支承およびダンパーの損傷跡に基づく 気仙大橋の津波による挙動の推定

中尾 尚史1・森屋 圭浩2・井上 崇雅3・星隈 順一4

 ¹正会員 国立研究開発法人 土木研究所 構造物メンテナンス研究センター 専門研究員 (〒305-8516 茨城県つくば市南原1-6) E-mail: nakao55@pwri.go.jp
 ²正会員 国立研究開発法人 土木研究所 構造物メンテナンス研究センター 交流研究員 (〒305-8516 茨城県つくば市南原1-6) E-mail: y-moriya44@pwri.go.jp
 ³正会員 国立研究開発法人 土木研究所 構造物メンテナンス研究センター 交流研究員 (〒305-8516 茨城県つくば市南原1-6) E-mail: t-inoue44@pwri.go.jp
 ⁴正会員 国立研究開発法人 土木研究所 構造物メンテナンス研究センター 上席研究員 (〒305-8516 茨城県つくば市南原1-6) E-mail: hosikuma@pwri.go.jp

津波の影響を受ける橋梁の挙動を明らかにするために、現地にて偶然撮影された津波の映像や数値解析 を基に津波の特性および上部構造への作用力を評価する研究が多い.しかし、映像では津波の特性は推定 できても、上部構造がどのような挙動となって流出したのかを推定することは困難である.本研究では、 津波により上部構造が流出した気仙大橋を対象として、残存した支承部や耐震補強の目的で装着されてい たダンパー等に残された損傷跡に基づき、気仙大橋の上部構造の挙動メカニズムを推定した.

Key Words : tsunami effect, bridge, bearing, damper, damage investigation

1. はじめに

2011年東北地方太平洋沖地震で発生した津波により, 橋梁が流出する被害を受けた¹⁾.上部構造が流出するこ とで,被災地への復旧が遅れるなどの2次的な被害も受 けている.また,近い将来発生すると予想されている東 海,東南海,南海地震では多くの橋梁が被害を受けると 考えられ,橋梁の津波対策は喫緊の課題である.そのこ とを受け,水路実験^{3,44}や数値流体解析^{5,77}から,津波に よる上部構造の挙動や津波による力を軽減させるための 検討が行われている.これらの研究は,主に津波作用力 を軽減させる方法,すなわち防災に視点を置いた研究で あるといえる.

一方,想定外の力が作用して上部構造が流出しても, 仮橋等を架橋するとこで,速やかな応急復旧を目指した 考え方,すなわち減災に視点を置いた検討の重要性も東 北地方太平洋沖地震から得られた重要な教訓である⁸. その1つに,津波の影響に対する橋の最終的な破壊モー ドとして応急復旧がしやすい形態に確実化させる「ダメ ージコントロール」の考え方を導入することが考えられる⁸⁹⁹. このようなシステムを考えるためには、津波により上部構造がどのような挙動を示すのか、上部構造流出までの挙動メカニズムを明らかにする必要がある.

現在、挙動メカニズムを明らかにするために、橋梁付 近で撮影されていた津波映像から津波特性を推定し、そ の結果を基に、津波により上部構造に作用する力と上部 構造の抵抗力の算定と、上部構造の流出判定が行われて いる¹⁰⁻¹²⁾.しかし、これらの研究では、津波の特性や津 波が上部構造に作用した直後の上部構造の挙動を把握す ることができても、その後上部構造がどのような挙動を 示して流出したのか推測することは困難である.被災の 事実関係としては、上部構造が流出したかどうかだけで はなく、上部構造が水平、鉛直どちらの力を支配的に受 けたのかを明らかにしておくことは、津波による橋の破 壊モードを確実化させるシステムを構築するためにも重 要なことである.

そこで本研究では、津波により上部構造が流出した気 仙大橋を対象として、下部構造、現場に残されたダンパ

(a) 被災前(提供:東北地方整備局)

(b) 被災後 写真-1 気仙大橋全景

(b) 補強後(提供:東北地方整備局) 写真-2 支承写真

ーや支承の損傷痕跡を詳細に調査し、これらの損傷メカ ニズムを踏まえた上で事実関係の情報に基づき本橋の上 部構造の挙動メカニズムを検討した.

