## 観測記録から地盤全体系の 非線形特性を同定する手法の提案

#### 坂井 公俊1・井澤 淳2

<sup>1</sup>正会員 鉄道総合技術研究所 鉄道地震工学研究センター(〒185-8540東京都国分寺市光町2-8-38) E-mail: ksakai@rtri.or.jp

<sup>2</sup>正会員 鉄道総合技術研究所 鉄道地震工学研究センター (〒185-8540 東京都国分寺市光町2-8-38) E-mail: izawa@rtri.or.jp

大規模地震による入出力記録のみを用いて地盤全体系の非線形特性を同定する手法について検討を行った.まず,地盤の非線形特性を表現する際に重要な指標として,固有周期*T*gと地盤強度比*K*fを抽出するとともに,これらの指標によって地表面地震動をコントロールできることを数値解析に基づいて確認した.続いて基盤位置と地表面位置の地震観測記録から,地盤全体の固有周期*T*gと地盤強度比*K*f,刺激関数*PF*を同定する手法を提案するとともに,手法の有効性を解析的に確認した.その結果,提案法を用いることで,地盤に関する先見情報を有さない場合であっても地盤全体系の荷重一変位関係を適切に推定できる可能性があることを確認した.

Key Words : strength of a whole ground, natural period, reference displacement, nonlinear deformation characteristics of ground

#### 1. はじめに

社会インフラ施設の地震時安全性を適切に把握するためには、対象とする施設の地震時挙動を適切に評価する 必要があり、対象とする施設の振動特性を高精度に把握 することが重要である.そのため、地震時の地盤や土木 構造物、建築物の挙動を観測することにより、対象とす る系の振動特性を同定するという試みが古くから多数実 施されている<sup>例えば10-4</sup>.大規模地震時の地表面地震動を 高精度に推定するためには、表層地盤の速度構造に加え、 非線形挙動を把握することが重要である.

この地盤の非線形特性は、繰り返し三軸試験等の要素 試験から評価する事が大半であり、観測記録から同定す るという検討はこれまでほとんど実施されていなかった. こうした中で、多層構造を対象として、遺伝的アルゴリ ズムによって地盤パラメータを同定する検討が実施され ている<sup>例えば5)</sup>.これによると、地盤は深さ毎の速度構造 や、非線形挙動の特性を同定する必要があり、未知数が 多くなるために最終的に推定される各層のパラメータに は大きなばらつきが存在し、1つの解に収束しないこと も指摘されている.そのため現状では、入出力の地震動 のみから各層の詳細なパラメータを決定することは実務 的に困難であると言わざるを得ない.また,地盤を表層 および基盤の2層にモデル化することにより,地表での 地震記録から地盤の非線形挙動について検討している事 例もある<sup>例えばの</sup>が,この方法を用いるには,表層と基盤 のインピーダンス比が非常に大きい地盤である必要があ ることや,均質な2層にモデル化しているために,ある 層に局所的なひずみの集中が生じるような地盤では適用 が困難である等のいくつかの制約がある.

こうした中で筆者らの一部は、地盤の静的非線形解析 法とこれに基づく地盤の等価1自由度モデルという概念 を提案し、この等価1自由度モデルを用いた非線形解析 を実施することで、多層モデルを用いた詳細な地盤応答 解析の結果をある程度表現できることを確認している<sup>7</sup>. これによると、複雑な層構成を有する地盤であっても、 数少ないパラメータ(固有周期と地盤全体系の荷重-変 位関係、刺激関数のみ)によって地表面地震動を適切に 評価することが可能であり、この程度のパラメータであ れば、入出力波形から同定できる可能性もある.

