KiK-net 益城サイトの非線形地盤応答特性

後藤 浩之1・秦 吉弥2・吉見 雅行3・吉田 望4

¹正会員 京都大学准教授 防災研究所 (〒611-0011 京都府宇治市五ヶ庄) E-mail:goto@catfish.dpri.kyoto-u.ac.jp

 ²正会員 大阪大学助教 工学研究科地球総合工学専攻(〒565-0871 大阪府吹田市山田丘 2-1) E-mail: hata@civil.eng.osaka-u.ac.jp
³正会員 産業技術総合研究所主任研究員 活断層・火山研究部門 (〒305-8567 つくば市東 1-1-1 つくば中央第七)
E-mail: yoshimi.m@aist.go.jp
⁴正会員 東北学院大学教授 工学部環境建設工学科(〒985-8537 宮城県多賀城市中央 1-13-1)
E-mail: yoshidan@mail.tohoku-gakuin.ac.jp

2016 年熊本地震において益城町市街地では顕著な地震動被害が生じた.この原因を解明するためには、 地盤の非線形応答特性や前震・本震時の基盤波が必要である.本研究は、KiK-net 益城の地表・地中記録 を用いてサイトの非線形地盤応答特性を評価した.地表/地中スペクトル比を説明するような S 波速度モ デルを探索したところ、工学的基盤以深の S 波速度は検層データの 75%程度であることや、表層において も検層データとやや異なる値であることが示唆される.また、最大せん断ひずみとせん断剛性の関係をみ ると、せん断剛性のひずみ依存性が明瞭に認められた.これを非線形特性としてモデル化し、等価線形解 析によって地中記録から地表記録の再現解析を行うと、前震、本震および余震の東西成分において S 波初 動をよく再現する結果を得た.

Key Words: the 2016 Kumamoto Earthquake, KiK-net Mashiki, non-linear site response

1. はじめに

平成28年(2016年) 熊本地震は,2016年4月14日に発生したM_{JMA}6.5の地震(以下,前震)を起点として,九州地方中部で活発化した一連の地震活動を指すものである¹⁾. 前震および4月16日01:25に発生したM_{JMA}7.3の強い地震(以下,本震)によって,熊本県から大分県の広い範囲で構造物被害が発生した. 熊本県では,震災関連死を含む98名の死者,および8000棟超の全壊家屋が報告されている²³⁾(2016年8月現在).

前震と本震の2度,震度7が観測された熊本県益城町で は、熊本県における住宅の全壊被害のうち、およそ3割 にあたる2500棟余が被害を受けた²⁾.特に、益城町市街 地の県道28号に沿う帯状のエリアに被害が集中して発生 している⁴⁵⁾.この被害域では、1981年以降の木造建築で 大破・倒壊に至ったものが150棟超、2000年以降のもの も17棟報告されており⁴⁾、我が国の耐震設計を考える上 で極めて重大な被害が発生した.

益城町市街地には,震度7を観測した熊本県の震度計 と防災科学技術研究所KiK-net益城(KMMH16)観測点 が常設されている.加えて,益城町市街地において臨時 地震観測を行っていた3箇所の地震計で本震記録が得ら れている⁹. KiK-net益城は被害域の北側に位置しており, 周囲の被害は比較的軽微である.一方,臨時地震観測点 の少なくとも1点は被害域の中に位置している.両者の 記録を比較すると,PGVおよび1秒付近の応答スペクト ルの値ともに被害域の方が大きい⁹. この事実は,住宅 被害の集中域が生じた原因の少なくとも一つが,地震動 の違いによるものであることを示している.このため, 益城町市街地の空間的な地震動特性を明らかにすること は重要な課題であり,緻密な現地調査による地盤のモデ ル化,地盤材料の非線形特性のモデル化,および本震に おける基盤入力波がそれぞれ必要である.

KiK-net益城は、地表と地中のそれぞれに地震計が設置 されている鉛直アレー観測点であって、本震を含む多く の鉛直アレー記録が得られている.そこで本研究は、余 震および前震・本震の鉛直アレー記録を利用して、KiKnet益城サイトの非線形地盤応答特性を評価し、地盤材 料の非線形特性のモデル化を試みる.加えて、本震にお ける基盤入力波を推定する.

