新幹線高架橋上の電車線柱の 連成系地震応答解析およびTMDによる震動制御

水谷 司1・飯島 怜2・武田 智信3・築嶋 大輔4・佐々木 崇人5

1正会員 東京	京大学大学院助教] E	二学系研究科社会基盤学専攻(〒113-8656 東京都文京区本郷七丁目3-1) mail: mizutani@bridge.t.u-tokyo.ac.jp
2学生会員 東	東京大学大学院修士	工学系研究科社会基盤学専攻(〒113-8656 東京都文京区本郷七丁目3-1) E-mail: iijima@bridge.t.u-tokyo.ac.jp
3学生会員 東	東京大学大学院博士	工学系研究科社会基盤学専攻(〒113-8656 東京都文京区本郷七丁目3-1) E-mail: takeda@bridge.t.u-tokyo.ac.jp
4フェロ-	- 東日本旅客鉄道㈱	制構造技術センター(〒151-8512東京都渋谷区代々木二丁目2-6)
		E-mail: tsukishima@jreast.co.jp
5正会員	東日本旅客鉄道㈱	構造技術センター(〒151-8512 東京都渋谷区代々木二丁目2-6)
		E-mail: takahito-sasaki@jreast.co.jp

東北地方太平洋沖地震において新幹線高架橋上のPC(プレストレストコンクリート)製電車線柱が広域 にわたり多数傾斜・折損し復旧に時間を要したことから、電車線柱の地震対策が急務となっている.本研 究では、新幹線高架橋上のPC製電車線柱の耐震性能を精度よく評価するため、調整桁で連結された連続す る高架橋や電車線・電線で接続された隣接する電車線柱などによる影響をふまえた三次元連成系骨組みモ デルを構築し、連成系地震応答解析により連成の影響や動的特性を明らかにした.そのうえで、既存のPC 製電車線柱の大規模地震対策として、現行対策である高靭性化補強および鋼管ビームによる門型化、今回 新たに提案したTMDによる震動制御について、連成系モデルを利用した機能評価、費用、施工、メンテナ ンスなどの側面から多角的に比較検討し、相対的に安価で機能性や施工性に優れたTMDによる震動制御の 優位性を示した.

Key Words : overhead catenary system pole, *TMD*, vibration control, seismic response analysis, coupled system, shinkansen viaduct

1. はじめに

2011年3月11日に発生した東北地方太平洋沖地震において、東北新幹線高架橋上のPC(プレストレストコンクリート)製電車線柱が500 km以上の広域にわたり500本以上折損・傾斜した¹⁾. 地震による高架橋本体の損傷は比較的軽微であった一方、電車線柱の復旧に時間を要したため全線運転再開は2011年4月29日まで遅れた²⁾. 新幹線の迅速な復旧および電車線柱の走行車両への衝突による二次災害防止に向けて対策することは急務である.しかし、電車線柱には高架橋を介して地震動が伝達されるため応答評価は容易ではない.一方、電車線柱は規格品で種類が限定されており、特に経済的理由から多く使用されてきたコンクリート柱³は東北新幹線および上越新幹線だけでも総数22,000本を超えることから、適切な地震対策が提案されることにより広範囲に規格化された

対策を適用できる.したがって,電車線柱の耐震性能を より正確に評価し,地震対策について十分検討されるこ とが重要である.

高架橋上の電車線柱の地震応答については、近年、盛 んに研究されている.今村ら⁴は、二次元モデル解析に より高架橋天端に発生する回転振動が電車線柱の挙動に 大きく影響することを明らかにした.加藤ら⁵は、二次 元高架橋モデルのプッシュオーバー解析によって高架橋 天端の回転加速度を推定し、電車線柱に入力する並進加 速度を補正して応答スペクトル法を用いる手法を提案し た.佐藤ら⁶は、高架橋-電車線柱一体モデルを用いて 三次元動的非線形解析をおこない、コンクリート柱基部 への応力集中による脆性破壊や投込み基礎(砂詰め)

(以下,砂詰基礎)の優位性を示した.電車線柱の非線 形特性の評価については、青木ら⁷が実物大の電車線柱 を用いた振動台実験によりコンクリート柱および鋼管柱

図-1 東北新幹線高架橋

の非線形特性の適切なモデル化について検討したほか, 室野ら[®]により,電車線柱の塑性領域での照査を可能に する非線形応答スペクトル法による応答評価法が提案さ れた.また,室野ら[®]は,地震動の特性や入力レベルが 高架橋と電車線柱の共振現象に与える影響を,二次元分 離モデルで高架橋の塑性化をふまえて評価している.砂 詰基礎の地震時挙動については,坂井ら^{10,11}により,正 負交番載荷実験結果をふまえた挙動の把握とモデル化や, 基礎充填材が変化することによる振動特性の影響評価が なされた.しかし,これまでの研究では,図-1に示す調 整桁で連結された連続する高架橋から受ける影響や,電 車線・電線で接続された隣接する電車線柱の相互作用, 電車線柱と高架橋遮音壁への衝突について考慮されてき ていない.

大規模地震時における既存のPC製電車線柱の地震対 策については、東北地方太平洋沖地震による被害を受け て以降, 急速に進められている. 杉田ら¹⁰は, 引き抜き が容易ではないモルタル基礎の電車線柱について、地際 でコンクリート柱を切断してソケット鋼管を利用するこ とで鋼管柱と接続する耐震補強を検証した、築嶋ら¹³⁾や 佐々木ら¹⁴は、PC製電車線柱の脆性破壊を防ぐために PC構造を鉄筋コンクリート(以下, RC)構造に変えて 塑性設計を取り入れる高靭性化補強を開発し、変形性能 や施工性を確認した.原田ら¹⁵は、PC製電車線柱の交番 載荷実験や実物大振動台試験結果および実現性をふまえ, 砂詰基礎においては、PC柱基部に集成材を付与して変 形性能を向上させる方法、砂の代わりに玉砂利またはゴ ム材を充填して応答を抑制する方法、モルタル基礎にお いては、電柱バンドおよびワイヤによって剛性を付与す る方法、中空部にH鋼を挿入して倒壊を防止する方法、 基部に繊維シートを巻き立て変形性能を向上させる方法, ブレーキダンパを付与して応答を抑制する方法について、

実物大振動台実験によって効果を検証した. そして. ゴ ム材を充填する方法ではゴムによる減衰効果が発揮され て応答抑制効果が高いことを確認した.また,H鋼を挿 入する方法は、酒井ら¹⁰による解析によって倒壊防止お よび変位抑制に有効であると示された.鷹野ら¹⁰は、電 車線柱外周に複数本のワイヤを巻きつけ、ワイヤを高架 橋基礎付近に定着することで応答変位を制御することを 提案した. 単独コンクリート柱の門型化については、奥 野¹⁸により実物大電車線柱振動台実験がおこなわれ、単 独コンクリート柱,固定ビームで門型化されたコンクリ ート柱1対、ビーム端部にダンパーを設けた制震ビーム によって結合されたコンクリート柱1対の順に損傷の進 みが速いことが確認された. 東北地方太平洋沖地震以前 の地震対策としては豊岡ら¹⁹による鉄道電車線柱用制震 ダンパーが挙げられ、ダンパーを付与したPC剛材によ ってコンクリート柱と高架橋を結合することで応答低減 を目的とした対策が検討された.いずれの対策も振動台 試験によって効果が検証されており、加振条件や地震動 特性による応答変化についてはより入念な検討が求めら れるほか、各対策の機能性や費用、施工性、メンテナン ス性をふまえた多角的な評価が今後必要とされる.