そこで本検討では、振幅の大きな地震動の入出力波形 (工学的基盤位置と地表面位置での地震動波形)が得ら れている場合に、地盤全体系の非線形特性を同定する手 法について検討を行う.2章ではまず地表面地震動に影 響を与える地盤のパラメータ(具体的には固有周期*T*gと 地盤強度比*K*)について整理を行うとともに、このパラ メータが同一であれば、地盤の層構成によらず同一の地 震動が入力した場合の地表面応答はほぼ同一となること を数値解析により確認する.続いて3章では、工学的基 盤位置での入力地震動と地表面地震動が得られている場 合に、この地盤パラメータを逆解析により推定する手法 を提案するとともに、数値シミュレーションによりこの 手法の有効性を確認する.

## 2. 地表面地震動に影響を与える地盤全体系のパ ラメータの整理

本章ではまず、水平成層地盤において地表面地震動に 影響を与える地盤全体系のパラメータを整理するととも に、これらのパラメータで地盤を表現することの有効性 を確認する.

#### (1) 地盤パラメータの整理

地表面地震動に大きな影響を与える指標としては、従 来から固有周期*T*gが多用されている<sup>例えば39-10</sup>. 地盤の一次 固有周期は各層のせん断弾性波速度もしくはN値のみか ら固有値解析や1/4波長則によって簡易に評価すること ができるため、実務的にも有効な指標である.

一方で大規模地震を対象とした場合には地盤の非線形 化の影響が無視できず、これを簡易に表現する指標とし て、地盤全体系の静的非線形解析<sup>7</sup>に基づく地盤強度比  $K_f$ を提案している<sup>11</sup>. これは、静的非線形解析によって 得られた地表面変位 $\delta$ —剛性低下率 $G/G_0$ のうち、剛性が 初期の0.5倍となる(等価周期が初期周期の約1.4倍とな る)時点での地表面変位を規準変位 $\delta$  (cm)と定義し、こ れと固有周期 $T_g$ を用いて次式によって算定することがで きる.

$$K_f = \frac{1}{T_g^2} \times \delta_r \tag{1}$$

これは地盤要素のせん断強度gや橋梁・高架橋の降伏 震度K<sub>b</sub>に対応するものであり、地盤全体系の非線形応 答のしやすさ、地表面応答の上限値の大小に関連した指 標である.そのため大規模地震動を対象とした場合には、 従来の地盤固有周期T<sub>g</sub>に加えて地盤強度比K<sub>b</sub>もパラメー タとすることで、簡易に地盤非線形化の程度を考慮した 地盤分類が可能となる.

そのため、たとえ複雑な地層構成を有する地盤であったとしても、主に地表面地震動に影響を与えるパラメータとしては、固有周期 $T_s$ と地盤強度比 $K_f$ (もしくは規準変位 $\delta$ )のみに帰着できる可能性がある.

## (2) 地盤全体系の固有周期と地盤強度比を指標とした 表現の有効性の確認

# a) 多数の地盤モデルの構築および静的非線形解析の実施

上記(1)で抽出した固有周期*T*gと地盤強度比*K*f(もしくは規準変位&)をパラメータとした地盤の整理が,地表面地震動を表現する指標として有効であることを確認する.具体的にはまず,*T*gと*K*fが同一であるが,地層構成の異なる多数の模擬地盤を構築する.そしてこれらの地盤に対して同一の地震動を入力した非線形の地盤応答解析を実施し,地表面地震動を算定する.この地表面地震動のバラツキが非常に小さいことを確認することにより,これらの指標で地盤を表現することの有効性を確認する.

検討の前準備として、地盤の固有周期T<sub>g</sub>と地盤強度比 K<sub>g</sub>が同一で層構成が異なる多数の模擬地盤を構築する. まず、実際のボーリング結果に基づき、多様な周期特性、 層構成を有する60地盤<sup>12)</sup>を選定した.各地盤ではPS検層 が実施されており、速度構造や土質区分が把握されてい るとする.非線形特性は、GHE-Sモデル<sup>13)</sup>で表現するこ ととし、各パラメータは多数の変形特性試験に基づく標 準値<sup>14)</sup>を使用する.なおこれらの地盤の固有周期は、0.1 秒~1.7秒と幅広く分布しており、固有周期が短い方か らNo.1、No.2...No.60と順番をつけている.以上により、 固有周期、非線形特性の異なる地盤モデルが60個用意さ れた.

