振動計測による鉄道構造物の 減衰特性の概略評価

和田一範¹·坂井公俊²·室野剛隆³

1正会員(公財)鉄道総合技術研究所 鉄道地震工学研究センター 地震応答制御 (〒185-8540 東京都国分寺市光町2-8-38) E-mail:wada.kazunori.73@rtri.or.jp 2正会員(公財)鉄道総合技術研究所 鉄道地震工学研究センター 地震動力学 (〒185-8540 東京都国分寺市光町2-8-38) E-mail:ksakai@rtri.or.jp 3正会員(公財)鉄道総合技術研究所 鉄道地震工学研究センター (〒185-8540 東京都国分寺市光町2-8-38) E-mail:murono@rtri.or.jp

近年の地震被害事例から、減衰定数の小さな構造物は応答が大幅に増幅することが分かっており、減衰 定数の小さな構造物を抽出することは重要と考えられる.しかし、計測事例が少ないことや減衰の発生要 因が複雑であるために、十分な評価手法の開発には至っていない.

そこで本研究では、衝撃振動試験および常時微動測定を構造形式や地盤条件の異なる多数の鉄道構造物 で実施することで、構造物の固有周期や減衰定数の評価を試みた、その結果、減衰定数と固有周期は、反 比例の傾向を有することが確認された、また、地盤変形の寄与率に相当する構造物上下端の振幅比と減衰 定数には正の相関が見られた、このことから、ひずみエネルギー比例減衰のような構造物全体系の減衰が 構造物,地盤それぞれの減衰の重みで決まるという考え方と調和的な傾向が得られた.

Key Words: damping properties, vibration measurement, railway structures, natural period

1. はじめに

地震に対する構造物の安全性や列車の走行安全性を判 断するうえで、減衰特性は重要なパラメータとなる。例 えば、東北地方太平洋沖地震で新幹線が脱線した原因の ひとつとして、共振現象の可能性が指摘されているが¹⁾ 減衰定数が小さいと, 共振点での増幅が大きくなるため, より小さな入力に対しても損傷や被害が発生する可能性 が高くなる. そのような耐震評価をするうえで、特に注 意すべき構造物を抽出するためには、減衰特性を適切に 評価することが重要となる.

こうした中で、橋梁構造物の減衰特性に関しては、過 去に実施された減衰定数の測定結果を統計的に整理した 例²⁵⁾がある.しかし、それらのデータは、減衰定数の 測定方法が個々で異なっていたり、構造物の種類が多岐 に渡っているのに対して標本数が多くないため、減衰特 性に関する評価法が確立するまでには至っていない.

このように減衰定数の計測事例が少ないことや、減衰

の発生要因が構造物と地盤を含めて複雑であることもあ り、例えば鉄道構造物に関する現行の耐震設計標準%で は、コンクリート部材の材料減衰に関する減衰定数は3 ~5%、地盤の逸散減衰に関する減衰定数は15~30%が目 安とされており、特に地盤の逸散減衰に関する減衰定数 に関しては、幅広い範囲で設定されている. また動的解 析を行う際には、各部材にこの減衰定数を設定した全体 系に対してまず固有値解析を実施するとともに、ひずみ エネルギー比例減衰によって各モードの減衰定数を算定 し、これをもとにした比例減衰を用いる手法が提案され、 実務設計においても多用されているものの、この妥当性 について十分に確認されているとは言い難い.

そこで、本研究では、構造形式や地盤条件の異なる多 数の鉄道構造物について、振動特性を把握するためによ く用いられる衝撃振動試験"と常時微動測定8の2種類の 振動計測を実施した.そして、計測結果から構造物の固 有振動数および減衰定数を算定し、構造条件・地盤条件 ごとにそれぞれの関係について概略評価を試みた.

2. 振動計測の概要

(1) 計測項目および機器の設置位置

本研究では、構造物の振動特性を把握するために、常時微動と小規模な衝撃力を利用し、構造物に生じる振動 波形を高感度の速度計により計測した.

図1に基本的な機器の設置位置を示す.地盤と構造物の応答特性を把握するために,構造物上部(SI),下部

(A1),構造物付近の地盤(G1)(以下,近傍地盤と 呼ぶ),構造物から離れた地盤(F1)(以下,自然地盤 と呼ぶ)に計測機器を設置した.また,橋脚式の構造物 の場合は,桁の振動も合わせて取得している(S2,S3).