現在,東日本旅客鉄道では,地震の被害が大きかった 投込み基礎(モルタル詰め)(以下,モルタル基礎)の PC製電車線柱について高靱性化補強および鋼管ビーム による門型化を実施している.地震対策の最大目的は, 走行中の新幹線の車体に傾斜・折損した電車線柱を衝突 させないことであり,その条件は,図-2に示すように電 車線柱の傾斜を地上高さ5.21 mにて水平変位0.75 m以内 としている.しかし,変位制御が達成されても電車線柱 が大きな損傷を受けることがあり,復旧に要する時間と 損害を最小限に抑えるためにも損傷は軽微であるほど望 ましい.

そこで、本研究では、電車線柱自体が受ける損傷を制 御することを目的に、制振装置として一般的に使用され るTMDの電車線柱への適用を検討する. 質量, ばね, ダンパーから成るTMDの柱状付属物への適用実績とし ては、風や交通振動によって橋梁高架上の道路照明灯具 に発生する振動を解消するために中日本ハイウェイ・エ ンジニアリング東京株式会社が開発したコンパクト制振 装置²⁰⁾が挙げられる. 質量10 kg, 減衰定数15 %, 本体価 格18万円程度,施工時間15分程度であり,既設柱への外 部取り付けが可能で5年毎の目視点検が必要とされる. また,建築物への適用例としては,住友理工株式会社が 製造してジオテック株式会社が販売しているマルチタイ プTMD^{21),22)}があり、大きさ400 mm×400 mm×522 mm、質 量約172 kgのマス4基で構成され、価格は4基あたり本体 費および搬入・調整費用を含めて120万円からである. 施工時間は調整や効果確認を含めて1日、メンテナンス

図-2 変位制御の概念

はフリーである.通常,TMDの質量は,主振動系の主 要モード質量の20%以下であり,ビルや橋梁では1%程 度まで小型化されることもある²³.

以上をふまえて、本研究では、新幹線高架橋上のPC 製電車線柱の耐震性能について、調整桁で連結された高 架橋や電車線・電線を組み込んだモデルを構築して連成 系地震応答解析により精度よく評価したうえで、PC製 電車線柱に対するTMDを利用した制震対策と現行対策 の多角的な比較をおこなう.

2. モデルの概要

本研究では、調整桁で連結された高架橋や電車線・電線による影響を反映させたモデルを利用するために、高架橋モデル4ブロックを調整桁モデルで連続させ、各高架橋ブロックに1対の電車線柱モデルを建植し、隣接する電車線柱モデルを電車線・電線モデルで連結した連成系モデルを構築した.図-3に示すように高架橋I,II,III, IVおよび左右を定める.以下、高架橋モデル、電車線柱モデル、調整桁モデル、電車線・電線モデルとついて、それぞれ詳細を述べる.

(2) 高架橋モデル

対象とした高架橋は、新幹線高架橋として一般に用い られている1層4径間RCラーメン高架橋である.水谷 ら²⁴による既往モデルおよび東北新幹線の南長町高架橋 R14 ブロックの図面・設計計算書をもとに三次元骨組み モデルを構築した.橋軸方向については図-3の橋軸方 向正側に0.1%上り勾配となっている.このため、南長 町高架橋 R14 ブロックと同規格の高架橋(高架橋 I)モ デルが最も低くなるようにして桁上面を連続させた.ま た、橋軸直角方向については、点検用通路等の設備によ り張出す桁幅が左右で異なる.

曲げ損傷による非線形の表現方法としては材端ばねモ デル²⁹を採用した.材端ばねモデルでは系の非線形特性

図-3 連成系モデル

を材端に設けた非線形ばねに集約して表現するため、塑性ヒンジ発生が見込まれる箇所に非線形ばねを適用することにより少ない要素で非線形解析が可能となる.小林ら²⁶による実被害の報告から高架橋柱の上部 1D~2D 区間(D:柱の断面高さ)に損傷が集中していたことを鑑みて、本モデルでは塑性ヒンジ発生区間を柱上下 1D~2D 区間とした.復元力特性としては、鉄道構造物設計標準で規定されている RC 用のテトラリニア型の履歴特性²⁷⁾、および図4に示す実験から得られた骨格曲線を用いた.

(2) 電柱モデル

対象とした電車線柱は、一般的な PC 柱からなる単独 柱である.電車線路設備耐震設計指針^{28,29)}をもとに三次 元骨組みモデルを構築した.可動ブラケットやき電線腕 金の金属部材は剛材としてモデル化し、結合条件は剛結 とした.電車線柱径間長は高架橋の図面・計算書に合わ せて 43 m とし、これに対応する電車線・電線の質量を 集中質量として与えた.軌道は直線路とし、ジグザグ変 位による横張力は十分小さいとみなし無視した.

PC 柱については、東日本旅客鉄道構造技術センター が実施した実物大電車線柱振動台実験から得られた

非線形特性を反映させるため、実験と等しい断面性能 L-40-N20B・特殊を有する長さ11m, 直径40cm, 単位長 さ質量200 kg/mのノーテーパーポールとした. この断面 性能は東北新幹線建設当時に建植された電車線柱と等し い. 青木ら⁷が, 実物大振動台実験に基づき PC 柱の非 線形特性は逆行型バイリニアの履歴特性を用いることで 実挙動を再現できることを明らかにしていることから, 曲げモーメントと曲率の関係により定義した逆行型バイ リニアの履歴特性をもつ非線形要素を、応力集中を起こ しやすい電車線柱地際 1D 区間 (D:柱の直径) に設け た. 骨格曲線は、実物大振動台実験の加振ケースのうち 入力最大加速度 400 gal から 1000 gal までの 13 ケースの 結果をもとに初期剛性 49000 kN·m², 第 2 剛性 16000 kN·m²,降伏曲げモーメント 80 kN·m に定め,最大曲げ モーメントについては計算値 417.9 kN·m を採用した (図-5).

電車線柱基礎は、モルタル基礎およびアンカー基礎に ついては高架橋と電車線柱を剛結としてモデル化した (以下,剛結基礎).砂詰基礎については、砂が詰めら れた範囲には0.05m間隔で砂ばねを、モルタルヒューズ で覆われる表面にはモルタルヒューズばねを配置した. 砂ばねの非線形特性は水谷ら²⁴⁾が砂詰基礎を有する加振 実験をもとに同定した内部減衰13%、初期剛性16,000 kN/m、折れ点での荷重12kN、第2剛性率0.23のバイリ ニアスリップ型とし、下端の結合条件はピン結合とした. モルタルヒューズばねの履歴特性は、地震時には電車線 柱が損傷する前に破壊するため、モルタルヒューズ破壊 後に復元力がゼロとなるギャップ型とし、坂井ら¹⁰⁾が実 験をもとに同定した内部減衰3%、初期剛性13,500 kN/m、 最大耐力70 kNを採用した.

電車線柱が高架橋遮音壁よりも線路側に位置する場合, 大振幅時には遮音壁へ衝突すると考えられる.衝突によ る応答への影響は明らかにされていないが,東北地方太 平洋沖地震において電車線柱が橋軸直角方向線路側に傾 斜・折損していたことから,遮音壁高さと等しい電車線 柱地際2 mの橋軸直角方向線路外側に遮音壁衝突ばねを 配置した.遮音壁と電車線柱の距離は数cm程度から10

図-6 電車線柱の各非線形要素の骨格曲線

cm以上まで様々であるが、本研究では2.5 cmとした.この衝突バネは、可動変位量のモデルの例^{30,31)}を参考に、 遮音壁と電車線柱の距離が接近して一定値を越えると大きな水平力が働く逆行型バイリニアによってモデル化した.電車線柱モデルに付与した各非線形要素の骨格曲線を図-6に示す.

