液状化で被災した住宅地の対策工法として採用 された格子状地中壁工法の設計

津國 正一¹・石井 一郎²・内田 明彦³・今井 政之⁴・ 山内 崇寛⁵・太田 光貴⁶

¹ 株式会社竹中土木 技術・生産本部 (〒270-1395 千葉県印西市大塚1-5-1竹中技術研究所) E-mail:tsukuni-s@takenaka-doboku.co.jp

> ² 正会員 浦安市 副市長 (〒279-8501 千葉県浦安市猫実1-1-1) E-mail:ishii.ichirou@city.urayasu.lg.jp

³ 株式会社竹中工務店 技術研究所(〒270-1395千葉県印西市大塚1-5-1竹中技術研究所) E-mail:uchida.akihiko@takenaka.co.jp

⁴ 株式会社竹中土木 技術・生産本部 (〒136-8570 東京都江東区新砂1-1-1) E-mail:imai-m@takenaka-doboku.co.jp

⁵ 前田建設工業株式会社 土木事業本部 (〒102-8151 東京都千代田区富士見2-10-2) E-mail:yamauchi.tak@jcity.maeda.co.jp

⁶ 前田建設工業株式会社 土木事業本部(〒102-8151 東京都千代田区富士見2-10-2) E-mail:oota.kou@jcity.maeda.co.jp

浦安市の埋立て地域では、東日本大震災(2011)の液状化により8700軒の個人住宅に被害が発生した.被 害件数は日本全体の被害件数26914軒の約1/3と最も多かった.被害を受けた地区の中の4103軒を対象とし て、将来の地震に対して格子状地地中壁工法を用いた対策を行う事業の調査設計を行ない、一部の地区で は施工が始まっている.格子状地盤改良の設計では、格子間隔Lと液状化層厚Hの比L/Hが0.8以下となるよ うに設計する事例も多い.しかし宅地面積の異なる多数の宅地を対象としてL/Hの考え方で設計すること は困難である.そのため住宅沈下量を設計指標とし格子面積を用いた設計法を採用した.2次元モデルを 用いた解析手法と住宅沈下量の予測精度の検証は、遠心模型振動実験結果との比較で実施した.

Key Words : liquefaction , grid-form ground improvement, centrifuge model test, settlement

1. はじめに

2011年の東北地方太平洋沖地震(Mw=9.0)では,津波に よる人的被害の大きさとともに,液状化により個人住宅 に大きな被害が発生した特徴がある. 個人住宅に大きな 被害が発生した地域は,震源から遠く離れた東京湾沿岸 と利根川流域であった. 液状化による被害を受けた個人 住宅は日本全体で26,914軒. その約1/3にあたる8,700軒の 被害が,面積17.3km²の浦安市(図-1)で発生した. 図-2に 示す浦安市のK-NET浦安で観測された地表面の最大加速 度は0.157(m/s²)と比較的小さかったが,主要動の継続時 間が200秒近く継続したため,液状化が発生したと考え られている. 浦安市の中でも被害が発生した地区は, 1965年から1973年頃にかけてポンプ浚渫による埋立てで 造成された地区に限定されており、特に埋立て年代が古 い中町地区での被害が大きかった.

国土交通省では液状化による被害が大きかった住宅地 を対象に、将来発生が予想される地震に対して図-3に示 す道路と宅地を一体とした液状化対策を実施する事業に 対して、補助金を交付することを2012年に決定した.

東日本大震災が発生した2011年には有識者を集めた浦 安市の委員会で、液状化による被害状況と地盤特性の相 互関係の検討が行われた.そして翌年の2012年からは、 道路と宅地を一体とした液状化対策事業について、格子 状地中壁工法と地下水位低下工法の2工法を中心に、同 じく委員会での検討を始めることになった.浦安市の埋 立て地区の地盤構成は、浚渫土砂で埋戻した埋土層(F) の下に緩い沖積砂層(A)が堆積し、その下には軟弱な粘 性土層(A₀)が厚く堆積している.地下水位低下工法の試 験施工を行った結果,A₆層での圧密沈下の影響による不 同沈下が計測されたため,最終的に格子状地中壁工法¹⁾ が対策工法に選定された. 図4と写真-1は格子状地盤改 良の概念を示している.深層混合処理工法で施工する改 良杭をラップさせて格子壁を施工する.

