既に破壊してい ることを想定しているため、実際の挙動とは異なる状 況であるが、衝突バネの特性を変化させて行った全ケ ースの中での桁最大応答変位(橋軸直角方向)は70 mm 程度であり、衝突バネには接触しているものの、横変 位拘束構造に達するほどではない結果となった.また、 横変位拘束構造に最も大きな作用力が発生するケース の横変位拘束構造の荷重-変位履歴、衝突力と桁速度の 時刻歴を図-16に示すが、衝突力の値は1310 kN程度であ

り,設計水平耐力2240kNよりも小さい.

e) 本震観測記録を用いた解析結果

本震観測記録を用いた解析結果より,横変位拘束構造の荷重-変位履歴応答より,作用力最小のケースと最大のケースを図-17に示す.緩衝ゴムの設定に大きな影響を受けるものの,最小ケースでも3220 kNの応答が発生し,設計水平耐力2240 kNよりは大きな値を示した.

(3) 考察

解析では、本震では横変位拘束構造の設計水平耐力 よりもはるかに大きな衝突力が発生したと考えらるが、 前震観測記録を用いた結果では、最大でも設計水平耐 力の半分程度の応答に留まった.しかし、被害調査結 果からは前震で既に横変位拘束構造は損傷を受けてい ると予想されるため、まず、横変位拘束構造も支承部 と同様であると考え、橋部の照査を行い、被害メカニ ズムについて検討する.

図-18 橋座部の押し抜きせん断の照査法¹⁰

橋座部の押し抜きせん断に対する照査は、道路橋示 方書IV下部構造編¹⁰に記載されており、最内部のアンカ ーボルト位置より45度の角度でコンクリート部が抵抗 すること(図-18),および補強鉄筋耐力により耐力を 算出している.図-12に示す形状より、コンクリートの 抵抗面積Acを2.2x10⁴ cm²と仮定すると、コンクリートが 負担する耐力は579 kNとなり、補強鉄筋(9@D16)が負担 する耐力203 kNを合わせ、ひび割れ時の水平耐力は782 kNと算出できる.これは設計水平耐力2240 kNよりもは るかに小さく、前震の解析結果作用力最小ケースであ る1310 kNよりも小さいため、前震でも取付部において 損傷が発生したと考えることができる.

中心から側方及び

45 の広がりを考慮した3つの面)

さらに,被害調査結果より,横変位拘束構造が落下 した橋台部の側面と上面を拡大した写真を図-19に示す. 図中に同じ色で表示した鉄筋は二つの視点から見た同 じ鉄筋を表す.横変位拘束構造の破壊形状は一見橋座 部の破壊形状に似ているが,図中に示した鉄筋やコン クリートに残った鉄筋の跡から判断すると,橋台の破 断面の始点は横変位拘束構造の桁側のアンカー筋から ではなく,最も橋台縁側に近いアンカー部で破断し, 押し抜きせん断で仮定している45度ではなく,ほぼ鉛 直に破壊したように見える.破断面の背面側の橋台は かぶりコンクリートが剥がれていたが,それ以外の傷 跡は見当たらない.

横変位拘束構造の平面図より,横変位拘束構造は橋 台の側面の縁端から遠い側に2列(以下,アンカー鉄筋 2と呼ぶ),近い側に1列(以下,アンカー鉄筋1と呼 ぶ),合計3列のアンカー鉄筋を有することが分かる. 被災後の写真(図-20)を見ると,アンカー鉄筋2は根

元がS字のように曲がっており、鉄筋の先はすべて同じ 方向を向いている.アンカー鉄筋1の根元は鉛直上方を 向いており,鉄筋の先は桁の落下の影響を受け,様々 な方向を指している.また、アンカー鉄筋に残ったエ ポキシ樹脂の程度を見ると、アンカー鉄筋1には大量に ついているのの、アンカー鉄筋2には少量だけである. 以上の情報より、アンカー鉄筋1の外側のコンクリート は押し抜きせん断的に破壊し、横変位拘束構造の曲げ (回転)を圧縮側で支えるコンクリートが失われたた め、回転が進行し、アンカー鉄筋2が引き抜かれたと推 測することができる(図-21).アンカー鉄筋1を起点 として押し抜きせん断が発生すると考える場合、コン クリートの抵抗面積はさらに小さなものとなり、耐力 も小さくなる. 古谷ら¹²による接着系の後施工アンカー の引張試験結果では、抜け出したアンカーには接着剤 が残ることが一般であるが、アンカー鉄筋2の接着剤が 残っていないことは、劣化などの原因により、期待さ れた接着機能が発揮されなかった可能性も考えられる.

平面因

7. 横変位拘束構造の設計に対する改善策

熊本地震による横変位拘束構造の被災は二つのパタ ーンに分けられ,横変位拘束構造そのものがせん断破 壊したものと,横変位拘束構造は破壊されていないが, その取付部が破壊したものである.

まず,横変位拘束構造が設計で想定する地震力以上 の作用により,どのような挙動をすべきか,危機耐性 の観点からも議論を深める必要がある.落橋防止構造

(i)側面部(ii)上面部(ii)上面部図-19 落下した横変位拘束構造の取付部の状況(図中の赤・緑・茶の点線はそれぞれ同一の鉄筋を示す)

図-20 落下した横変位拘束構造のアンカー鉄筋の形状(図-8に加筆)

は落橋という最悪の事態を避けるための砦であり、そ の砦の破壊に求められる性能を改めて議論する必要が ある.