2. 本震記録の主要成分の到来方向

KiK-net 益城(KIK),益城町役場に設置されていた熊本県の震度計(MTO),臨時地震観測点(TMP1, TMP2, TMP3)の本震記録は、いずれも東西成分が卓越 している.図-1 は各点の速度波形(東西成分)を示し ているが、最も振幅の大きなフェーズは1時25分13秒 から14秒あたりに共通して見られる.このフェーズに 着目してセンブランス解析ⁿを行うと、センブランス値 のピークは見かけ速度4km/sの円内に表れる(図-2). すなわち、対象フェーズは概ね鉛直下方から到来した実 体波(S波)であると考えられる.

益城町の構造物被害に寄与した揺れが最大振幅を与え るこのフェーズであったとすると、S波の地盤増幅の程 度を議論することが重要となる.工学的基盤以深では鉛 直下方入射を仮定できない可能性もあるが、浅部の表層 地盤では鉛直方向にS波が伝播していると仮定できる ため、ここでは1次元地盤モデル、およびS波の鉛直下 方入射を仮定して、鉛直アレー記録の分析を行う.

 図-2 KiK-net 益城(KIK),臨時地震観測点(TMP1, TMP2, TMP3)の記録の解析区間(図-1)を用いた センブランス解析結果.

3. KiK-net 益城の地表/地中スペクトル比

KiK-net益城は、地表と深さ252mの地中にそれぞれ3成 分の加速度センサーが設置されている. 熊本地震発生前 後の記録が複数得られているため、まずは観測記録の分 析を行う. なお、地中の設置方位は、KiK-net地中センサ ーと併せて設置されているHi-netの記録から推定されて いる⁸が、地表・地中の設置方位のずれが1度と小さいた め、本研究では方位補正をせずに解析することとした.

地震イベント毎に,以下の手順で地表/地中スペクト ル比を求めた.なお,S波が卓越すると考えられるフェ ーズに着目するため,地中記録の最大値付近を切り出し て解析を行った.

① 地中記録の最大加速度を与える時刻の1.0秒前から4.0 秒間を解析区間とする.

② 地表,地中記録に対して,解析区間を窓にもつTukey windowをかける.テーパー部を10サンプルとする.

③フーリエ変換をする.

④ 0.4Hz幅のParzen windowをかけて地表および地中のパ ワースペクトルをそれぞれ求める.

⑤地表/地中のパワースペクトル比の平方根をとる.

解析対象のイベントは、熊本地震発生前の25イベント、 発生後の余震71イベント、および前震・本震とする.余 震は地中記録の最大加速度が0.1、0.2、0.5、1.0、2.0m/s² を下回るものに分類し、それぞれについて平均をとる. 発生前のイベントはいずれも0.1m/s²を下回るため、まと めて平均をとった.図-3にこれらを比較して示す.0.5-5.0Hzに着目すると、東西成分はいずれも全体的な傾向 が似ているが、南北成分はばらつきが大きい.特に本震 の南北成分は、他のイベントのスペクトル比とやや形状 が異なる.本震では東西成分が卓越したことを考慮して、 まず東西成分について検討を進めることにする.

東西成分には、1Hz弱と2Hz付近、および5Hz付近に顕 著なピークが見られる.ただし、5Hz付近のピークは前 震と本震で目立たなくなり、4-6Hzのスペクトル比の値 は余震、前震、本震の順に小さくなる.また、2Hz付近 のピークは前震および本震でやや低周波数側にシフトし ている傾向が見える.以上の2つの特徴は、地盤材料の 非線形特性によるものと考えられる.

図-3 KiK-net 益城の地表/地中スペクトル比の比較.

4. KiK-net 益城の線形地盤モデル

(1) 検層モデルの妥当性

KiK-net益城では防災科学技術研究所によって実施され た速度検層によるP波速度,S波速度のデータが公開さ れている⁹.まずはこの速度構造を用いた場合(検層モ デル)の結果を示す.なお,密度のデータがないため, 浅部については周辺のK-NET観測点(K-NET熊本,K-NET大津)と対比して定め,深部はLudwig et al. (1970)に よるP波速度との関係式^{10,11)}を用いた.**表-1**に検層モデル の物性を示す.