2014年になると中町の16地区4103軒の宅地(写真-2)で、 格子状地中壁工法を用いた液状化対策事業について、調 査設計を行い事業計画案を作成することの合意が得られ た.格子状地中壁工法を用いた事業計画案を作成するた めに、現地の地盤調査を開始し、翌年の2015年からは調 査設計も始まった.作成した事業計画案は委員会での審 議を経て住民に提示され、住民の合意が再度得られた段 階で事業が実施されることになる.2015年3月の時点で 16地区4103宅地に対する事業計画案の作成は完了してい る.2016年7月時点で住民の合意が得られ事業が始まっ ているのは、2地区121宅地である.

2. 格子状地中壁工法の設計方針

浦安市の液状化対策事業で採用された格子状地中壁工 法の設計法について述べる. 格子状地盤改良による液状 化防止原理を図-5に示す. 地震動によって無対策地盤で は、大きなせん断応力が発生することによって液状化が 発生する.一方,格子状地盤改良による対策が行われて いる地盤では、地震動によるせん断力が格子壁に集中す るため、格子内地盤で発生するせん断応力が小さくなる ことで、液状化の発生を防止することができる.格子状 地中壁工法の開発は1980年代後半から1990年代前半にか けて行われた、当初の設計法では、図-6に示すように格 子間隔Lと液状化層厚Hの比L/Hと、格子内地盤で発生す る過剰間隙水圧比の実験で得られた関係から、L/Hが0.8 以下だと過剰間隙水圧比0.5以下に抑えることができ, 液状化を防止することができるため、L/H=0.8以下で格 子間隔を設定する設計法が採用されていた^{2,3}.また格 子状地中壁工法の設計法として、3次元形状の格子状地 盤改良を2次元の擬似3次元でモデル化し、動的解析を行 って格子間隔を設定する方法もある⁴. この方法では FEM解析を用いて、基盤に入力した地震動に対して液状 化層で発生する応答せん断応力を求める. そして建築基 礎構造設計指針の方法⁵を用いて,N値と細粒分含有率 から求まる液状化層の液状化強度を算出し、液状化層の 液状化安全率FL値を算出する. この方法で設計した神 戸のホテルでは、兵庫県南部地震時に液状化の発生を防 止できたことが確認できている⁶. また浦安市内の建築 物基礎の液状化対策で採用されていた格子状地盤改良の 格子間隔は、L/H=0.8を超えていたが、東日本大震災時

写真-1 格子状地盤改良

に液状化の発生を防止できていたことが報告されている⁷. そのため浦安市の液状化対策事業では,この方法を 用いて設計を行うことにした.

次に浦安市の住宅地で格子状地中壁工法を採用した場 合の課題について述べる. 東日本大震災時に受けた住宅 被害の大半は、液状化による地盤沈下によって住宅に大 きな傾斜が発生したことである(写真-3). そのため住民 は発生した傾斜を修復するか、そのままにして住み続け ているため、格子壁は既設住宅が存在する条件下での施 工となる. 既設住宅下に安価な工法で格子壁を施工でき る技術がないため、格子間隔は広くなり液状化層全層で FL値が1.0以上になる格子間隔に設定することが難しい 場合もある. そのため住宅沈下量を指標とした性能設計 の考え方も必要になるので、格子間隔と住宅沈下量の関 係を求めるための遠心模型振動実験を行った.事業計画 作成対象地区のモデル地盤条件に対して、平均的な宅地 の大きさとなる格子間隔16m×13m=208m²であれば、東 北地方太平洋沖地震時に浦安市で観測された地震と同等 の大きさの地震に対して、住宅沈下量を50mmに抑えら れることが確認できた⁸. そのため1つの格子の中には1 つの宅地しか入らない条件を,設計での基本方針として 事業計画を作成することにした.

3. 格子状地中壁工法の設計条件

各地区の格子状地中壁工法の設計は、「市街地液状化 対策推進ガイダンス」に定められた設計条件に準拠し、 浦安市の特性を考慮して行った。

(1) 対策目標の設定

「市街地液状化対策推進ガイダンス」に示されている 対策目標と住宅被害の可能性判定結果によると、過去の 地震被害の調査結果⁹から一定の非液状化層厚 H_1 を確保 でき、かつ液状化によって地盤に発生する沈下量の指標 $D_{cy}^{(1)}$ が小さいと、住宅の顕著な被害の可能性が低いと判 定している。そのため格子状地中壁工法による対策後の 性能として、東北地方太平洋沖地震の浦安市における本 震と同等規模の地震動に対して H_1 >5.0mかつ、 D_{cy} =5cm以 下となることを最低条件に設定した。

