鉄道車両の走行性に与える 構造物の減衰および振動特性の影響

豊岡 亮洋1・飯田 浩平2

¹正会員(公財)鉄道総合技術研究所 (〒187-0044 東京都国分寺市光町2-8-38) E-mail: toyooka.akihiro.58@rtri.or.jp

²非会員(公財)鉄道総合技術研究所 (〒187-0044 東京都国分寺市光町2-8-38) E-mail: iida.kohei.89@rtri.or.jp

構造物の減衰は、地震時の構造物の応答のみならず、走行中の車両の走行安全性にも影響を及ぼす要因 であり、特に減衰の低い構造物は、路線内において相対的に車両の走行安全上の弱点箇所となり得る懸念 がある。しかし、構造物の減衰と車両の走行安全性の関係を検討した事例は限られており、定量的な評価 が求められている。そこで本研究では、減衰をパラメータとした構造物の一自由度モデルを用い、構造物 の地震応答解析、および得られた構造物応答を用いた車両運動解析を実施することで、構造条件および地 盤条件と減衰の組合せが車両の走行安全性に及ぼす影響を評価した。その結果、構造物の降伏震度が高く 固有周期が長い場合、減衰が走行安全性に及ぼす影響が相対的に大きいことを明らかにした。

Key Words : low damping, resonance motion, vehicle dynamics, running safety of train

1. はじめに

橋梁・高架橋上を走行する鉄道車両の地震時挙動 を考える場合、車両の動的挙動は、地震動自体の特 性に加えて構造物の振動挙動の影響を大きく受ける。 このため、地震時の車両の挙動、特に脱線に至るよ うな挙動を評価する際には、構造物の周期特性や降 伏震度、減衰定数などの影響を適切に考慮する必要 がある。このうち、構造物の周期特性および降伏震 度については、「鉄道構造物等設計標準・同解説 耐震設計」¹⁾(以下、耐震標準)および「鉄道構造 物等設計標準・同解説 変位制限」²⁾(以下、変位 制限標準)において線形構造を対象としたSI値によ る照査が規定されているとともに^{2),3)}、非線形構造 物に対しても、構造物の振動卓越周期と脱線限界速 度の関係を表すノモグラムが提案されている⁴⁾。

一方、構造物の減衰定数についても、この設定に より構造物の振動挙動が大きく異なることは振動論 の教えるところであり、線形構造物において単一振 動数の基盤加振を想定した場合、共振応答は減衰定 数に逆比例して増大する。また、構造物が非線形挙 動を示す場合においても、応答が減衰の設定方法や その値に大きく依存することが既往の研究結果等に おいて指摘されている^{例えば5)~7)}。このことから、減 衰定数は構造物の振動特性のみならず、この上を走 行する車両の走行安全性に対しても影響を及ぼすと 考えられる。実際、低減衰の構造物上を車両が走行 する場合、地震動により構造物に選択共振が生じ、 車両の走行安全性が低下する可能性が指摘されてい る⁸⁾。しかし、車両走行性に関する既往の検討では、 減衰定数として5%以上を想定した場合が主となっ ており^{1)~4)}、5%よりも低い減衰定数を有する構造物 上を走行する車両の地震時走行安全性について定量 的に評価しておく必要があると考えられる。

そこで本論文では、橋梁・高架橋上を走行する鉄 道車両に地震動が作用した状態を想定した動的解析 を実施し、脱線に対する安全余裕度が構造物の減衰 によりどのような影響を受けるかを定量的に把握す ることを目的として解析的検討を行った。

2. 解析の概要

地震動は構造物の振動を介して鉄道車両に作用す るため、この振動の流れに沿って解析を実施する。 すなわち、まずある諸元を有する構造物の地震応答 解析を行い、得られた構造物天端の応答波形を車両 の加振入力とした車両挙動解析を実施する。ここで、 車両と構造物を一体でモデル化し、同時加振解析を 行うことも可能ではあるが、本研究ではRC橋梁・ 高架橋のように、車両と構造物の質量比が大きく、 構造物と車両の連成挙動の影響が無視できる条件を 想定し、構造物と車両の解析を分離して実施した。