次に、各地盤の固有周期*T<sub>g</sub>*が0.5秒となるように、各地 盤の速度構造を調整する.この時、同一地盤において各 層に乗じる倍率係数は同一とし、それぞれの地盤毎に*V<sub>s</sub>* の補正倍率を算定した(最大3.33倍、最小0.24倍).各 地盤における補正倍率をまとめて図-1(a)に示す.当然で はあるが、補正前の周期が短い地盤(No.の小さい地 盤)ほど補正倍率は小さく、周期の長い地盤ほど補正倍 率は大きくなっている.

続いて非線形特性については、地盤の静的非線形解析 を実施することで得られる地盤強度比 $K_{\mu}$ が6.64(規準変 位 $\delta$  =1.66cm)となるように、各地盤の規準ひずみ $\mu$ を調 整する.この時の補正倍率は上記 $V_{\mu}$ の補正と同様に地盤 毎に全層で同一の値とすることとし、収束計算(誤差 0.001%以下)により求めた(最大11.61倍、最小0.29倍). 最終的な $\mu$ の補正倍率をまとめて図-1(b)に示すが、全体 的な傾向として地盤が軟弱なほど倍率が小さくなってい ることが分かる.

以上により,固有周期 $T_g$ =0.5s,地盤強度比 $K_f$ =6.64(規 準変位 $\delta$ =1.66cm)を有し,地層構成が異なる60個の地 盤モデルが得られた.最終的な各地盤の速度構造を図-2 に,規準ひずみの分布を図-3に示すが,各地盤の層厚や 速度構造は大きくばらついていることが分かる.また地



盤によっては局所的な弱層や複雑な速度構成を有するも No.5とNo.30ではそれぞれある変位において極端に刺激 のが存在する.また、これら全60地盤の静的非線形解析 関数PFが大きくなっているなど、地盤毎に多少の変化 により得られる剛性低下率 $G/G_0$ -地表面変位 $\delta$ 関係、減 がみられる.

次に地表面位置での荷重-変位関係に相当するものを 算出するために,次式によって静的非線形解析結果に刺 激関数を考慮することで,地表面位置の変位*δ*,荷重*K* を算定した.

$$\delta^{s}(x) = \int_{0}^{\delta} PF(x) dx \tag{2}$$

$$K^{s}(x) = \int_{0}^{\delta} \left(\frac{1}{T_{g}(x)}\right)^{2} PF(x) dx$$
(3)

ここで,xは静的非線形解析における作用変位(1次モード重心位置の変位), PF(x)は作用変位x時の1次モード

のが存在する.また、これら全60地盤の静的非線形解析 により得られる剛性低下率 $G/G_0$ -地表面変位 $\delta$ 関係、減 衰h-地表面変位 $\delta$ 関係、刺激関数PF-地表面変位 $\delta$ 関係 を図-4に示す.まず図-4 (a)の $G/G_0$ - $\delta$ 関係は、規準変位 $\delta$ を1.66cmに揃えているため、当然のように全ての地盤で 地表面変位 $\delta$ =1.66cmにおいて $G/G_0$ =0.5となっており、そ の他の $\delta$ こおいてもバラツキは非常に小さい.さらに図-4 (b)のh- $\delta$ 関係は、 $G/G_0$ - $\delta$ 関係と比較すると多少バラツ キが大きくなっているものの、変位の増加に伴う減衰の 増大の傾向は全地盤において概ね等しい傾向を示してい る.図-4 (c)のPF- $\delta$ 関係においても変位 $\delta$ が大きくなると 刺激関数PFが小さくなるという大まかな傾向はほとん どの地盤において共通してみられるが、たとえば地盤



図-4 TgKを揃えた60地盤の静的非線形解析結果



図-5 地盤全体系の荷重 - 変位関係(全60地盤)