表-1に設計で設定した性能規定値を示す.設計地震動 の対策対象地震動は、東北地方太平洋沖地震の浦安市に おける本震と同等規模の地震動を想定している.レベル 2地震動は、直下型地震を想定している.対策対象地震 動に対しては、住宅に液状化による顕著な被害が発生し ないとした.そして性能規定値は、液状化層全層で FL>1.0とし、この条件を満足できない場合は、D_{cy}=5cm 以下でH₁が5m以上を確保することとした.レベル2地震

写真-2 浦安市の航空写真(1948年撮影、埋立て前)

図-5 格子状地中壁工法の液状化防止原理

図-6 格子間隔と最大過剰間隙水圧比の関係

写真-3 浦安市で液状化により被災した住宅

動に対しては、レベル2地震動が発生した後に発生する 対策対象地震動に対しても、液状化による住宅被害発生 を防止する機能を保持できていることを性能規定値とし た、そのため、液状化防止に関しては性能規定として定 めず、格子壁の健全性保持を性能規定値とし、改良体に 発生するせん断応力に対する評価で格子壁の健全性を判 定している.

(2) 設計で採用する地震波の設定

対策対象地震動として用いる地震波は、図-7に示す東 北地方太平洋沖地震時に東京都の夢の島の基盤で観測さ れた地震波とした. 設計では工学的基盤(V_s≧400 m/s)に 入力する夢の島観測波の振幅を調整することで、東日本 大震災時の各地区での地表面加速度最大値の推定値と同 等になるようにしている.図-8にレベル2地震動として 用いる東京湾北部地震波を示す. この地震波は直下型地 震を想定した浦安市の工学的基盤での模擬地震波である. 設計では各地区の工学的基盤に、そのままの振幅で入力 している.

(3) 設計解析で用いる地盤定数の設定

2次元等価線形解析で実施する設計解析で必要な地盤 定数は、単位体積重量・地盤のせん断波速度V。と動的変 形特性である.単位体積重量と動的変形特性については, 先行して地質調査を実施した第1グループ5地区の各土層 の平均値を用いた.液状化判定の対象としたF。層・Ast 層・A。層の解析で採用した動的変形特性を図-9に示す. 各地区の地下水位は、ボーリング調査を実施した試験孔 で観測された地下水位を参考に設定した. 観測された地 下水位の中には、GL-0.5mと浅い結果も一部あるが、平 均すると観測側された地下水位はGL-1.5m程度であった. 解析で用いた地下水位は季節変動を考慮して浅めに設定 したため、16地区のうち10地区がGL-1.0mとなった.

盛土層のB。層は厚さ1.5m程度あり、現地のスウェーデ ン試験結果と液状化試験から求めた液状化強度から、対 策対象地震動に対して液状化しないと判定できたので、 設計では非液状化層として取り扱っている.またF。層に ついても土質試験結果から得られた塑性指数と細粒分含 有率の関係から非液状化層と判定した。B.層とF.層を非 液状化層と判定すると、16地区の大部分のエリアで非液 状化層を地表面から2m以上確保することができる.表-3 に各地区の液状化判定の対象としたF。層・A。層・A。層 の15波で片振幅せん断ひずみ3.75%で定義した液状化強 度を示す. この強度は土質試験結果の平均値を採用して いる.同表には各地区の代表的な調査地点での1次元等 価線形解析結果から求めた液状化の発生状況を示す. 各 地区の入力地震動の振幅は、各地区で推定された震災時 の地表面最大加速度と整合するように設定している.F。

表-1 性能規定値の設定

設計地震動	要求性能	性能規定値	
		①液状化層全層でFL>1.0	
対策対象地震動	液状化による顕萎な被害が生じない	場合によって	
		②Dcy≦5cmかつ 地表面からの非液状化層厚さH1 対策後 H1≧5m	
レベル2地震動	格子状改良体としての対策効果の保持	改良体発生せん断応力 ≦ お良体の止く断発度	
		以民体のでん劇強度	

50

図-8 レベル2地震動の地震波と加速度応答スペクトル

-0.4

0

層では全地区で液状化が発生し、A_{s1}層で液状化するのは16地区のうち4地区であった.A₂層では14地区で液状化は発生せず、一部エリアで液状化が発生するのが2地区だけであった.