NJ (L25pcil-G3,5) 2, z 図-1 構告解析モデルの概要

~	1	<u> </u>	· •	× 190 ×

推進ながらい。

衣-1 構造解析ハワメータ				
パラメータ	設定範囲			
弹性固有周期T _s (s)	0.1~2.0			
降伏震度K _{hy}	0.3, 0.6, 線形			
減衰定数h _s (%)	0.5, 1.0, 2.0, 3.0, 4.0, 5.0			

この場合、4章で述べる車両挙動解析コードの制 約から、構造物の動的解析により天端の絶対変位応 答を算定し、これを車両挙動解析の入力として使用 する。また、対象構造と隣接構造の振動に位相差が 生じる場合、走行タイミングによっても車両挙動は 変化するが、ここでは主に構造物の減衰が車両応答 に与える影響に着目するため、車両挙動解析では横 方向(線路直角方向)に一様に振動する構造物上を 車両が走行する状態を想定して実施した。すなわち、 本研究では、地震時の横方向の振動変位に対して車 両走行性の評価を行うものであり、不同変位の影響 については考慮していない。以下、構造物の応答解 析および車両の走行性解析について概説する。

3. 構造物の地震応答解析

構造物の動的解析においては、図-1に示すように、

橋梁・高架橋を1自由度モデルにより表現し、この モデルに地表面地震動を作用させることで構造物天 端の応答を算定する。構造物は、線形構造、および Clough型バイリニアモデルを有する非線形構造の2 種類を設定してモデル化した。

この応答値算定において、構造物の減衰定数をパ ラメータとして与え、減衰定数ごとの応答波形を計 算するが、鉄道車両の地震時応答は構造物の振動特 性に大きく影響を受けることから²⁾、各減衰定数に 対して、弾性固有周期*Ts*および降伏震度*Khy*につい てもパラメータとして解析を行った。減衰係数は、 減衰定数*hs*と弾性固有周期*Ts*により与えた。パラメ ータの設定条件を表-1に示す。また、Clough型バイ リニアモデルに必要な二次剛性倍率、剛性低下倍率 については、耐震標準でRC橋梁・高架橋の所要降 伏震度スペクトルを算定する際に用いる値として、 それぞれ0.1、0.2を設定した¹⁾。

入力地震動は、耐震標準に規定されるL2地震動ス ペクトルIIを用いるが、地盤条件の影響を考慮する ため、G3地盤(普通地盤:地盤周期0.25~0.5 (s)、 最大加速度872gal)およびG5地盤(軟弱地盤:地盤 周期0.75~1.0 (s)、最大加速度665gal)用の地表面地 震動波形を設定した¹⁾。図-2には、減衰5%における 弾性加速度応答スペクトルを示す。このように、ス ペクトル振幅はG3地盤用入力の方が大きく、G5地 盤用入力はやや長周期側に成分を有している。

以上の解析により、図-1のように構造物天端の絶 対変位応答X_aを算定し、以降の車両挙動解析におけ る入力として設定した。なお、構造条件によっては 構造物に残留変位が生じる可能性もあることから、 絶対変位応答の算定にあたっては、あらかじめ地表 面地震動の変位波形 z を算定しておき、これに構造 物の地盤からの相対変位 xを加えることで算定した。

4. 地震時の車両挙動解析

次に、構造物天端の絶対変位波形を入力とした地 震時車両挙動解析を実施する。この解析には、鉄道 総研で開発した車両運動シミュレータ(Vehicle Dynamics Simulator、以下 VDS)⁹を用いた。VDS は、 通常の車両走行シミュレーション機能に加えて、レ ール下から列車の進行方向に対して上下・左右・前 後の並進振動を入力できる機能を備え、車輪がレー ル上でジャンプする挙動や、車両が大きくロール変 位する挙動を解析可能である。このプログラムによ る解析については、実台車を用いた加振実験による 精度の検証も行われている¹⁰。