刺激関数, *T<sub>g</sub>*(*x*)は作用変位x時の1次モード周期である. 図4で示した全60地盤に対して式(2), (3)を適用して得られた荷重-変位関係を図-5に示す.これを見ると,まず 初期の固有周期*T<sub>g</sub>*を0.5秒に揃えているため,変位が小さ な領域では各結果は完全に一致している.また地表面変 位が30cm以上と比較的大きな領域において,地盤強度 比*K<sub>f</sub>*を揃えているために,各地盤におけるバラツキはそ れほど大きくない.ただし,地盤の強非線形に伴う振動 モードの局所的な変化によって刺激関数*PF*が大きく異 なる地盤も存在するため,微小変位時の各地盤のバラツ キと比較すると,変動が大きくなっている.

#### b) 逐次非線形解析による地表面地震動の評価

続いて、上記a)で作成した全60地盤に対して逐次非線 形解析を実施し、それぞれ地表位置の地震動を算定する ことで、固有周期Tgと地盤強度比KJによって地盤を整理 することで、地表面地震動を適切に評価できていること を確認する.

検討に用いる地盤は、上記a)で整理した60地盤を全て 用いることとし、非線形特性はGHE-Sモデルによって表 現している.入力地震動は、鉄道構造物の耐震設計に用 いられているL2地震動(スペクトルII)<sup>10</sup>(図-6)とし た.また今回は速度構造を調整しているために、底面の 境界条件はダッシュポット等による表現ではなく固定境 界とした.さらに今回はT<sub>o</sub>K<sub>o</sub>描えた検討(これをケー



図-6 入力地震動の時刻歴波形

|     | X Dati                | <u></u>                       |
|-----|-----------------------|-------------------------------|
| ケース | 固有周期<br><i>Tg</i> (s) | 地盤強度比<br><i>K<sub>f</sub></i> |
| 1   | 0.5                   | 6.64                          |
| 2   | 0.5                   | 線形<br>(K=∞に相当)                |
| 3   | 0.5                   | 調整なし<br>(元地盤 <sub>2</sub> 使用) |
| 4   | 調整なし<br>(元地盤V,使用)     | 6.64                          |

表-1 検討ケース一覧

ス1とする)に加えて,**表-1**に示すように,地盤を線形 とした場合,どちらか一方のパラメータのみを揃えた場 合の計算も実施することとする.

以上の条件のうち,ケース1 (*T<sub>s</sub> K<sub>f</sub>*とも揃えた60地盤 での逐次非線形解析)によって得られた60個の地表位置 の時刻歴波形(絶対加速度,相対変位)を図-7にまとめ て示す.これより,各波形の振幅特性,経時特性はほぼ 同一となっていることが分かる.その傾向は変位波形だ けでなく比較的高振動数成分の影響を表した加速度波形 においても同一であり,地盤の1次固有周期*T<sub>s</sub>*と地盤全 体系の強度に着目した指標である地盤強度比*K<sub>f</sub>*を揃える だけで,地盤の層厚,速度構成によらず広い周期帯の応 答をコントロールできていることが分かる.

また、全60地盤の弾性加速度応答スペクトルを検討ケ ース毎に重ねて描いた結果を図-8に示す.まず地盤を線 形弾性体としたケース2(図-8(b))とケース1(図-8(a))





の結果を比較すると、そのスペクトル形状は大きく変化 している.この結果より、今回想定した地震動(図-6)

によって、地盤は大きく非線形挙動を示していることが 確認できる.また、TgとKのどちらか一方のみを揃えた



図-9 応答スペクトル (h=0.05) の変動係数



図-10 地盤No.5, No.30における地表面地震動の 応答スペクトル (ケース1)

ケース3,ケース4の結果(図-8(c),(d))とケース1を比較 すると、明らかにケース1の方が各地盤の応答の変動が 小さくなっており、今回抽出した2つのパラメータで地 盤を制御することの妥当性が確認できる.