写真-3 ダンパーの設置状況(提供:東北地方整備局)

2 気仙大橋の概要

本研究で対象とする気仙大橋(写真-1)は、岩手県陸前 高田市に位置し(図-1)、橋長181.5m(スパン長は約36m), 幅員13.4mの3径間および2径間の連続鋼鈑桁橋である. 本橋は平成17年に耐震補強工事が実施されており、鋼製 支承(写真-2(a))から水平力分散型ゴム支承(写真-2(b), 図-2)に交換され、さらに減衰性を向上させるためにシ リンダー系のダンパー(写真-3,図-3)が設置された.ゴ ム支承およびダンパーの設置位置および規格は図-4に示 した通りである.

気仙大橋周辺は、図-1に示したように、津波により広範囲にわたって浸水し、本橋付近では15m程度浸水したと報告されている¹³⁾.また、幸左らの研究により、本橋付近で波先端の速度が約6m/sで、徐々に水位が上昇する定常流状の流れを有する津波が発生していたことが、映像及び数値解析から報告されている¹¹⁾.

この津波により、全径間の上部構造が流出した(写真-1(b)).支承およびダンパーの損傷状況を図-5に示す.

図より、支承はアンカーボルトの破断、桁取付ボルト の破断、ゴム支承本体の破断が見られている.また、ダ ンパーは取付け部やダンパー本体に損傷が見られている.

図-5 ダンパーおよび支承の損傷状況

3. ゴム支承及びダンパーの被害分析

(1) ゴム支承の被害分析

本研究では、ゴム支承の被害分析に際し、ゴム支承各 部位の終局耐力を算定した.ここでゴム支承各部位の終 局耐力は道路橋支承便覧¹⁴を参考に、次式で計算を行った.

a) 水平方向の終局耐力

アンカーボルト

$$H_{u1} = A_{saH} \times \sigma_{tua} / \sqrt{3} \times n_a \tag{1}$$

ゴム支承本体

$$H_{u2} = A_{eH} \times G_e \times \gamma_u \tag{2}$$

b) 鉛直方向の終局耐力

桁取付ボルト

$$V_{u1} = A_{ss} \times \sigma_{tus} \times n_s \tag{3}$$

$$V_{u2} = A_{saV} \times \sigma_{tu} \times n_a \tag{4}$$

ゴム支承本体

$$V_{\mu3} = A_{eV} \times \sigma_{tue} \tag{5}$$

ここで、 $H_{ul}: アンカーボルトの橋軸直角方向の耐力、$ $H_{u2}: ゴム支承本体の水平耐力、<math>V_{ul}:$ 桁取付けボルトの 上向き耐力、 $V_{u2}: アンカーボルトの上向き耐力、<math>V_{u3}:$ ゴム支承本体の上向き耐力、 $A_{suH}: アンカーボルトのせ$ ん断に有効な断面積、 $A_{eH}: ゴム支承本体の断面積,$ $A_{suV}: アンカーボルトの引張に有効な断面積、A_{ss}: 桁取$ $付けボルトの断面積、<math>A_{eV}: ゴム支承本体の引張に有効$ $な断面積、<math>\sigma_{ua}: アンカーボルトの引張強さ(400N/mm^2),$ $\sigma_{us}: 桁取付けボルトの引張強さ(400N/mm^2), \sigma_{ue}: ゴム$ $支承本体の限界引張応力度、<math>n_a: アンカーボルトの本数,$ $n_s: 桁取付けボルトの本数, G_e: ゴム材料のせん断弾性$ $係数、<math>\gamma_u: ゴム支承の破断時のせん断ひずみ(300%と仮)$

写真-4 支承損傷状況

定する)である.なお、ゴム支承は図-2で示したように、 上沓の中央部にせん断キーがあり、水平力に対して、こ のせん断キーが力を受け持つ.そのため、桁取付ボルト には水平力はほとんど生じないため、桁取付ボルトの水 平方向の終局耐力は考えていない.従って、セットボル トの破断に関しては、少なくとも鉛直力による桁取付ボ ルトの引張破断が始めに発生したと考えられる.