(2) 計測条件

計測において、サンプリング周波数は200Hzとし、 100Hzのローパスフィルター処理を施した.1地点あたり 20分間の測定を実施し、測定時間内で30kg程度の重錘に よる衝撃力加振を11回実施している.

(3) 対象構造物

図2に示すように、地盤条件や構造種別が多様な計87 箇所の構造物を対象とした.なお、図中のG1~G7の凡 例は、耐震設計標準[®]で定めらている地盤種別を意味する.この中で、G1地盤の構造物に関しては、現在、建設中の構造物であり、軌道が載っていない状態で、隣接橋脚を含めた多点計測を実施している.また、各構造形式の一例を図3に示す.

3. 計測結果の整理方法

(1) 常時微動測定結果の整理

常時微動測定結果の整理においては、20分間の計測結 果を20.48秒(4096個)のデータごとに分割し、それぞれ でフーリエ振幅スペクトルを算出した.その際、車の通 過や重錘打撃時に発生するノイズを含んだデータは除い ている.

次に,算出されたフーリエ振幅スペクトルについて, 自然地盤(Fl)のフーリエ振幅スペクトル(図4(a))に 対する構造物上部(Sl)のフーリエ振幅スペクトル(図 4(b))の比を取る.ここで,スペクトル比を算出する際 は,0.2HzのParzenウィンドウによる平滑化処理を施して いる.

上記手順で算出されたフーリエ振幅スペクトル比(図 4(c))は、地盤入力に対する構造物応答の伝達関数を表

(D) 「1空橋脚 図3 計測を行った構造形式

している.そこで、本研究では、構造物の1次モードに 対する減衰をハーフパワー法⁹とカーブフィット法⁹で算 定することとした.各手法の概要を以下に示す.

a) ハーフパワー法

ハーフパワー法では、フーリエ振幅スペクトル比の1 次の固有振動数f₀とその時の振幅値の1/√2 (パワースペ クトルとしては1/2) となる振動数f₁, f₂を用いて、式(1) によって算定する.

$$h \approx \frac{f_1 - f_2}{2f_0} \tag{1}$$

b) カーブフィット法

カーブフィット法では,式(2)に示す1自由度系の伝達 関数H(f)と,観測記録との残差が最小となるように減衰 定数hを求める.

$$H(f) = \frac{\sqrt{1 + (2h\beta)^2}}{\sqrt{(1 - \beta^2)^2 + (2h\beta)^2}}$$
(2)

ここで、 β は固有振動数 f_0 と振動数fとの比(f/f_0)である. なお、算定結果は、観測記録との残差を計算する範囲によるが、ここでは、ハーフパワー法を適用した際の f_1, f_0 の範囲で残差を計算することとした.

(2) 衝撃振動試験結果の整理

a) 自由振動波形を利用した方法

衝撃力加振の後の自由振動状態の速度波形wが1自由度

図5 衝撃振動試験結果の整理方法

系の減衰振動方程式の解(式(3))に合うように最小二乗 法で減衰定数hを決定する(図5(a)).

$$v(N) = A \cdot \exp(-2\pi \cdot h \cdot N) \tag{3}$$

ここで、Nはピーク値の個数を表し、固有振動数の設定 の任意性による算定結果のばらつきを排除するために時 間を正規化していることに相当する.

b) フーリエ振幅スペクトルを利用した方法

衝撃力加振をデルタ関数に比例すると仮定すると、得られる速度波形のフーリエ振幅スペクトルF(f)は、式(4)で示す速度/力に関する周波数応答関数G(f)に比例する.

$$F(f) \propto G(f) = \frac{f/k}{\sqrt{(1 - \beta^2)^2 + (2h\beta)^2}}$$
(4)

ここで, kは構造物の剛性である.そこで,打撃ごとの フーリエ振幅スペクトルと式(4)との残差が最小となるh を求めることができる(図5(b)).この場合,未知数は, hとkを含めた比例定数の2種類であるため,グリッドサ ーチ法を用いて,最適なhを算定することとした.残差 を計算する振動数範囲は,常時微動測定結果の整理と同 じく,ハーフパワー法を適用した際のf,f2の範囲とした.

4. 詳細計測を行った地点に対する分析

本章では、詳細な計測を行った結果を分析することで、

全計測結果の概略評価を行なううえでの注意点を抽出する.