これを定量的に把握するために、図-9には各条件にお ける応答スペクトルの変動係数を示している. これより まずケース1,2と比較してケース3,4における応答のバラ ツキは全周期帯において非常に大きくなっていることが 確認できる.またケース1とケース2を比較すると、地盤 を線形としたケース2では場合、周期0.2秒程度に存在す る2次モード近傍で地盤毎のバラツキが大きくなってい る.一方で地盤の非線形性を考慮したケース1では、各 層の履歴減衰の影響で地盤全体の減衰が大きくなったた め、高次モードの影響が想定的に小さくなり、結果的に 幅広い周期帯において安定してバラツキが小さくなって いる.ただし、図-5に示した全地盤の荷重-変位関係か らも分かるように、比較的大きな変位を示す場合には地 盤毎の刺激関数が徐々に異なってくるために、地盤固有 周期よりも長周期側におけるバラツキは、ケース1より もケース2の方が多少大きくなっている.特に,図-4 (c) に示す地盤の静的非線形解析結果において特徴的な刺激 関数の傾向を示した地盤No.5とNo.30における応答スペ

クトルを他の58地盤の結果と重ね描いた結果を図-10に 示すが、地盤No.30では周期0.3~1.0秒程度、地盤No.5で は周期2秒以上において、他の地盤よりも応答が大きく なっており、モード形状の特性が他の地盤と異なる場合 には、地表面応答も変動していることが確認できる.し かしながら図-9の結果から、その変動はそれほど大きく なく、周期によらず比較的安定した結果となっているこ とが確認できる.

以上より、たとえ複雑な地層構成を有している場合に も、地盤の堆積構造が水平成層で表現できる地点におい ては、地盤の非線形特性を表現する指標として固有周期  $T_g$ と地盤強度比 $K_f$ (もしくは規準変位  $\delta$ )が重要である ことが確認できた。そのため仮に地中と地表における地 震記録が得られている場合に同定すべき地盤のパラメー タとしては、各層の非線形特性ではなく、地盤全体系の  $T_g > K_f$ (もしくは $\delta$ )の2つに絞ることができる。そこで 次章では大規模地震における入力波と地表面波が得られ ている場合に、 $T_g > K_f$ (もしくは $\delta$ )を同定する方法を 検討する。

#### 3. 地盤の非線形特性の同定

#### (1) 地盤の非線形特性の同定方法

基盤位置と地表面位置の地震動波形が観測された場合 に、地盤非線形特性を同定することを試みる.同定する パラメータとしては、前章で抽出した地盤の固有周期 $T_g$ 、 規準変位 $\delta$ に加え、1自由度モデルによる応答を地表面 位置での値に変換するための刺激関数PFの3つの指標と した.よってこれらのパラメータを逆解析によって同定 することを目的とするが、このうち地盤の固有周期 $T_g$ に ついては、事前のPS検層結果や常時微動観測、微小地 震記録によるフーリエスペクトル比などからある程度容 易に同定することも可能であると考えられる.そこで今 回は、試算のケース1として固有周期 $T_g$ が事前に把握で きている場合(未知数:規準変位 $\delta$ 、刺激関数PF)、ケ ース2として固有周期 $T_g$ が分かっていない場合(未知 数:固有周期 $T_g$ 、規準変位 $\delta$ 、刺激関数PF)の2ケース に対して試算を実施することとした.

逆解析の方法としては、地盤構造の同定等に多用され ている遺伝的アルゴリズム(GA)<sup>例えば15)</sup>を用いることと した.逆解析時の目的関数は以下のように設定した.

$$\varepsilon = \sum_{i=1}^{n} \left( D^{obs}(t_i) - D^{cal}(t_i) \right)^2 \to \min$$
<sup>(4)</sup>

ここで、*D*<sub>db</sub>(*t*)は時刻*t*における基盤位置と地表面位置 の観測記録の相対変位、*D*<sub>ad</sub>(*t*)は時刻*t*における等価1自由 度モデルを用いた応答解析による相対変位、*n*は対象と する波形のデータ数である. GAの計算条件としては、