解析対象車両は、変位制限標準における地震時車両 走行安全性解析で用いている高速車両の1車両モデ ルにより行った²⁾。車両モデルの概要を図-3に示す。 本車両モデルは、車体1個、台車2個、輪軸4個の合 計7つの剛体で車両を構成し、各剛体が6自由度を持 ち、車両の8車輪を支えるレールが独立に各2自由度 を持つ、合計58自由度を有している。また、車体-台車枠間と台車枠-輪軸間に設ける結合要素につい ては、ばね・ダンパ要素として、まくらばねおよび 軸ばね、左右動ストッパ、軸箱上下動ストッパ、車 体異常上昇止め、左右動ダンパを配置している。車 輪・レール間作用力には Kalker理論に基づいたモ

デルを使用するが、車輪がレールから離れて運動す る状態も計算可能である。なお、軌道条件は直結軌 道とし、軌道不整のない直線区間とした。

以上の車両モデルに対して、3章で作成した構造 条件ごとの絶対変位応答波形を入力して解析を実施 した。なお、加振は入力波を各軸に同時、同波形で 入力する、4軸同相加振により行った。

5. 車両走行性の評価

車両の地震時応答が得られると、これをもとに脱 線の有無を判定することができる。脱線判定は、変 位制限標準の基準を参考として²⁾、車輪~レール相 対左右変位、すなわち車輪踏面中心とレール頭頂面 中心との左右方向の距離により行い、図-4(a)に示す ように、この変位が静止時の車輪の中正位置から ±70 mm以上生じた際、および輪軸ロール変位が大 きい場合は図-4(b)のようにレール頭頂面中心と車輪 の中正位置の変位差が±70 mm以上生じた際に脱線 と判定した。

ただし、上記の解析では、単一の地震動に対して 脱線の有無を判定することができるが、ある構造条 件および地震動入力に対して、脱線に至るまでどの 程度の余裕度を有しているかを定量的に評価するこ とができない。そこで本研究では、構造物の応答解 析によって得られた絶対変位波形X_aに対して、倍率 なを乗じて車両挙動解析を実施して脱線の有無を判 定するとともに、この α を 0.01 刻みで変えて解析を 繰り返した。これにより、脱線が生じる直前の倍率 である安全限界倍率 α limを求め、脱線に対する安全 余裕度の指標とした。これは、構造物天端位置での 応答を基準入力とした漸増動的解析(IDA)を実施し

図-7 減衰別の最大応答(線形:G5地盤)

ていることに相当し、安全限界倍率が高いほど相対 的に走行安全性が高いことを示している。この安全 限界倍率を構造物の減衰定数、弾性固有周期、降伏 震度、入力地震動(地盤条件)ごとに算定し、減衰 の大小と車両の走行安全性の関係を定量化した。

最後に、以上により求めた安全限界倍率を用いて、 1章で述べたように、一般的な走行安全性の評価に 用いられている5%減衰時の車両応答が、減衰定数 によりどの程度変化するかを把握する。このため、 減衰定数5%の場合の安全限界倍率α_{lim}(5%)を基準と し、これより低いある減衰定数h_s (=0.5~4.0%)の構 造物における安全限界倍率α_{lim}(h_s%)に対する比を、 安全限界倍率比γとして次式により定義した。

$$\gamma(h_s\%) = \frac{\alpha_{\lim}(h_s\%)}{\alpha_{\lim}(5\%)} \tag{1}$$

すなわち、γが1を下回るほど、構造物の減衰が 車両の走行安全性に及ぼす影響が大きく、5%減衰 の場合と比較して車両脱線に対する余裕度が相対的 に低下することを表している。本研究では、この安 全限界倍率比により、減衰が車両走行安全性に与え る影響を評価した。以上述べた、構造物および車両 挙動解析の一連のフローをまとめて図-5に示す。