表-1は、ゴム支承各部位の終局耐力を算定した結果で ある.表中の色付きの枠は、最弱となる部位を示してい る.ゴム支承本体の限界引張応力度は文献14)によると 3.0N/mm²~7.0N/mm²までの範囲でばらつきがあるという 報告があるため¹⁴,鉛直方向の支承耐力は上記のばらつ きを考慮して計算した値を示している.従って、鉛直方 向の支承耐力については、ゴム支承本体の鉛直耐力が最 小および最大の両方のケースを想定し、それぞれのケー スに対して最弱となる部位を色付きで表中に示している.

表より、PIおよびP2橋脚の支承は水平方向はゴム支承 本体、鉛直方向は桁取付ボルトまたはゴム支承本体が最 弱になっている.従って、ゴム支承本体が損傷している 場合はどちらの力が支配的であったかは特定できないが、 桁取付ボルトが損傷している場合は鉛直力が支配的に作 用した結果であることが考えられる.P4橋脚は、水平方 向はアンカーボルト、鉛直方向は桁取付ボルトまたはゴ ム支承本体が最弱となっており、アンカーボルトが損傷 しているときは水平力,桁取付ボルトまたはゴム支承本 体が損傷しているときは,鉛直力が支配的に作用した結 果であると考えられる. A1, A2橋台やP3橋脚の支承は 水平方向はゴム支承本体,鉛直方向はゴム支承本体また はアンカーボルトが最弱になっているため,アンカーボ ルトで損傷しているときは鉛直方向の力が支配的に作用 していたと特定できるが,ゴム支承本体が損傷している ときは,どちらの力が支配的に作用していたかは,支承 耐力からは特定できない.

今回の津波により被害を受けたゴム支承の損傷状況を 写真-4に示す.図中で、津波は下から上に向かって流れ ている.表-1と比較すると、計算で得られた各部で最弱 となる部位と、実際の損傷部位と概ね一致している.

Pl橋脚の支承は写真より,Glはゴム支承本体,G2~ G4は桁取付ボルトが破断している.表-1より,Pl橋脚は Glは特定できないが,G2~G4は鉛直力が支配的であっ たと推定できる.P4については,G1~G3はアンカーボ ルト,G4は桁取付ボルトが破断していることから,G1 ~G3は水平力,G4は鉛直力が支配的に作用していたと 推定できる.一方,P2橋脚の支承の損傷状況を見ると, G1とG3は桁取付ボルト,G2はゴム支承本体,G4はアン カーボルトが破断している.表-1より,G1およびG3は 鉛直力が支配的に作用していたと推定できるが,G2は ゴム支承本体で破断,G4は計算では最弱ではない部位 で損傷しているため、どちらの力が支配的に作用していたかは推定できない.また、Al、A2橋台とP3橋脚についても、全てゴム支承本体で損傷しているため、水平および鉛直のどちらの力が支配的に作用していたかは特定できない.

以上のことから、一部のゴム支承の損傷状態から、どちらの力が支配的に作用していたかは推定することができた.しかし、支承の損傷状態は各位置でばらつきがあり、上部構造がどのような挙動を示していたかまで、推測することはできない.そのため、ダンパーの損傷状態を分析し、支承の損傷状況の分析結果と併せて、上部構造がどのような挙動を示していたかを検討する.

(2) ダンパーの被害分析

前述したように、支承は桁取付ボルト、ゴム支承本体、 アンカーボルトでの破断が見られ、損傷部位はばらつい ており、桁取付ボルトでの破断以外の支承の損傷状況か ら、水平、鉛直のどちらの力が支配的となって破壊した のかを特定することは困難である.そこで、気仙大橋で 損傷を受けたダンパーを分析し、ダンパーがどのような に損傷したのか、メカニズムを検討した.