4. モデル地盤を対象とした解析手法の検証

図-10に浦安市の委員会(2012)で対策工法検討時に用いられたモデル地盤構成¹⁰⁾を示す.モデル地盤は震災時に液状化による住宅の被害が大きかった地区の地盤構成を参考に設定されている.地表面から山砂で盛土したB,層, 浚渫土で埋戻した緩い埋土層のFs層,やや緩い沖積砂層のA_sI層・A₂層と続く.その下には軟弱な沖積粘性土層のA_cI層が厚く堆積している.基盤となる洪積砂層のD_s層は,地表面から45mの深度にある.各地区の地盤構成は、モデル地盤の構成にほぼ近い構成になっている.このモデル地盤の構成にほぼ近い構成になっている.このモデル地盤条件を用いて遠心模型振動実験を行い,得られた格子面積と住宅沈下量に対する関係を用いて、各地区の格子状地盤改良の改良仕様を設定するために行う解析手法の検証を行った.

(1) 遠心実験で求めた格子間隔と住宅沈下量の関係⁸

図-10に示すモデル地盤の地層構成を参考に設定した 遠心模型振動実験での模型地盤条件を表4に示す.模型 地盤の作成に用いた砂は,豊浦砂と震災時に浦安市で発 生した墳砂を粒度調整した浦安砂である.豊浦砂と浦安 砂の密度は、モデル地盤で設定されている液状強度にほ ぼ相当する液状化強度が得られるように設定した.浦安 砂の密度管理に用いているD値は、締固め試験の最大乾 燥密度(ρdma=1.451t/m³)に対する密度の比率として定義さ れている.豊浦砂は相対密度Drで管理した.図-11に豊 浦砂と浦安砂の粒度分布を示す.浦安砂は細粒分含有率 25%に粒度調整している.

図-12 に 1 つの宅地を 1 つの格子で囲う条件と無対策 を同時にモデル化した実験ケースの平面図と断面図を示 す.実験は 60G 場で行った.格子間隔は格子壁の中心 間距離で定義されている.隣接する住宅の間隔は,加振 方向・加振直交方向ともに 2.0m 離れており,格子壁の 中心が住宅から 1.0m 離れた位置にある.模型地盤は, 浦安市で発生した噴砂の細粒分含有率を 25%に粒度調整 した浦安砂を用いた.格子状地盤改良の模型は幅 0.9m のアクリル製(ヤング率 $E=1.47 \times 10^{3}$ MPa)である.機械式 撹拌工法で施工された格子状地盤改良の標準的な設計基 準強度 $F_{c}=1.5$ (N/mm²)にほぼ相当する剛性を有している. 図-2 に示す K-NET 浦安観測波(浦安波)を入力地震動とし て振動台に入力した.住宅模型寸法 8m(加振方向)× 11m(加振直交方向),接地圧 8.4(kN/m²)である.

図-9 16地区の設計で用いた動的変形特性 G~ y,h~ y

表-3 16地区の液状化強度と液状化発生状況

District	Liquefac	tion stre	ngth (RL15)	0ccurren	ce of liq	uefaction
DIStrict	Fs	As1	As2	Fs	As1	As2
А	0.171	0.210	0.279	×	×	0
В	0.147	0.182	0.256	×	×	0
С	0.162	0.248	0.241	×	0	0
D	0.167	0.169	0.360	×	×	0
Е	0.162	0.276	0.239	×	0	\bigtriangleup
F	0.178	0.203	0.241	×	\bigtriangleup	0
G	0.217	0.251	0.282	×	\bigtriangleup	0
Н	0.199	0.190	0.319	×		0
Ι	0.201	—	0.253	×		\bigtriangleup
J	0.209	0.172	0.267	×	×	0
К	0.148	0.190	0.375	×	×	0
L	0.184	0.230	0.259	×	×	0
М	0.180	0.174	0.486	×	×	0
Ν	0.215	0.175	0.259	×	×	0
0	0.184	0.181	0.286	×	×	0
Р	0.148	0.187	0.478	×	×	0
× : Lique	efaction	\triangle : Pat	rtial lique	faction	🔾 : Non	-liquefac