(3) 調整桁モデル

ラーメン高架橋は調整桁で連続されており、今回対象 とした調整桁は一般的に使用されている4主桁のRC桁で ある. 南長町高架橋Tl4桁の図面をもとに骨組みモデル 構築し、主桁を再現した橋軸方向の梁部材4本を剛材で 橋軸直角方向に結合した. 質量については、高架橋ブロ ックの設計計算書において調整桁の集中質量として加え られていた値を利用し、材料特性については高架橋ブロ ックと等しくした. 調整桁は高架橋ブロック端部の桁受 けに設けられた支承およびストッパーによって高架橋ブ

ロックと接続されている.ストッパーは調整桁の橋軸方 向の移動制限装置として機能し、調整桁片端は高架橋ブ ロックに固定された固定端、もう片端は可動域が設けら れた可動端となっている.図面にしたがって固定端と可 動端それぞれ2ヶ所ずつストッパーを想定し、固定端は 剛結、可動端は遊間±0.05 mを再現した衝突ばね(図-7) によってモデル化した.ここでは衝突によりストッパー が損傷することは考慮しない.橋軸直角方向については、 固定端と同じ条件で結合されているため剛結とし、また、 鉛直方向についても調整桁の質量が十分大きいと仮定し て剛結とした.

高架橋と調整桁に敷設されたレールについては、レー ルの剛性や質量が高架橋のそれらと比較して0.1%未満 であり十分に小さいこと^{33,33,34},新幹線のスラブ軌道で はレールが締結されている軌道スラブと高架橋の間に設 けられたてん充層の働きにより軌道スラブと高架橋が及 ぼしあう影響は小さいこと³⁵をふまえ、モデル化は行な わなかった.

(4) 電車線・電線モデル

電車線・電線はヘビーコンパウンドカテナリを対象と し、架空地線、保護線、き電線、ちょう架線、補助ちょ う架線、トロリ線の材料特性は電車線路設備耐震設計指 針²⁸⁾をもとにした. 電車線・電線モデルは小坪ら^{30,37)}に よる鉄塔-架線系モデルを参考にした.鉄塔-架線系の 動的解析法は、架線を鉄塔に対して質量を有するばねと みなして鉄塔群をばねで連結された振動系として解析す る方法と、鉄塔と架線を一体とみなして多質点系に置換 して解析する方法が主としてある. 前者は、後者と比較 して系の自由度を大幅に低減することができ、系の振動 特性を比較的に容易に算出できるため、解析に要する時 間を節約できる.しかし、幾何学的非線形性をふまえて ばね定数を設定することが難しいうえ,架線の慣性力を 考慮できず地震波のような不規則波による解析に対応し ているとはいえない.後者は、質点数が増加して計算負 荷が大きいうえ、地震波の周波数領域において膨大な固 有値が得られるという欠点はあるが、地震応答計算結果 はより信頼性が高いといえる.これらをふまえ,電車 線・電線モデルでは後者, すなわち, 電車線柱と電車 線・電線を一体とみなして多質点系に置換することとし、 各電車線柱間の電車線・電線を4等分して梁要素でモデ ル化した.ドロッパ、ハンガについては1辺6 mm³⁸⁾の正 方形断面をもつ梁要素でモデル化し、計算例³⁹にしたが って質量を与えた.結合条件はすべて剛結とした.

ちょう架線,補助ちょう架線,トロリ線は,自動張力 調整装置によってトロリ線が水平を保つように張られて いるため⁴⁰自重による弛みは小さい.これに比べて,架 空地線,保護線,き電線は張力が弱く弛みが大きいため, カテナリ曲線の弛度と張力の関係式⁴¹(1)から弛みを求め て再現した.

$$T = \frac{WS^2}{8D} \tag{1}$$

T:電線の標準張力[N]
 D:電線の弛度[m]
 W:電線の単位荷重[N/m]
 S:径間[m]

また、電車線・電線の張力を表現するため、橋軸直角 方向および鉛直方向について、図-8に示すように各電車 線・電線の隣り合うノードの相対変位に比例して式(2) の復元力Fがはたらく線形ばねを配置した。

$$F = \frac{T(dy_2 - dy_1)}{\ell} \tag{2}$$

3. 連成系モデルの動的特性

本章では、連成系モデルを用いて地震応答解析を実施 し、電車線柱が受ける連成の影響の評価と、連成系モデ ルの高架橋および電車線柱の妥当性の検証をおこなうこ とを目的とする.

(1) 入力地震動

地震応答解析では、仙台で観測された東北地方太平洋 沖地震⁴⁹, 鷹取で観測された兵庫県南部地震⁴⁹, 小千谷 で観測された新潟県中越地震⁴⁹(以下,それぞれ仙台, 鷹取,小千谷)の地震動を入力した.いずれもL2地震 動に相当し、3方向の並進加速度を有する. 仙台の地震

動は海溝型地震,鷹取および小千谷の地震動は内陸活断 層による地震に分類される⁴⁴.東北地方太平洋沖地震に ついては東日本旅客鉄道仙台支社管内において電車線柱 の折損や傾斜の被害が大きかったことから仙台での観測 地震動を選んだ⁴⁵.地震動の継続時間が長く,大きな地 震動が2度発生したことが特徴である.兵庫県南部沖地 震は鉄道構造物が大被害を受けた地震であり,特に鷹取 において観測された地震動は道路橋の耐震設計に用いら れていることから選定した.継続時間は短いが大きな応 答加速度が観測された時間は比較的長いことが特徴であ る.新潟県中越地震は上越新幹線脱線事故を誘発した地 震であり,特に大きな震度および最大加速度を観測した 小千谷を選定した.継続時間は短く,加速度応答スペク トルも全体としては大きくないが,1~2 Hzにおいて加 速度応答スペクトルが非常に大きいことが特徴である.

図-9に各地震動の時刻歴および振動数と加速度応答スペクトルの関係を示す.地震動入力方向は,連成系モデ

ル橋軸方向とEW方向を対応させた.減衰については, 高架橋モデルの橋軸直角方向の有効質量が大きい2つの 固有モードから求めたレイリー減衰を適用した.

(2) 電車線柱が受ける連成の影響

連成の影響を地震応答解析結果に着目して評価する. 高架橋の連結が電車線柱におよぼす影響は、高架橋モデ ルと電車線柱モデル1対からなる「単独モデル」と、単 独モデル4つを調整桁モデルで連続させた「連結モデル」 によって調べる. 電車線・電線が電車線柱におよぼす影 響は、連結モデルと連結モデルの電車線柱を電車線・電 線で接続した「連成系モデル」によって調べる.また, 鉄道構造物等設計標準・同解説(耐震設計)物および電 車線路設備耐震設計指針40にしたがって,高架橋の回転 振動の影響を考慮して高架橋モデル天端の並進加速度を 補正し、電車線柱に入力した結果(以下、設計値)も参 考値として比較する.具体的には、以下のように補正し た. 高架橋モデルを橋軸直角方向にプッシュオーバー解 析をおこない、降伏したときの電車線柱下端の高架橋の 変位(以下,降伏変位)δ,[m],回転角(以下,降伏回 転角) $\theta_{\nu}[rad]$ から回転水平比 k_{θ} を式(3)により算定した.