検層モデルの物性をもつ地盤に対して,鉛直下方入射 する1次元SH波の伝達関数(2E/E+F)をHaskell Matrix法¹²⁾ により計算した. 図-4は検層モデルから求めた伝達関数 を観測スペクトル比と比較したものである.ただし,伝 達関数にも0.4Hz幅のParzen windowをかけて平滑化を施し ている.伝達関数にみられるピーク周波数は,観測スペ クトル比に比べていずれも高周波数側に表れている.こ れは,モデルのS波速度が実際の地盤よりも過大である ことを示唆するものである.このため,観測スペクトル 比を説明するように地盤モデルを修正する必要がある.

土質区分	S波速度	P波速度	密度	減衰定数	深さ
	(m/s)	(m/s)	(kg/m ³)		(m)
火山灰質	110	240	1650	0.03	3
粘土	240	380	1650	0.03	9
砂	240	380	1700	0.02	15
軽石凝灰岩	500	1180	1800	0.02	33
火山灰質 粘土	400	1180	1800	0.02	41
砂	-	1950	2050	0.02	51
砂礫	760				69
凝灰角礫岩					91
安山岩	820	2300	2200	0.02	97
凝灰角礫岩					101
安山岩	1470	2800	2200	0.02	133
凝灰角礫岩	700	2800	2200	0.02	143
溶結凝灰岩	1200		2050	0.02	157
安山岩	1380	2800			169
凝灰岩					189
安山岩	840	2300	2050	0.02	194
凝灰岩					201
安山岩	1470	2300	2050	0.02	234
	2700	4800	2500	0	252
					_

表-1 KiK-net 益城の検層モデル.

図-4 検層モデルの伝達関数と観測スペクトル比の比較.

(2) 余震の観測スペクトル比を説明する速度モデル

地中記録の最大加速度が0.2, 0.5, 1.0, 2.0m/s²を下回 るイベントに分類し, それぞれスペクトル比を説明する 地盤のS波速度を求める. なお, 実際の地盤は地盤材料 の非線形特性によって統一的にモデル化されるべきもの であるが, これについては後述する.

表層1-5層目までのそれぞれのS波速度,および6層目 から12層目までのS波速度を一律に低減する割合,の6変 数を未知数として,最適なモデルを探索する.なお,減 衰定数は表-1の値を採用したが,20m/s²を下回るイベン トは,スペクトル形状と波形の再現性から表層1-2層目 を0.06,表層3-5層目を0.04とした.最適モデルの探索は 遺伝的アルゴリズム(個体数500,世代数200)を用い, 乱数の種を変えて5回試行した.観測スペクトル比との 残差は,0.5-8.0Hzの区間において対数軸上で定義する.

図-5、図-6は得られた最適なS波速度モデル,および 最適モデルにより計算される伝達関数と観測スペクトル 比の比較である.それぞれ,試行5回分の結果全てを重 ねて表示している.表層1-3層目のS波速度は概ね同じ値 に収束しているが、45層目は分類されたイベント毎, 試行毎にばらつきが大きいため、感度が悪いことが伺え る.また、6-12層目のS波速度は検層モデルと比べて 75%程度が最適と求められた.最適モデルにより計算さ れる伝達関数は、観測スペクトル比に表れる1Hz弱と 2Hz付近のピーク周波数をよく説明できることがわかる. ただし、5Hz付近のピークは十分に説明できていない可 能性がある.

図-5 最適なS波速度モデルと検層モデルの比較.

図-6 最適モデルの伝達関数と観測スペクトル比の比較.

モデルの妥当性を検討するため、熊本地震の前震と本 震に震源が近く、かつ本震による強い地震動の影響を受 ける前の記録について、地中記録から地表記録の再現を 試みる.**表-2**に地震イベントの諸元を示す.震源位置は 気象庁一元化震源情報¹³、震源メカニズムは防災科学技 術研究所F-netによるCMT解¹⁴を参照した.

地中記録のPGAに応じた最適モデルを用いて,地中記 録から地表波形を求めた結果を図-7に示す.なお,試行 5回分の結果全てを重ねて表示している.S波の鉛直入射 を仮定した計算結果であるため,P波初動の走時や主要 動部以降の振幅包絡形状は再現できないが,S波初動の 読み取りにくいE01イベントを除いて,S波部分の到達 走時,およびS波初動の振幅をよく再現している.