6. 解析結果および考察

6.1 構造物の地震応答解析

(1)構造物が線形の場合

図-6には、G3地盤について、最大絶対加速度およ び最大絶対変位と減衰定数の関係を、弾性固有周期 ごとに示す。図-7はG5地盤における同様の関係を示 す。このように、今回使用した地震動では、いずれ の地盤条件においても弾性固有周期が長くなるほど 絶対加速度の変動が小さくほぼ一定となり、この影 響で絶対変位が増大する傾向がある。地盤条件別で 比較すると、図-6(a)と図-7(a)の比較から、G3地盤で は弾性固有周期1秒程度以下の領域でG5地盤よりも 大きな加速度応答を示しているが、これはG3地盤波 の方が同周期帯での入力成分が大きいことが影響し ている。ただし、1秒程度以下の周期帯域において は相対変位が小さく、図-6(b)と図-7(b)の比較から、 この絶対加速度の差が絶対変位応答に与える影響は それほど顕著には生じていない。

減衰定数の影響については、減衰定数を5%より も低くするほど、絶対加速度、絶対変位いずれも増 加していることが分かる。特に長周期領域では絶対 変位の絶対量が成長することから、減衰定数の低下 に伴う応答の増加割合が各周期でほぼ同じであった としても、減衰定数の低下による応答の絶対量の変 化は弾性固有周期が長い領域ほど大きく生じ、長周

図-9 減衰別の最大応答(K_w=0.3:G5地盤)

期領域では減衰定数の影響が絶対変位応答に対して より明確に生じている。また、減衰定数が低い場合、 特に長周期領域において絶対変位応答に局所的な変 動が生じるが、減衰定数が高くなると相対変位応答 が低減・平滑化されるため、この変動の程度は相対 的に低下している。

(2)構造物が非線形の場合

非線形構造における最大絶対加速度および最大絶 対変位と減衰定数の関係について、降伏震度0.3に おけるG3地盤の結果を図-8、G5地盤の結果を図-9に 示す。同様に、降伏震度0.6におけるG3地盤の結果 を図-10、G5地盤の結果を図-11に示す。構造物の非 線形応答を考慮した場合、弾性固有周期が長いほど 絶対変位応答が増加する傾向を示すことは線形構造 と同様であり、地盤条件による差異については、G5 地盤の方がG3地盤よりも絶対変位量がやや大きい。 ただし、図-8(a)~図-11(a)の絶対加速度応答の傾向 から分かるように、構造物の塑性化により、減衰定 数によらずほぼ絶対加速度応答が頭打ちとなってい ることが分かる。これに加えて、構造物自体の塑性 エネルギー吸収が卓越して減衰定数の影響が相対的 に低下することから、図-8(b)~図-11(b)に示すよう に、減衰定数が絶対変位に与える影響は線形系ほど 顕著には生じていないことが分かる。このことは、 降伏震度0.6の方が0.3の場合よりも大きな絶対変位 量を示し、減衰定数による感度がより大きいことか らも推測される。なお、0.5秒より低い周期領域で は、特にG3地盤において図-8(a)、図-10(a)のように 応答加速度が入力加速度と比べて増幅しているが、 これは低周期領域では弾性限界変位が小さく塑性応 答が大きいこと、および初期剛性や二次剛性が相対 的に大きいことが要因である。

以上の傾向から、最大応答値のみに着目すると、 構造物の降伏震度が高く線形系に近くなるほど、ま た構造物の弾性固有周期が大きいほど、絶対変位応 答に与える減衰定数の影響がより大きく生じており、 車両挙動もこうした構造条件下でより減衰定数の影 響を受けることが推測される。

6.2 車両走行性の評価

(1) 脱線限界値の減衰依存性

6.1で求めた構造物天端における絶対応答変位を 入力とした車両挙動解析の結果、各構造条件におい て車両が脱線する直前での構造物天端の最大応答、 すなわち安全限界倍率α_{im}に対応する限界値が得ら れることから、この脱線限界値と構造物の減衰定数 の関係を検討する。ここで、車両の脱線挙動は絶対