$$k_{\theta} = \frac{\theta_{y}}{\delta_{y}} \tag{3}$$

続いて,高架橋モデルの地震応答解析によって高架橋天端電車線柱基礎部の橋軸直角方向の応答加速度 *A_h*を得る.式(4)を用いて高架橋の水平振動と回転振動を考慮した電車線柱モデル橋軸直角方向入力加速度 *A_h*'を算定した.*L*は電車線柱の地上長さである.

$$A_{h}^{'} = A_{h} \times \left(1 + k_{\theta} \times L\right) \tag{4}$$

得られた降伏変位 δ_{y} は 0.03037 m, 降伏回転角 θ_{y} は 0.0007756 rad, よって回転水平比 k_{θ} は 0.0255 であり, 電車線柱モデルの地上長さは 10 m であるから, 水平応答

加速度は $A_h = A_h \times 1.26$ として補正を行った.鉛直方

向については、地動加速度の 1/2 を電車線柱モデルへの 入力地震動とした⁴⁷⁾. なお、設計値を求める際の電車線 柱モデルに限り、橋軸直角方向および鉛直方向で張られ る平面内を動く二次元モデルとした. 比較する項目は、 電車線柱地際に加わる最大曲げモーメントと、電車線柱 地際 5.21 m における電車線柱基部との橋軸直角方向水平 方向相対変位最大値とし、連成系モデルを1としたとき の比を表-1~表-4 にまとめた. ここでは、両端を架線で 繋がれた4本の電車線柱のうち高架橋 II モデルに建植さ れた2本の電車線柱を例として取り上げ、単独モデルに 用いる高架橋モデルは高架橋 II モデルとした. また、 右側電車線柱の変位時刻歴について仙台の地震動の第1

表-1 曲げモーメント 砂詰

		単体	連結	設計値	連成系	
右側	仙台	1.09	1.08	1.44	317.2 kN · m	
	鷹取	0.99	1.02	1.24	210.7 kN · m	
	小千谷	1.05	1.03	1.35	423.5 kN · m	
1.	仙台	1.05	1.09	1.28	347.9 kN ∙ m	
左側	鷹取	0.98	0.98	1.29	259.6 kN · m	
	小千谷	0.99	0.98	1.30	470.1 kN · m	

表-2 曲げモーメント 剛結

		単体	連結	設計値	連成系
	仙台	1.00	1.05	1.17	505.5 kN · m
右側	鷹取	1.09	1.10	1.24	380.8 kN · m
	小千谷	1.01	1.01	1.10	458.7 kN · m
	仙台	1.00	1.05	1.19	502.0 kN · m
左側	鷹取	1.05	1.06	1.21	373.2 kN · m
	小千谷	1.00	1.01	1.13	446.1 kN · m

表-3 地際 5.21m における相対水平変位 砂詰

		単体	連結	設計値	連成系
右側	仙台	1.00	0.99	1.18	0.268 m
	鷹取	1.00	1.00	1.18	0.149 m
	小千谷	0.98	0.95	1.17	0.363 m
1.	仙台	1.05	1.06	1.19	0.277 m
左側	鷹取	0.98	1.00	1.25	0.200 m
	小千谷	0.98	0.96	1.14	0.386 m

夜4 地际 5.2 皿 にわけ る 相対 小半変 恒 - 剛	表-4	ナる相対水半変位 剛結
--------------------------------	-----	--------------

		単体	連結	設計値	連成系
右側	仙台	1.01	1.02	1.15	0.162 m
	鷹取	1.09	1.10	1.22	0.118 m
	小千谷	1.05	1.05	1.14	0.137 m
Ι.	仙台	1.01	1.03	1.14	0.164 m
左側	鷹取	1.08	1.09	1.20	0.118 m
	小千谷	1.01	1.01	1.11	0.139 m

波付近を図-10~図-13 に示した.

単体モデルと連結モデルの応答値を比較すると明確な 差異が違いが見られないことから,高架橋の連結が電車 線柱におよぼす影響は小さいと考えられる.連結モデル と連成系モデルの応答値を比較すると,特に剛結基礎に おいて連結モデルの応答値が大きい傾向にあり,最大 10%の差がある.これは,電車線・電線によって電車線 柱が拘束され,電車線柱が受ける負荷が軽減されること によると考えられる.設計値については,安全性を十分 に考慮して設計されていることがわかる.

また,砂詰基礎と剛結基礎の応答を比較すると,曲げ モーメントは剛結基礎のほうが大きく,相対水平変位は 剛結基礎のほうが小さい傾向が見られた.東北地方太平 洋沖地震の被害状況においても,最大地動加速度を考慮

したうえで算出された基礎種別折損率は剛結基礎のほう が高かった⁴⁸⁾.これは、剛結基礎はモルタルによって固 定されており揺れに対する減衰効果が小さいことに起因 すると考えられる.

(3) 高架橋固有振動数の実計測と固有値解析の比較

高架橋モデルの妥当性を検証するため、連成系モデル

図-16 橋軸直角方向 フーリエ振幅スペクトル

の高架橋の1次固有振動数について実計測と固有値解析 を比較した.計測の様子を図-14に示す.本研究では高 架橋柱に鋼板を巻いていない状態を対象としてモデルを 構築したが,計測を実施した南長町高架橋R14ブロック では東北地方太平洋沖地震後に鋼板を巻く耐震補強がな されたため,鋼板を考慮して補正した連成系モデルを用 いる必要がある.また高架橋の電車線柱基礎形式は砂詰 基礎であった.計測は3軸加速度センサを用いておこな い,新幹線通過後に計測された高架橋柱の自由振動約20 秒を離散フーリエ変換した(図-15,図-16).結果,橋 軸直角方向のフーリエ振幅スペクトルが4.14 Hzにおいて

卓越しており、これが高架橋の1次固有振動数と考えられる.一方、砂詰基礎の連成系モデル(鋼板有り)において、南長町高架橋R14ブロックと同規格の高架橋Iモデルに起因する1次固有振動数は3.704 Hzで橋軸直角方向のモード形状であった.実測値のほうがやや高いが、これは地盤剛性に非線形性があることに起因すると考えられる.地盤は微振動では大きな剛性をもつが振動が大きくなると剛性は次第に低下する.モデルに用いた地盤ばね定数はこれらの剛性を平均したものであり、微振動を計測した実測値と比較して固有振動数は低くなる.ゆえに、連成系モデルにおける高架橋は妥当であると考えられる.

(4) 電車線柱の振動方向特性

雷車線柱の振動方向について実現象と比較する、電車 線柱は、橋軸方向について、電車線・電線による拘束を 受けるため電柱頭部を最大振幅とする1次モードでは揺 れ難く, 地震時に橋軸方向に傾斜・倒壊する事象は発生 しづらい^{49,50}. 東北地方太平洋沖地震において, 電車線 柱が傾斜・折損した方向はすべて橋軸直角方向線路側で あった.また、草野ら物によると、東北地方太平洋沖地 震余震時に測定された電車線柱の加速度から作成された 変位リサージュにおいて、橋軸直角方向の変位が著しく 卓越し橋軸方向の変位の10倍を超えた. そこで, 連成系 モデルを用いて地震応答解析を実施し、調整桁や電車 線・電線で両端が結合されている高架橋Ⅱ、Ⅲモデル上 の電車線柱について、高架橋電車線柱基礎部に対する電 車線柱天端のリサージュを調べた. 図-17に仙台を入力 地震動としたときの電車線柱(砂詰基礎) 天端のリサー ジュを例示する. いずれのケースにおいても橋軸直角方 向の変位が卓越しており、また、線路側にリサージュが 偏っていた. ゆえに、連成系モデルにおける電車線柱に ついて実現象と整合性がとれている.