写真-5は津波により損傷を受けたダンパーの写真である.ダンパーの損傷は大きく分けて、桁取付ボルトや橋脚またはベースプレート取付ボルトの損傷に見られる取付部の損傷と、ロッドや二山クレビスの損傷に見られるダンパー本体の損傷に分けることができる.本研究では

写真-5 ダンパーの損傷状況

写真-7 ダンパーの損傷状況 (A2G2~G4)

回収することのできたダンパーのうち、ダンパーの挙動 として明確な痕跡が残っていたAIG2~G4、PIG2および G3、P4G3、A2G1からG4の10基のダンパーに着目して調 査を行った.なお、気仙大橋で使用されていたダンパー は、図-3で示したようなシリンダー型のダンパーであり、 一定以上の力が生じなければ、引張および圧縮方向にス トロークが動かない仕組みになっている.そのため、回 収時の作業や運搬時等に伴ってストロークが動くことは ないと考えられる.

a) 桁取付ボルトで損傷したダンパーの想定される損傷 メカニズム (A1G2~G4, A2G2~G4)

写真-6および写真-7は、桁取付ボルトで破断していた ダンパーの写真である.これらのダンパーのストローク は全て引張方向のストロークエンドに達していた.この ことから、これらのダンパーは水平方向に変位していた ことがわかる.従って、桁がダンパーのストローク以上 に水平方向に移動したことで、桁取付ボルトにせん断が

写真-8 ダンパーの損傷状況 (A2G1)

写真-9 衝突痕(A2G1付近)

発生し損傷したと考えられる.

b) 桁取付ボルトで損傷したダンパーの想定される損傷
 メカニズム(A2G1)

写真-8はA2G1位置のダンパーである. ピン間の長さ を測った結果、写真-6や写真-7で示したダンパーと異な り、このダンパーは縮んで、ストロークエンドに達して いることが確認されている.また写真-9に示したように, 橋台部には桁が衝突した痕が残っていることから、桁は 橋台方向に移動していたことがわかる.気仙大橋の図面 より、橋台部と桁には約150mmの遊間があり、ダンパー のストロークも±150mmあるため、桁が橋台に衝突した 時点で、ダンパーはストロークエンドに達したと考えら れる.以上より、このダンパーは図-6に示すように桁が 橋台パラペットに衝突する程度に移動し、これに伴い、 ダンパーがストローク可能変位以上に変位して、桁取付 ボルトにせん断力が作用して破断したか、または、桁が 衝突した後に上向きに桁が変位した際に、桁取付ボルト に引張力が作用して損傷したと考えられる.ただし、本 研究で実施した調査により得られている事実関係の情報 からは、その損傷メカニズムを特定することはできない.

一方, A2G1の支承は,水平方向の変位量の設計許容 値が225mm(設計許容値はゴム層厚の250%,ゴム層厚 は90mm)であることから,桁が橋台に衝突した時点で は損傷していなかったと考えられる.

d) 二山クレビスで損傷したダンパーの想定される損傷メカニズム (P4G3)

P4G3部に設置してあったダンパーは, 写真-10(a)に示 すように, ダンパーに伸び縮みが生じていない. 従って, このダンパーは鉛直方向に変位したこと考えられる. ま

(b) 二山クレビス損傷部 写真-10 ダンパーの損傷状況 (P4G3)

た,損傷した二山クレビス部を詳しく見ると,写真-10(b)に示すようにねじれが生じていることがわかる. このことを踏まえると,P4G3部に設置してあったダン パーは図-7に示すように,始めに桁に鉛直方向の変位 (面外方向には±3°までは可動可能)と回転するよう な挙動を示したことで,二山クレビス部にねじれが生じ て損傷したと考えられる.また,写真4に示したように,