図-10 モデル地盤の地層構成¹⁰⁾

表4 検討委員会でのモデル地盤と模型地盤の関係

/	浦安モ	デル地盤 ¹⁰⁾	遠心模型地盤				
深度 (m)	層区分	εa=2.5%,20波の 応力比	層区分	εa=2.5%, 20波の 応力比	層区分	εa=2.5%, 20波の 応力比	
0~2m	Bs	0.25	豊浦砂	0.17	浦安砂	0.19	
2m~8m	Fs	0.20	Dr=50%	0.17	D值=90%	0.18	
8m~10m	As1	0.36	豊浦砂	0.22	浦安砂D値	0.28	
10m~12m	As2	0.23	Dr=70%	0.22	=95%	0.28	

図-12 Case-6の格子状地盤改良側の平面図と断面図 (寸法は実大スケール換算寸法)

図13 遠心実験で得られた格子面積と住宅平均沈下量の関係

表-5 解析で用いたパラメータ

土質名	N値	層厚 (m)	細粒分 含有率 (%)	密度 (t/m ³)	せん断波速度 (m/s)	初期せん断剛性 (kN/m²)	ポアソン比
			Fc	ρ	Vs	G ₀	ν
Bs (乾燥)	6	1	18	1.80	145	38, 038	0.49
Bs (飽和)	6	1	18	1.80	145	38, 038	0.49
Fs	4	6	22	1.80	127	29,029	0.49
As1	15	2	21.9	1.80	197	70,067	0.49
As2	7	2	31	1.70	153	39, 813	0.49
Ac1	2	20	93.6	1.50	133	26, 534	0.49
Ac2	14	15	93.6	1.50	220	72,600	0.49
Ds (工学的基盤)	74	-	10	2.00	388	301, 088	0.49

図-14 疑似3次元モデル(1宅地1格子)

図-13に格子面積と住宅平均沈下量の関係を示す.格 子面積は格子壁中心で囲まれる面積で定義しており,格 子間隔16m×13mで208m²,格子間隔32m×13mで416m², 格子間隔32m×26mでは832m²となる.格子面積が小さく なると住宅平均沈下量が小さくなる傾向にあることを示 しており,格子間隔16m×13mの住宅平均沈下量は50mm と,無対策の約40%にまで抑制する効果があることが確 認できた.模型地盤の作成に浦安砂を用いた時の住宅平 均沈下量と,豊浦砂を用いた時の住宅平均沈下量の間に 大きな差はなかった.また格子面積400m²で格子の中心 間隔20m×20mの正方形で実験した時の住宅平均沈下量 は71mmであった.この格子面積は長方形の格子間隔 32m×13mの416m²に近い.そして格子間隔32m×13mの 住宅平均沈下量66mmに近い結果であった.このことか ら,図-13に示す実験ケースに対して格子面積で結果を 整理しても問題はなく,各地区の格子状地盤改良の設計 で,格子面積を指標として用いることができると判断で きる.

(2) モデル地盤の解析

図-10に示すモデル地盤の解析は等価線形解析で行った.表-5に解析で用いたパラメータを示す.格子状地盤 改良による対策後の解析には、図-14に示す疑似3次元モ デルを用いた.疑似3次元解析モデルでは、加振直交方

図-18 3次元解析モデル

r⊑ Viscous boudary

向の改良体と地盤をモデル化した,加振平行方向の改良 体をモデル化した2つの2次元断面を用いる.加振平行方 向改良体と加振直交方向改良体が交差する節点を共有す る境界条件によって、3次元形状の格子状地盤改良を2次 元断面でモデル化している.解析では無対策以外に、図 -15に示す解析モデルの面外方向改良体の間隔と,解析 モデルの奥行方向の幅を変えることによって、1つの格 子に1つの宅地が入る格子間隔16m×13m, 1つの格子に2 つの宅地が入る格子間隔32m×13m, 1つの格子に4つの 宅地が入る格子間隔32m×26mの解析を行った.ただし, 住宅をモデル化しない条件で解析は行っている.

図-16と図-17は無対策の宅地位置での水平応答加速度 の最大値と、FL値の深度分布である.地表面加速度は 夢の島観測波1.0倍入力に対して1.43(m/s²),夢の島観測波 1.4倍入力に対して1.91(m/s²)で、いずれの入力に対しても ほぼ全層でFL<1.0であった.