発生日時	震央 (緯度, 経度)	震源 深さ	メカニスム (走向, 傾斜, すべり角)	M _{JMA}	地中記録 のPGA (EW,NS)
2016/04/14 21:26 (前震)	N32.742°, E130.809°	11.4km	212°,89°,-164°	6.5	1.78m/s ² , 2.37m/s ²
2016/04/14 22:07 (E01)	N32.776°, E130.850°	8.3km	293°, 88°, 4°	5.8	0.98m/s ² , 1.68 m/s ²
2016/04/14 23:29 (E02)	N32.778°, E130.838°	12.8km	281°,73°,-26°	4.6	0.40m/s ² , 0.42m/s ²
2016/04/14 23:43 (E03)	N32.767°, E130.827°	14.2km	279°,67°,-22°	5.1	0.28m/s ² , 0.43m/s ²
2016/04/15 05:10 (E04)	N32.762°, E130.812°	10.1km	278°, 70°, -26°	4.6	0.15m/s ² , 0.18m/s ²
2016/04/16 01:25 (本震)	N32.755°, E130.763°	12.4km	226°,84°,-142°	7.3	2.43m/s ² , 1.58m/s ²

表-2 再現解析に用いた地震イベントの諸元.

(3) 本震・前震の観測スペクトル比を説明する速度モ デル

同様に、熊本地震の前震および本震記録について地盤 のS波速度を推定した.ただし、表層1-2層目の減衰定数 を0.15、3-5層目の減衰定数を0.10と仮定した.図-8は得 られた最適なS波速度モデル、図-9は最適モデルにより 計算される伝達関数と観測スペクトル比の比較である. 余震のモデルと比較して、3層目のS波速度が低く求めら れていることが特徴的である.また、本震の方が全体的 に低いS波速度が求められている.伝達関数は、観測ス ペクトル比に見られる1Hz弱と2Hz付近のピークを概ね 説明している.図-10は、地中記録から地表波形を計算 した結果を示したものである.S波初動の到達時刻、お よびその振幅がよく再現されている.

図-8 最適なS波速度モデルと検層モデルの比較.

図-9 最適モデルの伝達関数と観測スペクトル比の比較.

図-10 最適モデルにより計算された前震・本震の地表波形 (東西成分).

5. 非線形地盤応答特性

(1) せん断剛性のひずみ依存性

深さ 4lm までの表層地盤それぞれの層について,前 章の解析で得られた S 波速度,および設定した減衰定 数とせん断ひずみとの関係について整理する.余震 E01-E04,前震,および本震の 6 イベントについて,最 適モデルを用いて深さ lm 毎の最大せん断ひずみを求め, それぞれの層におけるせん断剛性と減衰定数をプロット したものが図-11 である. なお,図中の黒四角は検層モ デルのせん断剛性である. せん断ひずみの増加に伴い, せん断剛性の低下と減衰定数の増加が概ね認められる. 特に,火山灰質粘土層(0-3m, 3-9m)と砂層(9-15m) のひずみ依存性が明瞭である.

図-11 を参考に Ramberg-Osgood モデル¹⁵⁾を用いてせん 断剛性と減衰定数をモデル化した結果を表-3 に示す. 基準ひずみは G/G₀が 1/2 となるひずみとして定義し,表 -1 の減衰定数を最小値とする.図-11 にモデル化した非 線形特性を併せて示しているが,表層 1-3 層目のひずみ 依存性をよく表している.4-5 層目は前章で述べたよう にスペクトル比に対する感度が悪いため,十分にモデル 化できていない可能性は残る.