図-7 想定されるダンパーの損傷メカニズム (二山クレビスの損傷, P4G3)

写真-11 ダンパーの損傷状況 (P1G2)

P4G4部の支承は桁取付ボルトで損傷しているため、桁 が上向きに変位したときに損傷したと考えられる.

 c) ロッド部、ピン部およびベースプレート取付けボルトで損傷したダンパーの想定される損傷メカニズム (A1G1, P1G2G3, P2G2G3, P3G2G3 (2径間連続桁側), P4G2)

写真-11および写真-12はPlのダンパーである.両者と もピンやロッド部に曲げ変形が見られる.これらダンパ ーは面外方向に変形していることから,両者とも桁が上 下方向に変位したことにより変形したと考えられる.こ の時,津波作用側であるG3ダンパーについては,PlG3

写真-12 ダンパーの損傷状況 (P1G3)

及びG4部の支承が桁取付ボルトで損傷していることか ら、桁が上向きに変位したことで上向きの力が生じて変 形したと考えられる.一方、反対側G1付近のダンパーは 写真-13に示すように橋脚天端に削られた痕跡があり、

桁により削られたと考えると、図-8に示すように、桁が 落下したことにより、下向きにダンパーが移動し、面外 方向に変形、損傷したと推測される.回収できなかった AlG1、P2、P4G2のダンパーについても、同様の挙動を 示して損傷したと考えられる.

ベースプレート取付けボルトで損傷しているP3G3ダ ンパーについても、写真からではあるが、図-9に示すよ うに、桁が上向きに変位したことでベースプレート取付 ボルトが損傷したと考えられる.

4. 損傷状況から推測される上部構造の挙動

本章では、情報が得られた支承およびダンパーの損傷 状況の事実関係から、津波による上部構造の挙動を推測 した.なお、本研究では、上部構造は剛体と仮定してい る.

(1) 3径間連続桁の推測される挙動

3径間連続桁部のA1G2~G4のダンパー(写真-6)に着 目すると、これらのダンパーは向きは全て上流側に向い ており、またストロークは全て引張方向のストロークエ ンドに達していた.この損傷状況から、A1側の上部構 造端部は最終的には上流側に移動する挙動を示したこと になる.一方,写真-11,12で示したP1G2およびG3のダン パーのストロークは引張方向に動いており、G3のダン パーではストロークエンドに達していた. これらのダン パーの取付け部は、図-3に示したように鉛直軸まわりに 回転可能な構造となっているものの、クレビスに設けら れた遊間の範囲で上向きにも動くことができる構造であ る. このような事実関係から、Pl橋脚の支点位置では、 上部構造が上向きに変位し、これに伴ってダンパーもス トロークが伸びた状態となったが、クレビスの遊間が閉 じ、ダンパー本体に曲げが作用するようになり、PIG2 のダンパーはストロークが引張の状態のままネジ部で破 壊したものと考えられる. また, P1G3のダンパーはそ の後上部構造が上流側に流れようとする動きの中で引張 方向にストロークエンドに達し、さらに桁が橋脚から逸 脱し落下したことで最終的にクレビス部のピンで破損し たのではないかと考えられる.

以上の事実を基に,推定される上部構造の挙動を考えると,以下の通りである(図-10).

- <u>津波が津波作用側耳桁および床版張出部底面に作用</u>
 <u>する</u>
- ② 上向きの力により,津波作用側が浮き上がるような
 挙動を示す(PlG3ダンパー, PlG4支承の損傷状況 より)

このとき、G4主桁全体が浮き上がるような挙動を示 したのか、P3橋脚部が主として持ち上がるような挙動を 示したかは、得られた情報からは特定できない.また、 桁が持ち上がるような挙動を示したことで、AlG4およ びP3G4の支承についても、鉛直力でゴム支承本体が損 傷したと考えられる(ただし、AlG4の支承は、G4主桁 全体が浮き上がるような挙動を示した場合).