詳細な計測を行った地点の構造物と計測機器の配置と して、単柱橋脚式での計測(図6)と壁式ラーメン式の 計測(図7)の一例を示す.また、合わせて衝撃振動試 験のフーリエ振幅スペクトル、常時微動の自然地盤に対 する橋脚上のフーリエ振幅スペクトル比を示す.図6(b) や図7(b)より、これらの構造は複数の卓越振動数を有し ていることがわかる.また、図6(b)、(c)や図7(b)、(c) を比較すると、最も低振動数側のピークは、衝撃振動試 験,常時微動測定ともに明瞭に見られ,その振動数はほぼ同値であることがわかる.

(1) 減衰定数を評価すべき振動数

3章で述べたように減衰定数の算定には、構造全体の 地震時に主要となるモードにおける固有振動数を把握す る必要がある.

まず、図8に単柱橋脚式の各計測点について、衝撃加 振後の速度波形にフィルター処理を施した結果を示す. なお、時刻は重錘打撃した瞬間を0としている.7Hzの

図9 フィルター処理を施した壁式ラーメンの速度波形と推定モード形状

ローパスフィルターを施した場合,各振動波形の位相の ずれが小さいことがわかる(図8(a)の速度波形).この 結果から,5Hzあたりで卓越している振動モードは図 8(a)のような構造物全体が同一に振動するモードである と言える.一方で,7-12Hzのバンドパスフィルターを施 した場合,打撃した橋脚と隣接橋脚とが逆位相で振動し ていることがわかる(図8(b)の速度波形).この結果か ら,10Hzあたりの振動モードは図8(b)のような振動モー ドであると言える.

次に、図9に壁式ラーメン式の各計測点について、衝撃加振後の速度波形にフィルター処理を施した結果を示す.5Hzのローパスフィルターを施した場合、各振動波形の位相のずれが小さいことがわかる(図9(a)の速度波形).この結果から、3Hzあたりで卓越している振動モードは図9(a)のような構造物全体が同一に振動するモードであると言える。一方で、5-20Hzのバンドパスフィルターを施した場合、打撃したラーメン構造の中央に位置する柱と端部の柱とが逆位相で振動していることがわかる(図9(b)の速度波形).この結果から、5Hz以降の振動モードは図9(b)のような振動モードであると言える。

以上の結果から、橋脚式、ラーメン式それぞれについ て、柱ごとに打撃した衝撃振動試験や、構造物上端と自 然地盤との常時微動測定結果から最も低振動数側におけ るピークが、構造物全体が同一に振動するモード(地震 時に主要となると考えられるモード)となっていること が確認できた.また、一般的な橋梁・高架橋においては 地震時の主要な振動モードとしてこのような振動形状と なることが一般的であり、これが試験結果から抽出すべ

表1	各手法による減衰定数算定結果
----	----------------

手法	減衰定数
自由振動波形から算定	0.024
フーリエ振幅スペクトルから算定	0.032
ハーフパワー法	0.020
カーブフィット法	0.030

き振動モードであると言える.

(2) 各手法から算定される減衰定数の違い

本試験ケースに関して,各手法により算定された減衰 定数を表1に示す.算定手法により算定結果に違いが見 られる.この中で,ハーフパワー法とカーブフィット法 については,後者の方が,固有振動数付近の応答倍率の 形状に伝達関数をフィッティングさせている分,実際に 得られた伝達関数を適切に再現できている(図10).

上記結果は一例であるが、本来、算定手法ごとに結果 がばらつくのは望ましくない.後述するように、衝撃振 動試験結果は、試験ケースによっては減衰定数の算定が 困難な場合もあるため、本論文では、全計測結果の概略 評価は常時微動測定結果をカーブフィット法で整理する ことで実施することとした.なお、各算定法が有する算 定精度については、今後詳細に分析していく必要がある.

(3) 構造物が地盤の振動に及ぼす影響

図11に常時微動測定について,自然地盤(F2),近傍地盤(G4),構造物上部(S12)のフーリエ振幅スペクトルを示し,図12に各地盤に対する構造物上部の応答倍率を示す.構造物全体系の1次の固有振動数(約5Hz)付近において,近傍地盤は,構造物の影響を受けることで,自然地盤よりも大きな応答値を示す(図11).その

ため、近傍地盤と構造物上部の応答倍率を算出する (S12/G4)と、自然地盤から算定した場合(S12/F2)に 比べて、ピークの応答倍率が小さくなり、結果的に減衰 定数を大きく評価することとなる(図12).

このように常時微動測定で、地盤からの応答倍率を評価する際には、構造物の影響を受けていない自然地盤のデータを取得する必要があることが確認された.