疑似3次元解析モデルでは、改良体のせん断剛性を低 く設定しないと、格子内地盤で発生するせん断応力を過 少評価する傾向にあると言われている. そこで格子間隔 16m×13mの疑似3次元モデルと同じ条件で、図-18に示 す3次元モデルを用いた等価線形解析を行い、格子内地 盤のFL値を求めた.入力には夢の島観測波の1.4倍振幅

47m

図-20 疑似3次元解析と遠心実験の沈下量の比較

を用いている.図-19では疑似3次元モデルのせん断剛性 を変えた条件で求めた格子内地盤のFL値と、3次元解析 結果との比較を行っている.改良体のせん断剛性を70% に低下させた時、疑似3次元解析結果と3次元解析結果の 対応が良かった.図-20は改良体のせん断剛性を70%に低 下させた条件で、疑似3次元モデルを用いてDogを求めた 結果と、図-13に示す遠心実験で求めた住宅沈下量を比 較している.実験結果と解析結果の対応が取れているこ とが確認でたので、この事業での格子間隔と地盤条件で の格子状地盤改良の設計では、改良体のせん断剛性を 70%に低下させる条件で疑似3次元モデルを用いること にした.

5. C地区の設計

前章で述べた解析手法を用いて、16地区4103宅地を対象とした格子状地盤改良の設計を行った.本章ではその中のC地区について、地盤調査結果を用いて格子状地盤改良の改良仕様を、どのように設定したかについて述べる.

(1) 現地調査

図-21にC地区の平面図を示す.C地区は7つの街区の98 宅地で構成されている.現地調査の調査項目を大きく分 類すると、宅地部と道路部に分れる.宅地部では住宅と 住宅の隣棟間距離,塀・植栽など格子壁の施工に障害と なる障害物を確認し、障害物の撤去復旧を含めた宅地部 の改良杭の施工計画を作成する.道路部では埋設されて いる下水管等の障害物を竣工図面から調査し、埋設管等 の施工時の移設の必要性等を考慮して、道路部の改良杭 の施工計画を作成する.1つの宅地を1つの格子で対策す る条件で作成された改良杭の配置平面図は作成されてい

A-A'断面の解析モデル 図-24 解析で用いた疑似3次元モデル

表-6 C地区の解析パラメータ

地層	$\frac{\gamma_t}{(kN/m^3)}$	γ' (kN/m^3)	ρ (kg/m ³)	Vs (m/s)	ν	G ₀ (MN/m ²)
Bs	19.0	9.0	1.937	120	0.489	27.9
Fc	15.5	5.5	1.581	120	0.489	22.8
Fs	19.0	9.0	1.937	170	0.488	56.0
As1	19.0	9.0	1.937	170	0.488	56.0
As2	19.0	9.0	1.937	170	0.488	56.0
Asc	18.0	8.0	1.835	130	0.496	31.0
Ac1	16.0	6.0	1.632	130	0.496	27.6
Acs	16.5	6.5	1.683	150	0.495	37.9
Ac2(1)	16.0	6.0	1.632	150	0.491	36.7
Ac2(2)	16.0	6.0	1.632	200	0.491	65.3
Ds	18.5	8.5	1.886	310	0.480	181.3
改良体	20.0	10.0	2.041	-	0.260	781.0

る.得られた格子面積と累積戸数の関係を図-22に示す.

(2) 地質調査

地質調査は50m~100mピッチで標準貫入試験かPDC試 験を実施し、計測したN値と細粒分含有率から液状化層 の液状化強度を算出している.図-21の赤丸が標準貫入 試験の実施個所,青丸がPDC試験¹²⁾の実施個所を示して いる.標準貫入試験を実施したボーリング孔から採取し た試料に対して実施した土質試験の項目は、物理試験、 動的変形試験、繰返し三軸試験である。また、PS検層 試験も1箇所で実施している. このようにして得られた 地質調査の結果を分析し、地区の地質構成を推定してい る. そして3次元の地質構成をCADデータとして作成し た. 図-23に示すのは、図-21の平面図に示されているA-A'断面とB-B'断面での地質構成図である.この2断面に 対して設計解析を実施した、C地区は、中町の沖合中央 に位置し、地形区分から砂洲とトラフとの境界に位置す る. 盛土層(B,層)の下に浚渫による埋土層(F, F)が深度5 ~6mまで, その下には沖積砂質土層(A_{sl}, A_s, A_s)が深 度16~18mまで概ね水平に堆積している. 埋土粘性土層 (F_c)はB-B'断面図の右側(南東側)で確認され、同図左側 (北西側)では埋立砂質土層(F))が厚く分布している. この

2断面に対して設計解析を実施した.