4. 耐震・制震対策の比較検討

本章では、実現象との整合性が確認された連成系モデ

図-18 高靱性能化補強

ルを用いて地震応答解析を実施し、砂詰基礎および剛結 基礎の既存PC製電車線柱の大規模地震対策を検討する. 現行対策である耐震目的の高靭性補強および門型化、今 回新たに提案する制震目的のTMDについて、地震応答 解析による効果の検証および多角的観点からの比較をお こなう.対象とする電車線柱は、実際同様に調整桁や電 車線・電線で両端が結合されている高架橋Ⅱ,Ⅲに建植 された電車線柱4本とする.

(1) 各対策を適用した電車線柱のモデル化

a) 高靭性化補強

高靱性化補強は、電車線柱モデルに以下のような補正 を加えてモデル化した(図-18). PC鋼線を切断した箇 所に塑性ヒンジを誘発して変形性能に富んだ鋼板巻き RC構造に改築する補強方法であることから、PCの非線 形特性の代わりに、塑性ヒンジが発生する地際高さ0.6 ~0.8 mにRC用のテトラリニア型の履歴特性²⁷⁾を用い, 骨格曲線には実物大振動台実験と同等のもの利用した. また、モルタルが充填される地際高さ0~1.4 mについて は質量および断面積の増加を考慮した.

b) 門型化

上下線の電車線柱1対を鋼管ビームによって連結させ る門型化は、鋼管ビームモデルはき電線用腕金直下2.1 mに配置し、電車線柱との結合条件は剛結とした. 門型 化に伴い、結合部直下の電車線柱および鋼管ビーム両端

には応力集中が生じる. そこで, 電車線柱モデルについ ては地際同様に、結合部直下ID区間にギャップ型バイ リニアの履歴特性を持つ非線形要素を配置した. 鋼管ビ ームについては、既往研究7,51)によると鋼管柱がトリリ ニア型またはバイリニア型の標準的な履歴特性で適切に モデル化できることから、トリリニア型の標準的な履歴 特性をもつ非線形要素を両端から2D区間にそれぞれ配 置した.折れ点は交番載荷試験²⁰をもとに定めた.図-19に門型化の概要を示す.

鋼管ビームには一般的な規格の鋼管が使用されており, 鋼管サイズは肉厚6mm以上,外形216.3mm以上と定めら れている53. これを満たす鋼管のうち最適なものを他の 対策と比較するため、実際に使用されているA型および B型を含む5つの鋼管をモデル化して連成系モデルに適 用し,動的解析をおこなった.結果,いずれの基礎形式 においても、鋼管ビーム結合部直下に加わる曲げモーメ ントは、鋼管ビームの断面2次モーメントが大きくなる ほど増加する傾向にあることがわかった.一方、電車線 柱地際に加わる曲げモーメントは、門型化することによ り単独柱よりも低下するものの、一定値に達すると断面 2次モーメントを大きくしてもほとんど低下しなかった. また、断面2次モーメントが大きくなると、電車線柱に 加わる曲げモーメントが地際よりも結合部直下のほうが 大きくなった.鋼管ビーム自体については、肉厚や外形 が条件以上であっても断面2次モーメントが小さいと全

塑性モーメントに達するケースがあった.以上の項目を ふまえ,電車線柱に加わる曲げモーメントが結合部直下 で地際を超えず,かつ,鋼管ビームも各自地震動で全塑 性モーメントに達しない鋼管ビームとして,肉厚6.0 mm, 外形318.5 mmを比較の対象とした.

c) TMD

電車線柱が規格品で種類が限られていることをふまえ ると、既に商品化されているTMD製品の情報^{20, 21, 22}は設 置するTMDの概要を知るうえで参考にできると考えら れる.電車線柱にTMDを設置する場合、軌道内を走行 する保守用車から設置可能であると予想されるため、施 工は容易で要する時間も1個あたり1日未満と考えられる. 材料費および施工費は1個100万円程度、メンテナンスは 定期点検で済むと考えられる.

TMDは質量, ばね, ダンパーの組合せにより制振効 果を発揮し, 主振動系振幅の応答倍率を最小にするため の条件として最適同調および最適減衰がある.本研究で は,池田ら⁵⁴⁾により提案された,式(5)および式(6)に示す 減衰を有する主振動系に対するTMDの設計法を原則と して利用し, PC製電車線柱にTMDを適用するため主振 動系の減衰定数Zとしてコンクリートの減衰3%⁵⁵を採用 した.

$$\omega_n = \left\{ \frac{1}{1+\mu} - \left(0.241 + 1.74\mu - 2.6\mu^2 \right) Z - \left(1.00 - 1.9\mu + \mu^2 \right) Z^2 \right\} \times \Omega_n$$
(5)

$$\zeta = \sqrt{\frac{3\mu}{8(1+\mu)}} + (0.130 + 0.12\mu + 0.4\mu^2)Z - (0.01 + 0.9\mu + 3\mu^2)Z^2$$

		(6)
Μ	: 対象とするモード質量[kg]	
т	: TMD質量[kg]	
$\mu = m/M$: 質量比	
Ζ	: 主振動系減衰定数	
Ω_n	: 主振動系の固有振動数 [rad/s]	
ω_n	:TMDの固有振動数[rad/s]	
$k = \omega_n^2 \times m$: TMD ばね定数 [N/m]	
ζ	: TMD 減衰比	

ただし、大規模地震による揺れを対象とする場合、最 適同調となる固有振動数は電車線柱の塑性化をふまえて 設計する必要がある。そこで、電車線柱の伝達倍率に着 目し、電車線柱において増幅される地震動を調べた。伝 達倍率のピークとなる振動数は固有振動数とみなせ、塑 性化によって固有振動数が低下していればピークは固有 値解析結果より低振動数で表れると予想される。入力値 x(t)の絶対加速度応答 $X(\omega)$ に対する応答値y(t)の絶対 加速度応答 $Y(\omega)$ の比をとったものが伝達関数 $H(\omega)$ であ り、伝達倍率はこの絶対値をとった値 $|H(\omega)|$ である。

今, x(t)とy(t)は、それぞれ高架橋天端電車線柱基部 の応答加速度と電車線柱天端の応答加速度とした.例と して、剛結基礎の連成系モデルに仙台の地震動を入力し たときの高架橋IIモデル右に着目する.電車線柱につい て固有値解析で得られた橋軸直角方向に卓越した1次モ ードの固有振動数は2.3 Hzである.一方、図-20に示すよ うに伝達倍率のピークは2.1 Hzとなっており、固有振動 数が約9%低下していることが分かる.ほかの地震動お よび基礎形式においても、固有振動数が低下する傾向が 見られた.したがって、PC製電車線柱の大規模地震対 策に用いるTMDの固有振動数は電車線柱の固有振動数 低下を見越したうえで設計しなければならず、理論式か ら求めることが困難である.そこで、数値シミュレーシ ョンを実施して効果が最大となる固有振動数を定めるこ ととした.

続いて、地震応答解析を実施してTMDの固有振動数 (設計値)と制震効果の関係を調べた.まずは、計算負 荷が小さい単体モデルを用い、電車線柱モデルの1次固 有振動数から求めた最適固有振動数(理論値)の1倍, 0.9倍、0.8倍、0.7倍、0.6倍のTMDを2本のPC柱天端に適 用した(図-21). 0.9倍から0.7倍のTMD適用時に電車線 柱地際曲げモーメント低減率が特に大きい傾向にあった. 例として、図-22に砂詰基礎の単体モデルに質量比およ び固有振動数の異なるTMDを適用し、仙台の地震動を 入力したときの低減率の推移を示す.低減率については、 対象とする電車線柱のうち各ケースで最も効果が小さか ったものについて比較した.また、TMDの質量には、 電車線柱モデルの1次モード有効質量に対する質量比1%, 3%, 6%, 9%, 12%を適用した. 質量比が大きいほど 制震効果は大きい傾向にあったが、質量比6%のTMDが 最も有効なケースもあり、さらに、質量比6%はいずれ の電車線柱基礎形式においても100 kg未満であり現実的 に設置可能な質量であることから、質量比6%を採用す ることとした.