表-3 表層 1-5 層の Ramberg-Osgood モデル

土質 区分	初期 S 波速度 (m/s)	初期 せん断剛性 (MPa)	基準 ひずみ	α,β	深さ (m)
火山灰	110	20.0	1.0×10^{-3}	1.887, 1.916	3
質粘土	160	42.2	2.0×10^{-3}	1.887, 1.916	9
砂	370	233	1.0×10^{-3}	1.887, 1.916	15
軽石 凝灰岩	600	648	1.0×10 ⁻³	1.887, 1.916	33
火山灰 質粘土	425	325	2.0×10 ⁻³	1.887, 1.916	41

(2) 等価線形解析

有効ひずみの周波数依存性を考慮した DYNEQ の方法 ¹⁰により地盤の等価線形解析を行った.有効ひずみの周 波数依存性は推奨値(*m=2, f_=*10Hz)を用いる.地盤の 表層 1-5 層目は,前節で構築した Ramberg-Osgood モデル を採用する.6 層目以深のS波速度は,余震の入力レベ ルや前震と本震で推定値にばらつきがあるが,ここでは 一律に検層モデルに対して 75%の値を与える.非線形性 を考慮する深さ 0-41m の区間は 1m 毎に要素分割を行い, 10Hz 以上の成分は計算しない.

図-12,図-13 は、前震と本震について等価線形解析 により地中記録から地表記録を再現した結果である.S 波初動の到達走時、およびS波初動の形状がいずれも よく再現されている.図-14 は、収束計算後の最大せん 断ひずみの深さ分布と、S波速度分布を示している.い ずれの深さにおいても最大せん断ひずみが1%未満であ ることから、等価線形解析の適用限界を大きく超えては いない.また、S波速度は線形解析時の最適モデル(図 -8)に概ね収束している.

(東西成分)

図-15 は、表-2 に示した地震イベント E01-E04 につい て、表-3 のモデルを用いて等価線形解析により地表記 録を再現計算した結果である.S 波初動に着目すると、 図-7 と同程度に再現できていると考えられる.以上の 結果から、S 波初動に着目する限りにおいては、ここで 構築した地盤モデルは KiK-net 益城の地盤震動特性をよ く説明していると考えられる.

図-16 は、本震について深度毎の加速度波形を上昇波 +下降波(E+F 波)と上昇波(E 波)のそれぞれについ て示したものである.地中センサーの深度 252m 位置の E 波,非線形性を考慮する層の下面深度 41m の E 波と もに、E+F 波と比べてシンプルな波が求められている.

図-16 深度毎の加速度波形(左:E+F波,右:E波)

(3) 南北成分の再現性について

南北成分についても同様に, 表-3 のモデルを用いて 地中記録から地表記録を等価線形解析により再現計算し た.図-17,図-18 は,前震と本震について再現した地 表波形と観測記録の比較,およびスペクトル比の比較で ある.観測記録と比べるとS波初動の到来時刻がやや速 く計算されており,特に本震時に顕著である.東西成分 では再現性があること,イベントによってその差異が異 なることから,工学的基盤〜地震基盤における3次元的 な地盤構造の影響による可能性等が考えられる.ただし、 本現象の原因をここでは明らかにすることができなかっ たため、ここで指摘するに留め、今後の課題としたい.

6. 結論

2016 年熊本地震において顕著な地震動被害の生じた 益城町には、鉛直アレー観測が行われている KiK-net 益 城観測点が設置されており、前震、本震および余震の記 録が得られている.本研究は、KiK-net 益城の地表・地 中記録を用いて、サイトの非線形地盤応答特性を評価し た.

地中記録の加速度レベルで分類した余震の記録,およ び前震,本震の記録それぞれについて,地表/地中スペ クトル比を説明するような S 波速度モデルを探索した ところ,工学的基盤以深の S 波速度は検層データの 75%程度であることや,表層においても検層データとや や異なる値であることが示唆された.深度毎に最大せん 断ひずみとせん断剛性の関係をみると,せん断剛性のひ ずみ依存性が明瞭に認められた.

せん断剛性と減衰のひずみ依存性を Ramberg-Osgood モデルでモデル化し、等価線形解析によって地中記録か ら地表記録の再現解析を行うと、前震、本震および余震 について S 波初動をよく再現する結果を得た.ただし, 本震時に最大振幅が現れた東西成分についての検討であ る.同モデルを南北成分に適用して再現計算を試みたと ころ,S 波初動の走時が観測より速いため,3 次元的な 深部構造の影響等を考慮して,今後さらなる検討が必要 である.

謝辞:本研究では,防災科学技術研究所 KiK-net 観測記 録,および熊本県の震度計記録を使用しました.感謝申 し上げます.