表-2 パラメータの探索範囲,離散化の条件

| パラメータ             | ケース1      | ケース2      |
|-------------------|-----------|-----------|
| 固有周期              | —         | 0.25~1.0  |
| $T_g(\mathbf{s})$ | (既知)      | (8bit)    |
| 規準変位              | 0.33~8.23 | 0.33~8.23 |
| $\delta(cm)$      | (10bit)   | (10bit)   |
| 刺激関数              | 0.5~2.0   | 0.5~2.0   |
| PF                | (8bit)    | (8bit)    |



適応度の高い解周辺を探索し、より最適な解を求めるた めに、ルーレット選択規則<sup>10</sup>を用いる.また、局所的な 解にとどまることを防ぎ、より広範囲な解を探索するた めに、動的な突然変異を発生させる.各パラメータの探 索範囲、離散化ビット数は**表-2**に示すように設定した. GAのパラメータとして、個体数10、世代数200、交差確 率70%とする.以上の操作を初期乱数を変化させてそれ ぞれ独立に5回繰り返し、最終的に得られた5個の解の中 から、式(4)の目的関数を最も満足する結果を最終的な 解として選択した.

また観測される波形としては、2章で用いた入力波、 出力波を用いる.具体的には、入力波として図-6で示す 鉄道構造物のL2地震動(スペクトルII)、出力波は固有 周期 $T_g$ =0.5s、規準変位 $\delta$ =1.66cm(地盤強度比 $K_g$ =6.64)を 有し、地層構成の異なる多数地盤による応答解析結果 (図-7の絶対加速度波形)とする.そのため今回の問題 としては、入力波1波と出力波60波の計60セットの入出 力波が得られていることになる.このそれぞれのペアに 対して地盤の非線形特性を同定することとする.これら 各ケースの正解値としては、 $T_g$ =0.5s、 $\delta$ =1.66cmであるが、 刺激関数は各地盤の変位レベル毎に変化するため、明確 な正解値は存在しない.

#### (2) 試算ケース1(固有周期が既知の場合)

試算のケース1として、まずは地盤の固有周期 $T_g$ が0.5s と既知の条件下での非線形パラメータの同定を試みる. 計算の条件は上記(1)で述べたとおりとし、各入出力波 形(60セット)に最も合致する規準変位 $\delta$ と刺激関数PFを同定した.

最終的に得られた各入出力波形のペア毎の非線形特性 推定結果を図-11に示す.これより,各ケースにおいて 規準変位&はほぼ正解値を推定できていることが分かる. また刺激関数はそれぞれの結果で1.0~1.5の範囲でばら ついているが,これは地盤の層構成や変位レベルによっ





図-13 刺激関数の変位依存性と同定結果の比較

て変化するために、この結果のみから妥当性を判断する ことは困難である.ただし図4(c)のPF - δ関係と今回の 同定結果を比較すると、今回の結果は各地盤の詳細な静 的非線形解析による刺激関数算出結果の範囲に収まって おり、おおむね妥当な結果が得られていると考えられる.

さらに、これらのパラメータ(固有周期Tg,規準変位 る、刺激関数PF)から評価される地盤全体系の荷重一変 位関係を全てまとめて図-12に示す.なお刺激関数PFは 変位レベルによらずそれぞれの結果で得られた値をその まま乗ずることで考慮している.この図には正解値の位 置づけとして、図-5で示した各地盤の詳細モデルによる 静的非線形解析結果の平均値等も記載しているが、変位 が大きな領域において、今回の同定結果の方が多少剛性 が大きくなっている.これは、実際の地盤における刺激



関数は、図-4(c)に示したように変位の増大とともに小さ くなる傾向があるが、今回の同定問題においては変位レ ベルによらず一定値としているため、中間的な変位状態 におけるPFを推定してしまい、大変位状態におけるPF よりも大きな値を取るために、結果的に荷重を過大に評 価してしまっていると考えられる.これを確認するため に、代表的な2地盤を対象に静的非線形解析によって得 られるPF - δ関係と逆解析によって同定されたPFを比較 したものを図-13に示すが、いずれの結果も数cm程度の 変位状態での刺激関数を出力していることが分かる.そ のため変位が10cm程度よりも大きな領域では荷重を過 大評価した結果となっている.