(3) 設計解析

図-23に示す2断面に対して疑似3次元モデルで作成した解析モデルを図-24に示す.境界条件は底面が粘性境界,側面はエネルギー伝達境界とした.設計での解析では、100宅地に対して1断面程度の解析モデルを作成することを基本方針としている.表-6に解析で用いたパラメータの一覧を示す.改良体の有効幅0.85mで設計基準強度 $F_c=1.8(N/mm^2)$ とした.改良体の初期せん断剛性 G_0 は日本建築センター指針¹³に示されている式に基づいて次のように設定した.改良体の変動係数 $V_{qu}=0.45$ とすると現場強度の一軸圧縮強度 q_u は

$q_{\rm uf} = 2.4 F_{\rm c}$

砂層での改良体のヤング係数E50, E0とquiの間には

$E_{50}=130q_{\rm uf}$ $E_{50}/E_0=0.2$

の関係があるので、改良体のポアソン比 ν=0.26から G₀=258×2.4Fc=619Fc

となり, Fc=1.8(N/mm²)に対してG=1114(N/mm²)となる. 疑似3次元モデルを用いた解析では,改良体のせん断剛 性を70%に低下させる必要があることが,3次元解析結 果との比較で分かっているので,解析で用いるG₀は

図-26 FL 値と改良体発生せん断応力最大値の深度分布(A-A'断面の格子 F)

図-27 格子面積とFL値の最小値との関係(改良下端深度GL-10m)

781(N/mm²)とした. 図-25に示す改良体の動的変形特性は 文献から設定した. 地盤の動的変形特性は図-9に示す関 係を用いている.

等価線形解析で格子壁で囲まれた地盤中央部でのせん 断応力の最大値 τ_{max} を求め、その値から算出される等価 な地震時せん断応力比と液状化強度を比較することで FL値を算出した.地盤のせん断応力評価では地震のマ グニチュードMを考慮し、等価なせん断応力 τ_{eff} に換算 する際の補正係数は $\gamma_n=0.1(M-1)=0.8$ とした.液状化層の 液状化強度は標準貫入試験結果とPDC試験から求めた値 を、F_o層・A_{sl}層・A_{sl}層毎に平均した値をFL値の算出に 用いた.

図-22に示すようにC地区の宅地面積は一定ではないので、格子面積も200m²~400m²の範囲に分布している.図 -13に示す格子面積と住宅沈下量の関係は、C地区にある

図-28 改良下端深度の平面分布

宅地の平面形状であれば適用することができると考えられる.そのため解析では解析モデルの奥行方向の幅を変えた解析を行うことによって、幅広い範囲に分布する格子面積に対して、液状化発生の危険度評価と改良体の健全性評価を行う.道路から宅地に引き込まれているガス管や水道管の埋設深度は地表面から1m程度である.改良体施工時に、これらの埋設管が障害になるのを防止する必要性と、宅地部での施工で用いる噴射撹拌工法では1.5m程度の土被りが必要なことから、改良体の天端は地表面から1.5mとした.改良体の下端深度は表-1に示す性能規定値を満足できる深度とする必要があるので、改良下端深度をGL-10m、GL-11m、GL-12mと変えた解析モデルを作成し解析を行っている.

A-A'断面の格子FでのFL値の深度分布と、改良体に発生するせん断応力の最大値の深度分布を示しているのが

図-26である.改良下端深度10mで対策対象地震動に対し て,液状化層全層でFL値は1.0以上になっている.また 改良体に発生するせん断応力も許容値以内に収まってい る.改良体の許容せん断応力でaは,設計基準強度の30% と設定する.対策対象地震動に対する安全率は2/3,レ ベル2地震動に対する安全率を3/3とすると,でaは対策対 象地震動に対して360(kPa),レベル2地震動に対して 540(kPa)となる.C地区の改良下端深度は,性能規定値で 定める液状化層全層でFLが1.0以上になる条件で設定し た.図-27は改良下端深度10mの解析結果に対して,各解 析ケースの各格子で求めたFL値の最小値を求め,格子 面積との関係をプロットしたものである.格子面積 350m²以下であれば,最小FL値が1.0を超えることが確認 できる.解析結果と地質構成を考慮して決めた改良下端 深度の平面分布が図-28である.