参考文献

- 気象庁:「平成28年(2016年)熊本地震」について(第23報),http://www.jma.go.jp/jma/press/ 1604/21a/201604211030.html(平成28年8月30日閲覧).
- 1) 熊本県:平成 28(2016)年熊本地震等に係る被害状況 について(第168報), http://www.pref.kumamoto.jp/ kinkyu/pub/default.aspx?c_id=9(平成28年8月30日 閲覧).
- 内閣府:熊本県熊本地方を震源とする地震に係る被害状況等について、http://www.bousai.go.jp/ updates/h280414jishin/index.html(平成28年8月30 日閲覧).
- 国土技術政策総合研究所:熊本地震における建築物 被害の原因分析を行う委員会 第2回配布資料, http://www.nilim.go.jp/lab/hbg/kumamotozisinniinnkai/2 0160630kumamotozisinniinnkai_handouts.htm(平成28 年8月30日閲覧).
- 5) 宮本崇,飯山かほり,後藤浩之,盛川仁:平成28 年(2016年)熊本地震の概要と益城町周辺における 余震・常時微動観測(速報),自然災害科学,印刷 中.
- 6) Hata, Y., Goto, H. and Yoshimi, M.: Preliminary analysis of strong ground motions in the heavily damaged zone in

Mashiki town, Kumamoto, Japan, during the main shock of the 2016 Kumamoto earthquake (Mw7.0) observed by a dense seismic array, Seism. Res. Lett., Vol.87, No.5, pp.1044-1049, 2016.

- Neidell, N.S. and Taner, M.T.: Semblance and other coherency measures for multichannel data, Geophysics, Vol.36, No.3, pp.482-497, 1971.
- 汐見勝彦:防災科研 Hi-net 地中地震計設置方位情報 推定方法の改良,防災科学技術研究所研究報告, No.80, pp.1-20, 2013.
- 防災科学技術研究所:強震観測網(K-NET, KiKnet), http://www.kyoshin.bosai.go.jp/kyoshin/(平成 28年8月30日閲覧).
- Ludwig, W.J., Nafe, J.E. and Drake, C.L.: Seismic Refraction, The Sea, 4, 53-84, edited by Maxwell, A., Wiley InterScience, New York, 1970.
- 11) Miura, S., Takahashi, N., Nakanishi, A., Tsuru, T., Kodaira, S. and Kaneda, Y.: Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study, Tectonophysics, Vol.407, pp.165-188, 2005.
- Haskell, N.A.: Crustal reflection of plane SH waves, J. Geophys. Res., Vol.65, pp.4147-4150, 1960.
- 防災科学技術研究所:高感度地震観測網 気象庁一元 化 震 源 情 報, http://www.hinet.bosai.go.jp/?LANG=ja (平成 28 年 8 月 30 日閲覧).
- 14) 防災科学技術研究所:広帯域地震観測網 震源のメカニズム 情報, http://www.fnet.bosai.go.jp/top.php?LANG=ja(平成28年8月30日閲覧).
- Ramberg, W. and Osgood, W.R.: Description of stressstrain curves by three parameters, Technical Note 902, NACA, 1943.
- 16) Yoshida, N., Kobayashi, S., Suetomi, I. and Miura, K.: Equivalent linear method considering frequency dependent characteristics of stiffness and damping, Soil Dynamiccs and Earthquake Engineering, Vo.22, pp.205-222, 2002.

NON-LINEAR SITE RESPONSE AT KIK-NET MASHIKI SITE

Hiroyuki GOTO, Yoshiya HATA, Masayuki YOSHIMI and Nozomu YOSHIDA

Severe ground motion damages occurred in the downtown area of Mashiki town, Kumamoto, during the 2016 Kumamoto earthquake. Non-linear site response for the foreshock and the mainshock may be important factor to explain the reason why the damage zone appeared. We analyzed the non-linearity by using the borehole and surface records at KiK-net Mashiki station (KMMH16). Optimal S-wave models to fit the spectral ratio imply that S-wave velocity beneath an engineering basement is about 75% of the logging data, and the optimal S-wave velocities in the surface ground differs from the logging data. The optimal models clearly show the shear strain dependence of shear modulus. We model the non-linearity of shear modulus, and examin the equivalent linear analysis. The synthetic waves on the ground surface agree well with the observed ones, especially at S-wave phase, for the foreshock, mainshock, and the aftershocks in east-west componenet.