 ③ 上部構造が上流側に水平移動するような挙動を示す (A1G2~G4ダンパーの損傷状況より)

この挙動により**写真-13**に示したように、上部構造が 上流側に水平移動(下向きに押されるような挙動も同時 に作用している可能性もある)したことで、下フランジ

図-10 推測される上部構造の挙動(3径間連続桁)

により橋台天端が削られた痕跡が見られる.

(2) 3径間連続桁の推測される挙動

写真-10で示したP4G3のダンパーは、ストロークがほ ぼ中央位置のままで、二山クレビス部において損傷が生 じた.前述したように、上向きの変位と回転によりクレ ビス部にねじれが生じ損傷に至ったと考えられる.また 写真-8で示したA2G1のダンパーは、ストロークが圧縮 方向に縮み、ストロークエンドに達し、さらに、A2G2 ~G4のダンパーは引張方向に伸び、ストロークエンド に達していた(写真-7).以上の損傷状態から、2径間 連続桁は上向きへの変位と鉛直軸まわりの回転挙動が生 じ、最終的に上流側に移動したと推測される.

これらの事実から,推定される上部構造の挙動は以下 の通りである(図-11).

- <u>津波が津波作用側耳桁および床版張出部底面に作用</u>
 <u>する</u>
- ② 上向きの力により、津波作用側が浮き上がるような 挙動を示す(P4G3ダンパーの損傷状況より)

図-11 推測される上部構造の挙動(2径間連続桁)

このとき, G4主桁全体が浮き上がるような挙動を示したのか, P3橋脚部が主として持ち上がるような挙動を示したかは,得られた情報からは特定できない.

③ 水平力により、上部構造がA2橋台上流側(G1側)
 付近を軸とする回転挙動を示す(A2G1ダンパー,
 P4G1~G3支承の損傷状況より)

写真-9に示したように、A2G1に衝突痕や、せん断キーに損傷痕が見られることから、上部構造が回転したことにより生じたものと考えられる.また、A2G4ダンパーは、上部構造の回転によりに伸びが発生し、損傷した可能性がある.この挙動で、P3G3ダンパーは鉛直力に

より橋脚取付け部で損傷したと考えられる.

 ④ 上部構造が上流側に水平移動するような挙動を示す (A2G2~G4ダンパー, P4G1~G3支承の損傷状況より)
 写真-13に示すように、上部構造が水平移動することで、橋脚天端が削られた可能性がある。

本研究では、津波により支承部に生じる作用力の同時 性までは言及することはできないが、津波が作用してか ら上部構造が流出するまでの挙動プロセスとしては、次 の通り推定できると考えられる.すなわち、始めは上向 きの力(鉛直力)が支配的に作用して上部構造の津波作 用側が持ち上がるような挙動を示し、最終的には水平力 が支配的に作用し、水平移動することで上流側に流出し たと考えられる.なお、水平移動で流出したことは図-12で示したように、幸左らが映像分析した結果¹¹とも一 致している.

5. まとめ

本研究では、気仙大橋を対象として、回収したダンパーや、支承の損傷状況を詳細に調査し、これらの事実関係から津波による上部構造の挙動メカニズムについて検討を行った.回収したダンパーの損傷状況や支承の損傷状況(写真)からではあるが、得られた知見は以下の通りである.

- (1) 一部の支承およびダンパーについては、その損傷 状況から、水平力と鉛直力のどちらが支配的に作 用して生じた損傷であるのかを特定することがで きた.
- (2) 3径間連続桁,2径間連側桁共にまず津波作用側の G4桁を支持する支承部に上向きの力が支配的に作 用し、当該桁に取り付けられていたダンパーや支 承が損傷し、その後G4桁側が持ち上がるような挙 動になったと考えられる.
- (3) 2径間連続桁は、A2G1付近を軸とする平面的な回転挙動となり、この時に、A2G1付近には桁衝突による衝突やせん断キーの損傷が生じたと考えられ

る.