(4) 衝撃振動試験結果の適用性

試験ケースによっては、図13の例に示すように、衝撃 力加振によって、1次の固有振動数の振動が十分に励起 されず、常時微動測定結果と衝撃振動試験結果の振幅値 が同程度の場合がある.このような場合は、1次の固有 振動数帯で、自由振動波形やフーリエ振幅スペクトルを 利用した減衰定数算定を行うことは困難であると考えら れる.

5. 全計測結果の概略評価

常時微動測定結果から減衰定数を算定する際は,カー ブフィット法が有効であること,衝撃振動試験結果から 減衰定数の算定が困難な場合があることが明らかとなっ た.そこで,常時微動測定結果からカーブフィット法で 算定した結果について整理する.

(1) 固有周期と構造物高さの関係

図14に構造物高さと固有周期の関係を構造種別ごと、 地盤種別ごとに示す.構造物の高さと固有周期には正の 相関が確認できる.また、地盤条件や構造種別による明 瞭な違いは見られない.

(2) 固有周期と減衰定数の関係

図15にカーブフィット法を用いて算定した減衰定数と 固有周期の関係を構造種別ごと、地盤種別ごとに示す. それぞれの図には、固有周期と減衰定数の経験式^{9,6} (*h*=0.02*T*, 0.04*T*) も合わせて示す.

一部,減衰定数が経験式の範囲外であるものの,減衰 定数と固有周期に反比例の傾向が見られる.また,比較 的軟らかい地盤(G4~G7地盤)の方が,減衰定数が大 きい.構造種別に関しては,標本数の偏りもあり,明瞭 な関係性は見られないものの,単柱橋脚式のばらつきが 大きい.

経験式に比べ、小さい減衰定数となるデータの大部分 は、**4章**で説明した詳細計測を行った箇所である.本構

図 15 固有周期と減衰定数の関係

造物は、GI地盤上に建設されている.このような硬い 地盤では、地盤の逸散減衰があまり期待できず、ほとん ど構造物の材料減衰による寄与しかないことから、低い 減衰定数を有すると考えられる.一方、経験式と比べ、 大きい減衰定数となっているデータの大部分は、図 15(b)より軟らかい地盤、すなわち地盤の固有周期が長 い地点でのデータであることがわかる.

以上のことから,地盤の固有周期と構造物全体系で発 揮される減衰定数には相関があると考えられる.これら については,5章(3)において分析を行う.

(3) 振幅比と減衰定数の関係

前述の結果から、構造物全体系で発揮される減衰と地 盤の固有周期には相関があると考えられる.また、既往 研究においても、地盤と構造物の固有周期比が地盤の逸 散減衰と相関を有することが指摘されている^{例えば10}.そ こで、本論文では図16に示すように構造物の上端と下端 について、構造物全体系の1次の固有振動数でのフーリ エ振幅スペクトルの比x(以下、振幅比x)を定義する. ここで、構造物全体系の1次モードの変形(図16)を仮 定しているため、振幅比x=0は構造物の上下端の相対変 形のみが生じ、地中部分が全く変形しないことを意味し、 振幅比x=1は構造物の上下端で相対変形が生じず、地中 部分の変形のみが生じていることを意味する.すなわち、 構造物全体系の変形に対する地盤の変形の寄与率に相当 するパラメータと言える.

図17に振幅比xと減衰定数の関係を示す.振幅比xと減 衰定数には正の相関が見られる.これは、振幅比xが大 きい(地盤の変形の寄与率が大きい)と、地盤の逸散減 衰の寄与が大きくなり、構造物全体系の減衰が大きくな るのに対して、振幅比xが小さい(地盤の変形の寄与率 が小さい)と、構造物の材料減衰の寄与が大きくなり、 構造物全体の減衰が小さくなるためと考えられる.

上述した結果は、実務で多用されているひずみエネル ギー比例減衰の考え方と調和的な傾向を有していると考 えられ、地盤・構造物それぞれの減衰定数を評価できる 可能性がある.

6. おわりに

本研究では、構造形式や地盤条件の異なる多数の鉄道 構造物について、振動特性を把握するために、衝撃振動 試験と常時微動測定を実施し、計測結果から構造物の固 有振動数や減衰定数を算定し、それぞれの関係について 概略評価を試みた.

まず,多点に計測機器を配置し,詳細な計測を行った 箇所について,以下の結果を得た.