#### (3) 試算ケース2(固有周期も未知の場合)

続いて試算ケース2として、地盤の固有周期Tgも未知 (地盤の事前情報として何も無い)とした場合の地盤の 非線形パラメータ推定を実施する.計算の条件は上記 (2)と同一であるが、表-2に示すように固有周期も未知数 として探索を行った.

最終的に得られた各パラメータを図-14に示す.ケース1の結果と比較すると、刺激関数PFの推定値、変動は それほど変わらないものの、固有周期 $T_g$ 、規準変位 $\delta$ は 正解値と大きく異なる値を推定しており、各ケース毎の バラツキも大きい.  $T_g$ 、 $\delta$ ともに全体的に大きめの値を推 定している.

続いて、これらの各パラメータを用いて計算される地 盤全体系の荷重-変位関係を図-15に示す.この結果に も上記(2)と同様に変位レベルによらず各ケースで推定 された刺激関数PFを乗じている.これを見ると、全体 の荷重-変位関係は、正解値の平均的なラインに非常に 近く、ほぼ正しい結果を同定できていることが分かる.

これは、上記(2)と異なり固有周期(初期剛性)もパラ メータとして同定しているため、仮に刺激関数が変位に よらず一定であったとしても、変位が小さな領域を対象



図-15 地盤全体系の荷重-変位関係(ケース2)

に固有周期を調整し、変位が大きな領域では地盤強度比 を調整することで、幅広い範囲でのフィッティングが可 能となっていたと考えることができる.

以上より,地盤情報として既知の情報がない場合には, それぞれの指標の推定精度はそれほど高くないものの, 地盤全体系の荷重-変位関係はある程度適切に評価でき ており,さらにこの地盤を用いた場合の観測波形の再現 性も良好であるため,本手法は地盤の骨格形状を同定す る方法として有効であると言える.

またこれらの結果から,地盤特性を同定する際には, 刺激関数の変位依存性も考慮できるような形で未知数を 設定することによって,より精度の高い地盤の非線形特 性が得られると推察される.しかしながらパラメータ同 定を行う際の解析手法として,等価1自由度モデルを用 いており,変位レベルに応じて逐次変化する刺激関数を 適切に考慮することは現時点では難しい.そのため,非 線形パラメータ推定時の刺激関数の変位依存性について は、今後の課題としたい.

#### 4. まとめ

本検討では、地震による入出力記録から地盤の非線形

特性を同定する手法について検討を行った.まず,地盤 の非線形特性を表現する際に重要な指標として,固有周 期 $T_g$ と地盤強度比 $K_f$ (もしくは規準変位 $\delta$ )を抽出する とともに,実際にこれらのパラメータが同一であれば, 層構成が大きく変化する場合にも,同一の地震動を入力 した場合に得られる地表面地震動の変動は非常に小さい ことを確認した.

続いてこの特性を考慮して、基盤位置と地表面位置の 地震観測記録から、地盤全体の固有周期 $T_g$ と規準変位 $\delta$ , さらに刺激関数PFを推定する手法を提案し、試計算に より手法の検証を行った.その結果、先見情報として地 盤の固有周期 $T_g$ がある場合には、規準変位 $\delta$ を高い精度 で推定できることを確認した.地盤の情報が何もない場 合には、固有周期 $T_g$ 、規準変位 $\delta$ ともに正しい解を得ら れない可能性もあるが、この場合にも地盤全体系の荷重 一変位関係は、適切な結果となっていることを確認した.

ここで、地盤の固有周期は事前のボーリング情報や中 小地震記録の伝達関数などから容易に推定できるため、 今回の手法は地盤の非線形特性を同定する方法として活 用できる可能性が高い.