(4) 津波の影響により上記(2),(3)の順に上部構造が挙動 した後、最終的に両連続桁の上部構造には水平方 向に支配的な力が作用し、上部構造は上流側に水 平移動する挙動となって流出したと考えられる.

謝辞:本研究で検証に用いたダンパーは、国土交通省東 北地方整備局道路部の御協力により提供していただいた. ここに謝意を表する.

参考文献

- 平成23年(2011年)東北地方太平洋沖地震による道路橋等の被害調査報告,国総研資料第814号,土研 資料第4295号,2014年12月.
- 佐藤崇,幸左賢二,佐々木達生,濱井翔太郎:橋台 に作用する津波作用力に関する実験的検討,構造工 学論文集,Vol.61A,pp.235-245,2015.
- 山内邦博,市東素明,幸左賢二:橋桁に作用する定 常的な流水荷重に関する検討,構造工学論文集, Vol.61A, pp.365-374, 2015.
- 川崎祐磨,伊津野和行,生島直輝,山中拓也,四井 早紀:津波による流体力軽減に有効な整流板形状に 関する実験的研究,土木学会論文集 A1(構造・地震 工学), Vol.70, No.1, pp.129-136, 2014.
- 中村友昭,水谷法美,Xingyue REN:津波による桁の 移動に与える津波力低減対策の影響に関する研究, 土木学会論文集 B3(海洋開発), Vol. 69, No. 2, pp. I_359-I_363, 2013.
- 6) 田邊将一,浅井光輝,中尾尚史,伊津野和行:3次元 粒子法による橋桁に作用する津波外力評価とその精

度検証,構造工学論文集, Vol.60A, pp.293-302, 2014.

- 中尾尚史,張広鋒,炭村透,星隈順一:上部構造の 断面特性が津波によって橋に生じる作用に及ぼす影響,土木学会論文集 A1 (構造・地震工学), Vol369,No.4 (地震工学論文集第 32 巻), I_42-I _54, 2013.
- 28) 星隈順一:道路構造物の巨大地震対策-橋に起きる 事象の思考と防災・減災対策-,基礎工, Vol.43, No.4, pp.14-18, 2015.
- 9) 森屋圭浩,中尾尚史,星隈順一:津波の影響を受ける橋に適用する損制御型支承の検討,第18回性能に基づく橋梁等の耐震設計に関するシンポジウム,2015.
- 佐々木達生,幸左賢二,神宮司博志,佐藤崇:東北 地方太平洋沖地震による小泉地区の津波被害分析, 土木学会論文集 B2(海岸工学), Vol.69. No.2, pp. I_821-I_825, 2014.
- 11) 神宮司博志,幸左賢二,佐々木達生,佐藤崇:画像 及び数値解析手法を用いた気仙大橋の津波被害分析, 構造工学論文集,Vol.60A, pp.271-281, 2014.
- 12) 中尾尚史,森屋圭浩,榎本武雄,星隈順一:宮古橋 周辺での津波の特性と橋に及ぼした影響の評価,土 木学会論文集 A1 (地震工学論文集第 34 巻) (掲載 決定)
- 13) 原口強, 岩松暉: 改訂保存版東日本大震災津波詳細 地図, pp.27-28, 古今書院, 2013.
- 14) (社)日本道路協会:道路橋支承便覧, 2004.

TSUNAMI-BRIDGE INTERACTION OF KESEN BRIDGE BASED ON DAMAGE MECHNISM OF BEARING SUPPORTS AND VISCOUS DAMPERS

Hisashi NAKAO, Yoshihiro MORIYA, Takamasa INOUE and Jun-ichi HOSHIKUMA

Video movies of the tsunami and the numerical simulation have been evidences to evaluate the tsunami-induced force to the bridges in previous researches. However, it is still difficult to identify the bridge behavior up to the stage of wash-out of superstructure. This paper focuses on the damage traces observed at the bearing supports and viscous dampers equipped in Kesen Bridge, so that the behavior of Kesen Bridge subjected to the tsunami-induced force is clarified precisely based on facts of those damage traces.