・地震時の主要なモードと考えられる構造物全体が同一

に振動するモードは、衝撃振動試験および常時微動測 定の1次の固有振動数から抽出できる.

- ・地盤に対する構造物の応答倍率から減衰定数を算定する際は、構造物の近傍地盤が構造物の影響を受けて振動しており、減衰定数を過大に評価する可能性がある。
 そのため、構造物から十分離れた自然地盤からの応答倍率を算定する必要がある。
- ・衝撃力加振によって、1次の固有振動数の振動が十分 に励起されない場合がある. 次に、全計測結果を分析し、以下の結果を得た.
- ・構造物の高さと固有周期には正の相関が確認できた. また、地盤条件や構造種別による明瞭な違いは見られ なかった.
- ・減衰定数は固有周期と反比例の傾向を有し、経験式の 範囲にある程度収まることが確認された.
- ・構造物全体系の変形に対する地盤の変形の寄与率に相 当する構造上下端の振幅比xを定義し、減衰定数との 関係を分析すると、振幅比xと減衰定数には正の相関 が見られた.このことから、ひずみエネルギー比例減 衰のような構造物全体系の減衰が構造物、地盤それぞ れの減衰の重みで決まるという考え方と調和的な傾向 が得られた.

本内容は、多数実施した振動計測結果を概略評価した 段階である。今後は、振動計測を再現した数値解析を多 様な構造条件・地盤条件で実施することで、地盤と構造 物それぞれの減衰定数の評価方法を検討する予定である。 謝辞:本研究は国土交通省の補助金を受けて実施しました.ここに記して謝意を示します.

参考文献

- 1) 運輸安全委員会:鉄道事故調査報告書, 2013.
- 2)伊藤学,片山恒雄:橋梁構造の振動減衰,土木学会論文報告 集,No.117, pp.12-21, 1965.
- 3)加藤雅史,島田静雄:橋梁実測振動特性の統計解析,土木学 会論文報告集,No.311, pp.49-58, 1981.
- 4)加藤雅史,島田静雄:橋脚振動特性の実測データによる統計 分析,土木学会論文報告集,No.338, pp. 229-232, 1983.
- 5)栗林栄一,岩崎敏男:橋梁の耐震設計に関する研究(III) 橋梁の振動減衰に関する実測結果-,土木研究所報告, No.139, 1970.
- 6)鉄道総合技術研究所編:鉄道構造物等設計標準・同解説 耐 震設計,丸善出版,2012.
- 7) 西村昭彦,棚村史郎:既設橋梁橋脚の健全度判定法に関する 研究,鉄道総研報告, vol.3, No.8, 1989.
- 8)小坪清真,島野清:常時微動測定による構造物の振動性状解 析,土木学会論文報告集,No.222, pp.25-35, 1974.
- 9)日本建築学会:建築物の減衰,丸善出版, 2000.
- 10)若原敏裕,川島一彦:剛体基礎で支持される道路橋橋脚の 地下逸散減衰,土木学会論文集,No.432/I-16, pp.145-154, 1991.7.

(2015.9.11受付)

Evaluation of damping properties of railway structures by using two vibration measurement methods

Kazunori WADA, Kimitoshi SAKAI and Yoshitaka MURONO

It is common knowledge that damping properties are important in evaluating safety of structures or running safety of railway vehicles during earthquake. For instance, it is pointed out that the differences of damping constant of railway structures may have caused the different damages of structures in 2011 off the Pacific coast of Tohoku Earthquake. That's the reason why it is very important to evaluate damping properties for extracting such railway structures as to attract special attention in seismic assessment. However, there is no adequate evaluation method of damping properties at present because there are only a few measurement examples for damping properties and the occurrence factors of damping are very complex. However, damping properties seem to be dependent on structural types and ground conditions. Therefore, it is necessary to consider the difference of damping properties dependent on several conditions in order to propose adequate evaluation method. In this study, we measured damping constants and natural periods of railway structures of various structural types and in various ground conditions by using two vibration measurement methods named impact vibration examination and microtremor measurement. As a result, we can notice that some dispersion exists between the empiric formula and the measured data. Anyway natural period and damping constant are inversely proportional to each other. Furthermore we define amplitude ratio of upper side to lower side of structure which is related to contribution of ground deformation, and analyse the relationship between damping constant and amplitude ratio. As a result, there is a positive correlation between damping constant and amplitude ratio, and it seems that damping constant of whole structure is decided by the weight of structural damping property and ground's one.