最後に、より詳細に最適な固有振動数(設計値)を調べるために、連成系モデルに最適固有振動数(理論値) の0.9倍、0.85倍、0.8倍、0.75倍、0.7倍、質量比6%の

図-21 TMDを適用した単体モデル

TMDを適用して地震応答解析を実施した(図-23)結果, 基礎形式,地震動によらず0.85倍のときに低減率が高い 傾向があった.したがって,最適固有振動数(理論値) の0.85倍のTMDを他の対策との比較対象とした.

(2) 費用,施工性,空間的制約,メンテナンス性

a) 高靭性化補強

高靱性化補強は2013年度より開始された対策であるが、

現在では施工も熟練してきており、1本あたり所要日数 は3日程度,材料費および施工費は200万円程度である. メンテナンスフリーではあるが、今後適切に点検してい く必要がある.

b) 門型化

門型化は、重架線架に伴う補強方法として長年実施されてきたため施工は熟練しており、かつ比較的簡易である.1対あたり所要日数は1~2日程度、材料費および施工費は400万程度、メンテナンスフリーである.

c) TMD

電車線柱が規格品で種類が限られていることをふまえ, TMDについては既に商品化されている製品の情報^{20, 21, 23} を参考にする.電車線柱にTMDを設置する場合,軌道 内を走行する保守用車から設置可能であると予想される ため,施工は容易で要する時間も1個あたり1日未満と考 えられる.材料費および施工費は1個100万円程度,メン テナンスは定期点検で済むと予想される.

(4) 各対策の比較

投込み基礎(砂詰め)(以下,砂詰基礎),剛結基礎 それぞれにおける地震対策として有効なものを調べるため,高靱性化補強,門型化,TMDの3対策について,機 能性や経済性,施工性,メンテナンス性の観点をふまえ て多角的に比較する.

まず、機能性は変位制御および損傷制御で比較をおこな う.変位制御の指標には、電車線柱地際 5.21 m における 橋軸直角方向最大変位 δmを使用し, 0.75mを超えなけ れば条件を満たすものとする. 損傷制御の評価は、電車 線柱地際の橋軸直角方向最大曲げモーメントMmrの終 局曲げモーメントMuに対する到達度MmadMu%を使用し, 値が小さいほど損傷が小さいものとする. いずれの指標 も、各ケースにおいて高架橋ブロックⅡおよびⅢに建 植された電車線柱4本のうち最大値を採用する.表-5お よび表-6に、各対策および無体策のとき地震応答解析 から得られた**る**および M_{ma}/M_uを示す. また, 図-24 およ び図-25に、仙台を入力地震動としたときの各対策およ び無対策モデルの電車線柱Ⅱ右における地際最大曲げ モーメントの時刻歴を示す. なお、いずれの対策および 無対策のときも、電車線柱基部における橋軸直角方向加 速度はほぼ一致しており,応答の差は電車線柱部分にお いて主に生じていた.

変位制御については、無体策のときを含めて最大で も0.384mであり、制限0.75mに対して50%程度余裕が ある.すなわち、電車線柱が終局曲げモーメントを超え て大きく傾斜・折損しない限り、変位制限を満たす.損 傷制御については全ケースで効果が認められ、無体策で は終局に達した仙台や小千谷の地震動のケースを含め、 いずれの対策でも終局には至らなかった.基礎形式ごと

表-5 各対策の効果 砂詰						
地震動	項目	高靱性	門型	TMD	無対策	
仙云	δ [m]	0.247	0.165	0.185	0.278	
ΊШ 🗖	M_{max}/M_u	68.2 %	54.7%	58.1%	83.7 %	
應形	δ [m]	0.178	0.161	0.147	0.200	
馬収	M_{max}/M_u	52.8%	51.9%	46.6%	62.1 %	
小千谷	δ [m]	0.341	0.195	0.227	0.384	
	M_{max}/M_{μ}	87.8%	60.9%	70.8%	112.4%	

表-6 各対策の効果 剛結

地震動	項目	高靱性	門型	TMD	無対策
仙云	δ [m]	0.064	0.108	0.078	0.164
仙口	M_{max}/M_u	63.0%	93.4%	60.5 %	124.8 %
鷹取	δ [m]	0.061	0.085	0.071	0.121
	M_{max}/M_u	61.1 %	73.3 %	56.5%	93.0%
小千谷	δ [m]	0.065	0.094	0.097	0.139
	M_{max}/M_u	62.4%	80.4 %	81.4%	109.8 %

に有効性を比較すると、砂詰基礎では門型化、TMDの 効果が大きい傾向にある.各対策における*M_{mad}/M_uの*最 大値は、門型化とTMDはそれぞれ60.9%、70.8%となっ ており終局まで十分余裕がある一方、高靱性化補強につ いては87.8%にのぼる.剛結基礎では高靱性化補強の効

果が安定して大きく*M_{ma}/M_u*の最大値は63.0%である. TMDも比較的効果は大きいが最大値は81.4%にのぼる. 門型化については、93.4%まで達しており、満足な対策 であるとはいえない、すなわち、砂詰基礎では門型化、 剛結基礎では高靭性化補強の効果が特に大きく、TMD は基礎形式によらず安定して効果がある.

各対策について、上述した機能性および特徴を表-7 にまとめた.費用については、高靭性化補強と門型化に ついては1本あたり 200 万円を要するが、TMD の設置 の場合、それらの100万円程度に抑えられる。施工時間 については, 重機の持込が不要で施工技術も単純な TMD が早い.機材費や人件費をふまえて1本あたりの 施工時間は短い方が望ましいとし、複数個所の同時作業 が可能であるかについては比較対象としない.施工技術 については、高靱性化補強の複雑な施工技術⁵⁰であって も習熟してきている. TMD は保守用車等を用いて軌道 内から設置可能であれば、高靱性化補強や門型化と比較 して同等または良好な施工技術で済む. 空間的制約につ いて,TMD については詳細な検討が必要であるが,施 工条件によって対策を選択する必要がある. メンテナン ス性は、門型化のみ完全なメンテナンスフリーとみなせ るが、高靱性化補強、TMD についても原則メンテナン スフリーであり、点検内容や頻度については今後の経過 次第である.

これらをふまえると、機能、費用、施工に優れた TMD は、3 種の対策のなかでもっとも汎用性が高く優 位であるといえる. 空間的制約に応じて地震対策を選ぶ 必要はあるが、TMD であれば設置箇所の電車線柱基礎 形式によらず効果がある. TMD は点検費用が発生する ものの、低費用で施工時間も短いことを考慮すると、要 点検であることが理由で不利になるとはいえない. 急を 要する既存の PC 製電車線柱への地震対策として、TMD は有効である.

5. 結論および今後の検討課題

本研究では、新幹線高架橋上のPC製電車線柱の耐震 性能について、調整桁で連結された高架橋や電車線・電 線による連成をふまえた三次元連成系骨組みモデルを構 築し、連成系地震応答解析により精度良く評価した.そ のうえで、大規模地震対策として、現行対策とTMDに よる震動制御を多角的に比較検討した.得られた結論は 以下のとおりである.