取付部が破壊した事例は、横変位拘束構造は支承部 の外側に設置されたものであった.横変位拘束構造が 支承の外側に設置すると、横変位拘束構造は橋脚の橋 軸直角方向の縁端距離が小さくなるため、橋脚は橋座 部破壊などの様な損傷を受けやすい.そのため、この 場合には橋座部の押し抜きせん断に関する照査は必須 である.さらに、府領第一橋では押し抜きせん断の発 生位置が最背部ではないことが予想されることから、 より耐力が小さくなる可能性がある.

また、桑鶴大橋のような構造形式では、支承部の破壊により、桁端部が上方に移動する可能性が高く、横変位拘束構造の衝突位置は、想定より上側となる可能性がある。その場合、軸方向鉄筋が無い被りコンクリート位置で衝突する可能性が高まり、脆性破壊しやすくなるため、横変位拘束構造と桁の接触点を横変位拘束構造の高さ半分程度にする方がより安全だと推測する.

8. まとめ

本研究で得られた知見は、以下の通りである。

- (1) 熊本地震により破壊された横変位拘束構造は横変 位拘束構造本体のせん断破壊あるいは取付部の破 壊により機能が失われたケースに大別できる.
- (2) 横変位拘束構造の設計において,道路橋示方書で は水平耐力を規定しているのみであり,実設計で は,横変位拘束構造,橋台部が剛であることを前 提に,その接合部の安全性を照査していることが 多い.しかし,熊本地震による横変位拘束構造の 被害は,設計で想定しているメカニズムで破壊し たとは考えにくく,横変位拘束構造に関する更な る研究が必要である.
- (3) 府領第一橋を対象に,前震,本震観測地震動を用いた地震応答解析を行い,横変位拘束構造に作用する衝突力の評価を行った.その結果,前震では設計水平耐力に相当する大きな衝突力は発生せず,本震では設計水平耐力を大きく超え,実曲げ耐力相当の衝突力が発生する可能性がある.
- (4) 府領第一橋の横変位拘束構造の被災状況は,橋座 部が水平外力により破壊した場合と類似し,橋座 部の水平耐力の評価式を用いると,前震程度の衝

突力でも損傷する可能性がある. さらに,府領第 一橋の場合には,押し抜きせん断発生位置が設計 で想定するよりも縁側にあり,さらに抵抗力が小 さいと想定される.

(5) 被災状況を踏まえ、横変位拘束構造の設計に関す る改善点・留意点を整理した.

謝辞:本研究は、科学研究費補助金基盤研究 (B)26289145番のもと実施した.本研究を実施するにあ たり、設計図面や観測地震動記録など、西日本道路株 式会社の技術者から多大な情報提供を頂きました.復 旧活動が最優先のなか、対応いただきましたことに、 深く感謝いたします.また、熊本大学葛西昭先生は、 熊本県等と学会との窓口として交渉いただき、多くの 情報収集にご尽力いただきました.合わせて感謝いた します.

- 3) 日本道路協会:「兵庫県南部地震により被災した道 路橋の復旧に係る仕様」の準用に関する参考資料 (案),1995.
- 日本道路協会:道路橋示方書・同解析 V耐震設計 編,1996.
- 5) 日本道路協会:道路橋示方書・同解析 V耐震設計 編,2012.
- 6) 土木研究センター: 落橋防止構造設計ガイドライン (案),2005.
- 7) 高橋良和:2016 年熊本地震における木山川橋の被害 分析,第19回性能に基づく橋梁等の耐震設計に関す るシンポジウム講演論文集,pp.169-176,2016.
- 8) 高橋良和:平成 28 年熊本地震による橋梁の被害報告, 橋梁と基礎, Vol.50, No.9, pp.32-27, 2016.
- 9) 高橋良和:2016 年熊本地震による橋梁被害と前震後の調査を踏まえた被害メカニズム推定,第36回地震 工学研究発表会講演論文集,Paper No.887,2016.
- 10) 日本道路協会:道路橋示方書・同解析 IV 下部構造 編,2012.
- 11) 中野正則・福井次郎・七澤利明・大野了:橋座部の 水平耐力の評価に関する研究,土木研究所資料,第 3497号,1997.
- 古谷祐希・鈴木英之・田畑卓:接着系樹脂注入方式 あと施行アンカーの付着性能,安藤ハザマ研究年報, Vol.1, pp. 1-6, 2013.

参考文献

- 1) 日本道路協会:道路橋耐震設計指針·同解説,1971.
- 日本道路協会:道路橋示方書・同解析 V耐震設計 編,1980.

DAMAGE OF LATERAL DISPLACEMENT CONFINING DEVICES OF BRIDGES CAUSED BY THE 2016 KUMAMOTO EARTHQUAKE AND ESTIMATION OF FAILURE MECHANISM

Yoshikazu TAKAHASHI and Yucheng GONG

In the 2016 Kumamoto Earthquake, two severe ground shakings occurred consecutively on April 14 and 16, and caused extensive damage to bridges. Among them, it should be paid strong attention that numerous lateral displacement confining devices were suffered sever damage. Their function was to constrain a superstructure from developing displacement if a bearing support is destroyed and to prevent collapse of the superstructure. However, brittle damages were observed in the devices themselves or the anchorage portions, and one bridge was collapsed due to the mainshock because the device had been damaged due to the foreshock. In this paper, the seismic analysis of the collapse bridige was conducted to estimate the pounding force to the device, and the failure mechanism of the device was estimated.