図-11 減衰別の最大応答(K_h=0.6:G5地盤)

速度応答との相関が高いとされていることから⁴⁾、 車両が脱線しない限界の解析ケースにおける最大絶 対速度応答を限界値として採用した。図-12~図-14 に、G3、G5地盤におけるこの限界速度を示す。図-12は線形構造の場合、図-13、図-14は降伏震度がそ れぞれ0.3、0.6の場合の比較である。

全体的な傾向としては、構造物が線形挙動を示す 図-12の場合、弾性固有周期1~1.5秒近傍で限界値が 落ち込み、それよりも短周期側では限界値が上昇す る傾向が見られる。これは、車両と構造物の共振に よる影響と考えられる。また、非線形構造の図-13 および図-14については、構造物の塑性化に伴い振 動中に卓越周期が変動することから、構造物の周期 に対する限界速度の低下は線形構造ほど顕著には生 じていない。なお、図-12~図-14より、脱線限界速 度の下限値は概ね100kine程度であり、既往の車両走 行性解析の傾向とも一致している⁴⁾。

減衰定数が限界速度に与える影響については、図 -12~図-14からは顕著な影響はみられず、線形構造 の場合でも10%程度の変動となっている。これは、 構造物の最大応答の変動(図-6~図-11)と比較する と限定的であり、構造物が低減衰の場合、限界値の 低下よりも応答値の増加の方がより車両走行性に影 響するものと想定される。この構造物の減衰による 応答の違いは、先に定義した安全限界倍率比 γ によ り表されることから、以降では安全限界倍率比に着 目して考察を行う。

(2) 安全限界倍率比と減衰の関係(構造物:線形)

図-15には、G3地盤およびG5地盤について、安全 限界倍率比 y (5%減衰時の車両応答を基準)を、 減衰定数および弾性固有周期ごとに示す。

この図から、まず全体的な傾向としては、いずれ の減衰定数および地盤条件においても、構造物の弾 性固有周期が大きいほど安全限界倍率比γは相対的 に低下する傾向がみられ、これは図-6(b)、図-7(b)で みたように、長周期領域において構造物の絶対変位 応答の絶対量が増加する傾向と一致している。地盤 条件別では、弾性固有周期1秒以下の領域で、同一 の減衰定数においてG5地盤の方が相対的にやや高い 安全限界倍率比を示しているものの、全体的な傾向 としてはほぼG3地盤の結果と同様であり、今回使用 した地震動においては、地盤条件の影響は小さい結 果となった。

次に、減衰定数の影響については、図-15のよう に、減衰定数により結果に明確な差が生じており、 5%よりも低い減衰定数を設定した場合、ほぼ全て の周期帯域で相対的に車両走行安全性が低下するこ

とが分かる。全体的には、長周期領域の方が減衰定 数による y の低下割合が大きいが、これは6.1(1)で みたように、減衰定数の違いによる絶対変位応答の 絶対量の差が長周期側でより大きいことが影響して いると考えられる。また、局所的な周期における y の増減傾向についても、図-6(b)、図-7(b)における低 減衰のケースでの増減傾向とほぼ逆の傾向で生じて いる。構造物の減衰が5%から低減衰となるほど絶 対変位応答の変動が局所的に生じることは先に述べ たが、この構造応答の変動が車両の走行性にも影響 していると考えられる。

以上より、減衰定数が車両挙動に及ぼす影響とし ては、構造物の応答値が減衰の低下に伴い増加する ことによる影響が支配的であると考えられる。一方、 この構造物の低減衰化に伴う安全限界倍率比の低下 割合が最大60%生じているのに対し、先述したよう に限界値に及ぼす構造物の減衰の影響は10%程度で あることから、構造減衰に対して限界値が変動する ことによる影響は、構造物の振動応答の影響と比較 すると相対的に小さいといえる。