(1) 高架橋が調整桁で連結されることにより電車線柱 に与える影響は小さい一方,電車線・電線により 電車線柱が受ける拘束は大きく,これにより電車 線柱に加わる負荷は軽減される.この傾向は剛結 基礎においてより顕著である.

- (2) 電車線柱の塑性化による固有振動数低下をふまえ て設計したTMDによる震動制御は,電車線柱の基 礎形式によらず安定して損傷制御効果が大きい. 門型化,高靱性化補強は,それぞれ砂詰基礎,剛 結基礎で特に有効である.
- (3) TMDは基礎形式に依存せず機能性が高いことに加 え,要する費用が現行対策の1/2程度であり,施工 性にも優れている.定期点検による負担はあるが,

多角的に評価すると検討した現行対策と比較して 優位である.

以上により,TMDによる震動制御は,既存PC製電車 線柱の大規模地震対策として有効であることが確認でき た.しかし,本研究ではTMDの具体的な構造設計には 至っておらず,また,対象とした電車線柱の規格も同一 であった. 今後,数値シミュレーションに加えて実験に よる検証も実施し,詳細に検討する必要がある.

検討項目		高靱性化補強	鋼管ビーム門型化	TMD			
	亦合生化和※2	砂詰め:0.25m~0.34m	砂詰め:0.16m~0.20m	砂詰め:0.15m~0.23m			
₩₩4℃%1	发 恒 刑 仰	剛結 : 0.06 m~0.07 m	剛結 :0.09 m~0.11 m	剛結 : 0.07 m~0.10 m			
仍或用已	損傷制御	砂詰め: 53%~88%	砂詰め: 52%~61%	砂詰め: 47%~71%			
	*3	剛結 : 61%~63%	剛結 : 73%~93%	剛結 : 57%~81%			
費用の比率		10	10	0.5 ^{%4%5}			
(材料費+施工費)		1.0	1.0	0.5			
時間		3日	1日~2日	1日未満 **4			
施上	技術	要試験施工	既往技術	容易 **			
空間的制約		遮音壁との狭隘箇所	門型化の対の必要性	腕金との兼合			
メンテナンス性		メンテナンスフリー	メンテナンスフリー	メンテナンスフリー			
				定期点検 **			

表-7 各対策の比較

※1 各対策を適用した連成系モデルによる地震応答解析結果に基づく.

※2 電車線柱地際から5.21 mにおける電車線柱基部との相対変位最大値.制限は0.75 m以内.

※3 電車線柱地際におけるMma/Mu. 終局(100%)を下回ることが最低条件. 小さいほど望ましい.

※4 コンパクト制振装置²⁰およびマルチタイプTMD^{21,22)}の商品情報に基づく. 100kg未満のTMDを重機を持ち込まずに保守用車等を用いて軌道内から設置すること想定.

※5 TMD本体価格は数十万円/個. マルチタイプTMD²¹⁾の商品情報に基づき,施工費込みで100万円以内/個と想定.

参考文献

- 草野英明,野澤伸一郎,岩田道敏:東北地方太平洋 沖地震による高架橋上電化柱の損傷に及ぼす土木構 造物や地盤等の影響,土木学会第67回年次学術講演 会、I-253,2012.
- 東日本旅客鉄道株式会社東北工事事務所:東北地方 太平洋沖地震震災復旧工事誌, pp.161-166, 2012.
- 社団法人 日本鉄道電気技術協会:鉄道電気技術者の ための電気概論 電車線路シリーズ 5 支持物 [I], pp.31-49, 2008.
- 4) 今村年成,室野剛隆,坂井公俊,佐藤勉:電車線柱 -高架橋連成系の地震応答特性,土木学会地震工学 論文集,pp.1182-1190,2007.
- 加藤尚,坂井公俊,室野剛隆:構造物-電車線柱-体モデルによる地震応答特性の評価,鉄道総研報告, Vol.26, No.11, pp.17-22, 2012.
- 佐藤啓介,細田暁:三次元動的非線形解析による新 幹線高架橋上の電車線柱の地震時挙動の分析,コン クリート工学年次論文集,Vol.35,No.2, pp.823-828, 2013.
- 青木佑輔,坂井公俊,加藤尚,室野剛隆,西山誠治, 原田智,清水政利:PCおよび剛製電車線柱の地震応
 答解析のための非線形特性のモデル化,第16回性能

に基づく橋梁等の耐震設計に関するシンポジウム講 演論文集, pp.159-166, 2013.

- 8) 室野剛隆・加藤尚:非線形応答スペクトル法を用いた電車線柱の応答評価法,第16回性能に基づく橋梁等の耐震設計に関するシンポジウム講演論文集, pp.247-252,2013.
- 室野剛隆,加藤尚,豊岡亮洋:地震動の入力レベル が高架橋と電車線柱の共振現象に与える影響評価, 土木学会論文集 A1(構造・地震工学), Vol.68, No.4, I-418_I-422, 2012.
- 坂井公俊,室野剛隆,佐藤勉:電車線柱砂基礎の載 荷実験と地震時挙動の把握,鉄道力学論文集第 12 号, pp.109-114, 2008.
- 11) 坂井公俊,加藤尚,桐生郷史,山本忠:電車線柱の 支持条件がその振動特性に与える影響に関する基礎 的検討,土木学会第 68 回年次学術講演会, I-180, 2013.
- 12) 杉田清隆, 大庭光商: PC 電化柱の耐震補強, 土木学 会第 67 回年次学術講演会, V-275, 2012.
- 13) 築嶋大輔, 佐々木崇人, 草野英明:狭隘箇所におけるコンクリート柱(電車線用)の耐震補強工法, 土 木学会第69回年次学術講演会, V-409, 2014.
- 14) 佐々木崇人,築嶋大輔,草野英明:コンクリート柱

(電車線用)耐震補強工法の実物大試験,土木学会 第69回年次学術講演会,V-410,2014.