既往の検討<sup>3</sup>では、各層の地盤の非線形パラメータを 同定しようとするとケース毎のバラツキが非常に大きく なり、安定した解が得られないものの、各層の応カーひ ずみ関係を平均すると、これらの解は概ね同一の応カー ひずみ関係となっていることを指摘している.このこと はつまり、今回提案したように、地盤全体系を1要素と 考え、この非線形特性を同定することの有効性を示して いるものと考えられる.

今後は、本手法を実際の観測記録、実地盤に対して実施することで、実問題に対する手法の適用性を確認する 予定である.

#### 参考文献

 Beck, J.L. and Jennings, P.C.: Structural identification using linear models and earthquake records, *Earthquake Engineering and Structural Dynamics*, Vol.8, pp.145-160, 1980.

- 土岐憲三,佐藤忠信,清野純史,市原和彦:地盤-構造物系の非線形復元力特性の同定,京都大学防災 研究所年報,第31号 B-2, pp.1-21, 1988.
- 護雅史,林康裕:構造物の地震時挙動と入力動の推 定に関する研究~構造物の振動特性の同定に基づく 推定手法の検討~,構造工学論文集,Vol.42B, pp.309-320,1996.
- 川瀬博,松尾秀典:K-NET,KiK-net,JMA 震度計観測 網による強震動波形を用いた震源・パス・サイト各 特性の分離解析,日本地震工学論文集,第4巻,第1 号,pp.33-52,2004.
- 5) 酒井久和: GA を用いた基盤入射地震動推定のための 非線形地盤特性値の同定, 土木学会論文集, No.682/I-56, pp.165-175, 2001.
- 6) 時松孝次,翠川三郎:地表で観測された強震記録から推定した表層地盤の非線形性状,日本建築学会論 文報告集,第388号,pp.131-137,1988.
- 7) 坂井公俊,室野剛隆:地盤の等価1自由度モデルを 用いた動的解析法の提案,第14回日本地震工学シン ポジウム, pp.1819-1828, 2014.
- 8) 官報,建設省告示第1793号,1980.
- (公社)日本道路協会:道路橋示方書・同解説(V 耐震設計編),2012.
- 10) (公財)鉄道総合技術研究所:鉄道構造物等設計標 準・同解説 耐震設計,2012
- 坂井公俊,井澤淳,室野剛隆,日野篤志:地盤全体 系の強度を指標とした高精度地盤分類のための基礎 的検討,第 14回日本地震工学シンポジウム, pp.1829-1838, 2014.
- 12) 川西智浩, 室野剛隆, 佐藤勉, 畠中仁: 土質区分の 影響を考慮した地盤種別の分類に関する検討, 土木 学会地震工学論文集, Vol.29, pp.187-196, 2007.
- 13) 室野剛隆,野上雄太:S字型の履歴曲線の形状を考慮した土の応力~ひずみ関係,第12回日本地震工学シンポジウム論文集,pp.494-497,2006.
- 14) 野上雄太,室野剛隆:S字型履歴曲線を有する土の非 線形モデルとその標準パラメータの設定,第30回土 木学会地震工学研究発表会論文集,2009.
- 15) 長尾智晴:最適化アルゴリズム,昭晃堂,2000.
- 16) John H. Holland.: Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biolo-gy, Control, and Artificial Intelligence. Bradford Books, 1992.

### INVERSION METHOD FOR NONLINEAR CHARACTERISTICS OF A WHOLE GROUND BY USING EARTHQUAKE OBSERVATION RECORDS

#### Kimitoshi SAKAI and Jun IZAWA

This paper proposes the estimation method for nonlinearity of a whole ground with using only input and output records of a large earthquake. Natural period,  $T_g$  and strength of whole ground,  $K_f$  which is propose by the authors, are selected as important indexes for expressing ground nonlinearity. It was confirmed that the ground motion at surface are much influenced by these two indexes. We, therefore, examined the estimation method for  $T_g$  and  $K_f$  by using input and output record of large earthquake in this paper. Applicability of the method is confirmed by numerical simulations. By using proposed method, nonlinear deformation characteristics of a whole ground can be estimated using only observation records without detailed soil profile of each layer.