なお、地盤条件別では、G5地盤の方が弾性固有周 期1秒以上の領域でややG3地盤よりも影響が大きく 見られるが、全体的には安全限界倍率比の低下割合 は両地盤条件においてほぼ同等となっており、今回 設定した入力地震動においては、地盤条件よりも減 衰定数の設定値、および弾性固有周期の方が車両走 行性に及ぼす影響が大きい結果となった。

図-17 減衰別の安全限界倍率比(K_w=0.6:減衰5%=1.0)

(3) 安全限界倍率比と減衰の関係(構造物:非線形) 構造物の非線形応答を考慮した場合の安全限界倍 率比 γ について、降伏震度0.3におけるG3地盤およ びG5地盤の結果を図-16に、降伏震度0.6におけるG3 地盤およびG5地盤の結果を図-17にそれぞれ示す。

これらの図から、全体的な傾向として、いずれの 降伏震度においても、弾性固有周期に対する安全限 界倍率の低下割合は線形構造物の場合と比較して限 定的である。これは、図-8~図-11に示したように、 構造物の塑性化の影響で絶対加速度が頭打ちになり、 弾性固有周期に対する絶対変位応答の増加の絶対値 および増加割合が線形構造物と比較して限定的であ ることに起因していると考えられる。このように、 構造物の塑性化により、横方向の振動変位に対する 走行安全性が向上する傾向は、減衰定数5%におけ る非線形構造を対象とした既往の検討でも得られて いる¹¹⁾。また、地盤条件による影響については有意 な差はみられないが、これについても、構造物の塑 性化の方が入力波の特性に対する依存性よりも応答 に与える影響が大きいためと考えられる。

次に、減衰定数の影響については、いずれの降伏 震度、地盤条件においても、弾性固有周期が0.5秒 より低い領域でわずかに減衰定数による差異が見ら れるものの、減衰定数の感度は線形系よりも大幅に 低下しており、減衰定数の違いによる車両走行安全 性の低下割合は、弾性固有周期によらずほぼ1.0に 近い値を示している。この理由としては、6.1(2)で 述べたように、構造物の塑性化により絶対加速度の 頭打ちが生じること、および構造物の履歴吸収エネ ルギーによる減衰が支配的となること等から、減衰 定数が構造物応答に与える影響が相対的に小さく、 こうした構造物の振動特性が車両挙動にも影響して いるためと考えられる。以上の点、および非線形構 造においては、構造減衰に対する脱線限界値自体の 変動が線形構造の場合よりもさらに小さい(図-13、 図-14) ことから、構造物が非線形応答を示す場合、 減衰定数の設定値が車両走行性に与える影響は、線 形構造物の場合と比較して相対的に小さい結果とな った。

(4) 結果のまとめ

以上の結果から、今回設定した地震動および構造 条件においては、構造物が非線形挙動を示す場合、 減衰定数の設定値が横方向の振動変位に対する車両 走行性に及ぼす影響は小さい結果となった。一方で、 構造物が線形挙動を示す場合、車両走行性は弾性固 有周期および減衰定数に大きく影響を受ける結果と なった。この線形構造物における傾向は、構造物が 非線形挙動を示す場合においても、塑性化程度が弾 性範囲付近に留まり、ほぼ線形挙動と見なせるよう な場合にも成立すると考えられる。なお、脱線限界 値(脱線限界速度)の構造減衰に対する依存性は、 構造物の振動応答の影響と比較すると相対的に小さ い結果となった。

7. 結論

本研究では、構造物の減衰定数が車両走行安全性 に及ぼす影響を構造条件、地盤条件との関係で定量 的に評価するため、構造物の地震応答解析、および 得られた構造物応答を用いた車両挙動解析を実施し た。本研究により得られた結論を以下に示す。