- 15) 原田智,酒井大央,坂井公俊,室野剛隆:大規模地 震時の電車線柱挙動解析モデルと被害低減手法,鉄 道総研報告, Vol.28, No.10, pp.41-46, 2014.
- 16) 酒井大央,室野剛隆.原田智,坂井公俊,西村隆 義:H鋼を挿入した PC 電化柱の倒壊防止工法の検証, 第 17 回性能に基づく橋梁等の耐震設計に関するシン ポジウム講演論文集,pp.221-228, 2014.
- 「鷹野秀明,小林薫:応答変位制御ワイヤによる高架 橋上 PC 電化柱の地震時応答に関する基礎的研究,土 木学会第69回年次学術講演会,V-408, 2014.
- 18) 奥野康徳:電化柱耐震補強用制震ビームの開発,鉄 道と電気技術, Vol.25, No.9, pp.7-11, 2014.
- 19) 豊岡亮洋,坂井公俊,室野剛隆,江尻譲嗣,田中剛, 横川英彰:鉄道電車線柱用制震ダンパーの開発と振 動台実験による検証,構造工学論文集,Vol.57A, pp.542-550, 2011.
- 20) 中日本ハイウェイ・エンジニアリング東京株式会社 技術開発 構造物 コンパクト制振装置 パンフレット
 (http://www.c-nexco-het.jp/product/pdf/product04.pdf
 (最終閲覧日 2015.03.30))
- 21) ジオテック株式会社 商品・サービス マルチタイプ TMD (制振装置))
 (https://www.jiban.co.jp/service/etc/tmd/index.htm(最終閲覧日 2015.03.30))
- 22) 住友理工株式会社 マルチタイプ TMD (https://www.sumitomoriko.co.jp/k_tmd/(最終閲覧日 2015.01.27))
- 23) 背戸一登:動吸振器とその応用, コロナ社, pp.41, 2010.
- 24) 水谷司,横田祐起:東北新幹線高架橋上の電車線柱 に着目した動的非線形解析による耐震性能評価,第 17回性能に基づく橋梁等の耐震設計に関するシンポ ジウム講演論文集,pp.1-8,2014.
- M.F.Giberson : The Response of Nonlinear Multi-story Structures Subjected to Earthquake Excitation. Doctoral thesis presented to California Instute of Technology, 1967.
- 26) 小林將志, 水野光一郎, 倉岡希樹, 野澤伸一郎, 石 橋忠良:東北地方太平洋沖地震により損傷した東北 新幹線 RC ラーメン高架橋に対する被害分析, 土木学 会論文集 A1. Vol.69, No.4/I 709 -I 797, 2013.
- 鉄道総合技術研究所:鉄道構造物等設計標準・同解 説 耐震設計, pp.288-291, 丸善出版, 2012.
- 28) 公益財団法人鉄道総合技術研究所 鉄道技術推進セン ター:電車線路設備耐震設計指針・同解説 改定案, pp.34-39, 2013.
- 29) 電力設備耐震性調査研究委員会:電車線路設備耐震 設計指針(案)同解説・及びその適用例, pp.32-34, 1997.
- 30) 鉄道総合技術研究所編:鉄道構造物等設計標準・同 解説 耐震設計, pp.90-94, 丸善出版, 2012.
- 31) 坂井公俊,加藤尚,室野剛隆,原田智,清水政利, 青木佑輔,西山誠治:非線形特性のモデル化が電車 線柱の地震時挙動に与える影響に関する基礎的検討, 土木学会第68回年次学術講演会,I-179, 2013.
- 32) 鉄道総合技術研究所編:鉄道構造物等設計標準・同 解説軌道構造, pp.341, 丸善出版, 2012.
- 33) JFE スチール株式会社:製品情報>形鋼>レール>普

通 レ ー ル (http://www.jfesteel.co.jp/products/katakou/rail/rail_a.html (最終閲覧 日:2015.03.30))

- 34) 鉄道総合技術研究所編:鉄道構造物等設計標準・同 解説軌道構造, pp.35, 丸善出版, 2012.
- 35)鉄道総合技術研究所編:鉄道構造物等設計標準・同 解説軌道構造,pp.119-144,丸善出版,2012.
- 36) 小坪清真,高西照彦,井嶋克志,鳥野清:鉄塔-送 電線形の地震応答解析法,土木学会論文集,第368 号,I-5,1986.
- 37) 小坪清真,高西照彦,井嶋克志,烏野清:鉄塔の耐 震性に及ぼす送電線の影響,土木学会論文集,第344 号,I-1,1984.
- 38) 一般社団法人 日本鉄道電気技術協会:鉄道電気技術 者のための電気概論 電車線路シリーズ2 電車線 [I], pp.85, 2008.
- 39) 一般社団法人 日本鉄道電気技術協会:鉄道電気技術 者のための電気概論 電車線路シリーズ2 電車線 [I], pp.108, 2008.
- 40) 清水政利:カテナリ式電車線, RRR, Vol.61, No.2, pp.36, 2004.
- 41) 一般社団法人 日本鉄道電気技術協会:鉄道電気技術 者のための電気概論 電車線路シリーズ 4 き電線・帰 線路・がいし, pp.15-19, 2008.
- 42) 防災科学技術研究所 強震観測網(K-net, KiK-net) (http://www.kyoshin.bosai.go.jp/kyoshin/(最終閲覧 日:2015.01.19))
- 43) STRONG-MOTION VIRTUAL DATA CENYER (VDC) (http://strongmotioncenter.org/vdc/scripts/default.plx (最終閲覧日: 2015.03.30))
- 44) 鉄道総合技術研究所:鉄道構造物等設計標準・同解 説 耐震設計,丸善出版, pp.226, 2012.
- 45) 東日本旅客鉄道株式会社:特集「東北地方太平洋沖 地震と鉄道構造物」, SED2011-11 No.37, pp.113pp.160, 2011.
- 46) 鉄道総合技術研究所:鉄道構造物等設計標準・同解 説 耐震設計,丸善出版,pp.332-338, 2012.
- 47) 清水政利,原田智,室野剛隆,坂井公俊:電車線路 設備設計指針の改訂,鉄道総研報告,Vol.28, No.10, pp.47-52, 2014.
- 48) 草野英明,野澤伸一郎,築嶋大輔:東北地方太平洋 沖地震における最大地動速度(PGV)と高架橋上電 柱の損傷,土木学会第68回年次学術講演会,I-126, 2013.
- 49) 草野英明,岩田道敏,菅野一位,三上淳,羽矢洋: ラーメン高架橋上電化柱の地震時振動特性に関する 調査,SED2012-11 No.40, pp.28-35, 2012.
- 50) 三上淳,羽矢洋,草野英明,築嶋大輔:ラーメン高 架橋上電柱の地震時振動特性に関する調査,土木学 会第68回年次学術講演会,I-127, 2013.
- 51) 鉄道総合技術研究所:鉄道構造物等設計標準・同解 説 鋼・合成構造物,丸善株式会社,pp.144-147, 2009.
- 52) 公益財団法人鉄道総合技術研究所 鉄道技術推進セン ター:電車線路設備耐震設計指針・同解説 改定案, pp.6, 2013.
- 53) 社団法人 日本鉄道電気技術協会:鉄道電気技術者の ための電気概論 電車線路シリーズ 5 支持物 [I], pp.89-106, 2008.

- 54) 池田健,五百井俊宏:減衰を有する振動系の動吸振器について, The Japan Society of Mechanical Engineers, 43 巻 369 号, pp.1707-1715, 1977.
- 55)鉄道総合技術研究所編:鉄道構造物等設計標準・同 解説 耐震設計, pp.127, 丸善出版, 2012.
- 56) 佐藤泰宏:新幹線電化柱耐震補強(高じん性化補強) を施工して,鉄道と電気技術, Vol.25, No.5, pp.58-60, 2014.

(?.?.?受付)

SEISMIC RESPONSE ANALYSIS AND VIBRATION CONTROL BY TUNED MASS DAMPER OF OVERHEAD CATENARY SYSTEM POLES ON SHINKANSEN VIADUCTS

Tsukasa MIZUTANI, Rei IIJIMA, Tomoaki TAKEDA, Daisuke TSUKISHIMA and Takahito SASAKI

In the Great East Japan Earthquake, the high speed train (Shinkansen) operation system had stopped for a long time, because a large number of overhead catenary system poles (OCS-poles) of pre-stressed concrete on Shinkansen viaducts had fell down even though the viaducts were not severely damaged. Thus, the seismic performance of the OCS-poles should be clarified and improved shortly by realistic techniques. In this study, based on numerical analysis, we propsed an effective technique to ease damage of the OCS poles. Firstly, building a three-dimensional coupled frame model of four-block Shinkansen viaducts including OCS-poles and catenary cables, seismic response analysis was conducted and the dynamic response properties of the viaducuts and OCS-poles have clarified. Secondly, based on those results, we proposed a vibration control technique using Tune Mass Damper (TMD) to ease damage of OCS-poles. Finally, conducting some simulations and referring to various commercial reports on TMD, the advantages of the proposed technique to the conventional ones improving seismic performance of OCS-poles in terms of function, cost, workability and maintenance was shown.