6. まとめ

2011年の東北地方太平洋沖地震で液状化により浦安市 で住宅地に大きな被害が出たのは、1965年から1973年に かけてポンプ浚渫により埋立てられた地域であった. ま た,住宅被害に大きな影響を及ぼしたのは,F.層とA.層 の液状化と考えられる.特にF.層については、設計対象 とした全ての地区の解析で、東北地方太平洋沖地震と同 等の地震動に対して液状化が発生するという評価結果で あった. それに対してA.層は、液状化が発生する地区と 発生しない地区に分かれた. 浦安市内の被害が大きかっ た地域の4103軒を対象として格子状地盤改良工法を用い た液状化対策の設計を行った.設計で規定した性能は, ①東北地方太平洋沖地震と同等の地震動に対して液状化 による顕著な被害が生じないこと、②レベル2地震動が 発生しても格子壁の健全性を保持し、その後に発生する 東北地方太平洋沖地震と同等の地震動に対しても、液状 化による顕著な被害が発生しないという2つの性能とし た.

液状化による顕著な被害が生じない性能を設計では, 液状化層全層でFL値>1.0を満足するか,非液状化層厚H ≧5mかつD_o<5cmという性能規定値で定義した.この性 能規定値が満足できているかどうかについては,擬似3 次元モデルを用いた等価線形解析手法によって確認した. 解析結果の検証については,遠心模型振動実験結果を3 次元の等価線形解析でシミュレーションすることで行っ た.その結果,今回の事業対象とする地区で採用する格 子間隔と地盤条件の下での擬似3次元モデルでの解析で は,改良体のせん断剛性を70%に低減する必要があるこ とを明らかにした.また,宅地面積の異なる多数の宅地 を対象とした場合,疑似3次元モデルの奥行方向幅を変 えたパターンの解析を実施し,格子面積と最小FL値の 関係を導く手法で格子状改良の設計が可能であることを 示した.格子間隔ではなく格子面積を指標とすることの 妥当性については,格子の平面形状を変えた遠心模型振 動実験によって検証した.

参考文献

- 1) 国土交通省都市安全課編:市街地液状化対策推進ガ イダンス,2014
- 2) 建設省土木研究所耐震技術センター動土質研究室ほか:液状化対策工法設計・施工マニュアル(案),土木研究所共同研究報告書,第186号,1999.
- 3) 古賀泰之,松尾修,榎田実,伊藤浩二,鈴木吉夫: 深層混合処理工法による砂地盤の液状化対策に関す る模型振動実験(その2)-格子状改良地盤の液状化抑 制効果について-,土質工学研究発表会,pp.1019-1020,1998.
- 内田明彦,小田島暢之,山下清:東北地方太平洋沖 地震における格子状地盤改良を施した建物基礎の挙 動,日本建築学会技術報告集,Vol.19,No.42, pp.481-484, 2013.
- 5) 日本建築学会:建築基礎構造設計指針(2001 改訂), 日本建築学会, pp.62, 2001.
- 6) 鈴木吉夫,斎藤聡,鬼丸貞友,木村玄,内田明彦, 奥村良介:深層混合処理工法を用いた格子状地盤改 良による液状化対策工,土と基礎, Vol.44, No.3, pp.46-48, 1996.
- Uchida, A., Yamashita, K., Odajima, N., 2012. Performance of Piled Raft Foundation with Grid-Form Ground Improvement During the 2011 off the Pacific Coast of Tohoku Earthquake, Journal of Disaster Research Vol.7 No.6, pp.726-732.
- 2) 津國正一,内田明彦,本多剛,小西一生:格子状地 盤改良による住宅沈下量抑制効果に着目した遠心模 型振動実験,地盤工学ジャーナル, Vol.9, No.4, pp.761-771, 2014.
- Ishihara, K.: Stability of natural deposits during earthquake, Proc., 11th Int, Conf. on Soil Mechanics and Foundation Engineering, Vol. 1, pp.321-376, 1985.
- 10) 浦安市ホームページ,液状化対策実現可能性技術検 討委員会報告書: <u>http://www.city.urayasu.lg.jp/shisei/johokoukai/shingikai/t</u> <u>oshiseib/1002853/1005444.html,2016.08.12</u>参照.
- 日本建築学会:建築基礎構造設計指針(2001 改訂), 日本建築学会, pp.66, 2001.
- Sawada, S.: Evaluation of differential settlement following liquefaction using Piezo Drive Cone, 17th International Conference on Geotechnical Engineering, Alexandria, Egypt, 1064-1067, 2009.
- 13) 日本建築センター:改訂版建築物のための改良地盤の設計及び品質管理指針―セメント系固化材を用いた深層・浅層混合処理工法―,2002.