(1) 線形構造物を対象として、車両挙動に与える減 衰定数の影響を、5%減衰時の安全限界倍率を 基準とした低下割合である安全限界倍率比で定 量化した。その結果、5%よりも低い減衰定数 を設定した場合、ほぼ全ての弾性固有周期帯域 で相対的に車両走行安全性が低下し、特に弾性 固有周期の長い領域で相対的に低下割合が増加 する傾向が生じた。すなわち、今回設定した地 震動では、構造物の弾性固有周期に加えて、減 衰定数も車両の動的挙動に及ぼす影響が大きい 結果となった。この傾向は、構造物の塑性化程 度が弾性範囲付近に留まるような場合にも成立 すると考えられる。

- (2)構造物が非線形挙動を示す場合の安全限界倍率 比を減衰定数ごとに比較した結果、減衰定数の 設定が車両走行安全性に及ぼす影響は、線形構 造物の場合と比較して限定的となる結果となっ た。これは構造物が塑性化することで絶対加速 度の頭打ちが生じること、および構造物の履歴 吸収エネルギーによる減衰が支配的となること 等が要因として考えられる。
- (3) 今回設定した地震動および構造条件においては、 脱線限界値の構造減衰に対する依存性は、構造 物の振動応答の影響と比較すると相対的に小さ い結果となった。

なお、車両走行性は地震動の卓越周期や経時特性 にも大きく影響を受けることから^{2),4)}、結論をより 一般化するため、今後様々な特性を有する地震動を 対象に検討を行う予定である。

謝辞:本研究は、国土交通省の技術開発費補助金を 受けて実施したものである。ここに記して関係各位 に謝意を示す次第である。

参考文献

- 国土交通省鉄道局監修、鉄道総合技術研究所編:鉄道 構造物等設計標準・同解説 耐震設計,2012.
- 国土交通省鉄道局監修、鉄道総合技術研究所編:鉄道 構造物等設計標準・同解説 変位制限,2006.
- 3) 羅休,宮本岳史:地震時の構造物振動変位に対する列 車走行性の照査法,鉄道総研報告 Vol.20, No.12, pp.19-24, 2006.
- 室野剛隆,野上雄太,宮本岳史:簡易な指標を用いた 構造物および走行車両の地震被害予測法の提案,土木 学会論文集A, Vol. 66, No. 3, pp. 535-546, 2010.
- 5) 室野剛隆, 滝沢聡, 畠中仁, 棚村史郎:構造物の非線 形動的解析における減衰マトリクスの設定に関する検 討, 第4回地震時保有耐力法に基づく橋梁等構造の耐震 設計に関するシンポジウム講演論文集, pp.115-122, 2000.
- 6) 堺淳一,運上茂樹:非線形動的解析における応答せん 断力の評価と粘性減衰の影響,第11回地震時保有耐力 法に基づく橋梁等構造の耐震設計に関するシンポジウ ム講演論文集,pp.189-196,2008.
- 7) 大越靖広,藤田亮一,森敦:減衰の設定方法と橋梁の 形式が非線形動的解析結果に及ぼす影響,第11回地震時 保有耐力法に基づく橋梁等構造の耐震設計に関するシ

ンポジウム講演論文集, pp. 197-202, 2008.

- 8) 運輸安全委員会:鉄道事故調査報告書RA2013-1-1, 2013.
- 宮本岳史,石田弘明,松尾雅樹:地震時の鉄道車両の 挙動解析,日本機械学会論文集C編,Vol.64,No.626, pp.1236-1243,1998.
- 10) 宮本岳史,松本信之,曽我部正道,下村隆行,西山幸 夫,松尾雅樹:大変位軌道振動による実物大鉄道車両 の加振実験,日本機械学会論文集C編, Vol.71, No.706,

pp.1849-1855, 2005.

- 11) 松本信之, 曽我部正道, 涌井一, 田辺誠:構造物上の 車両の地震時走行に関する検討,鉄道総研報告Vol.17, No.9, pp.33-38, 2003.
- 12) 豊岡亮洋,飯田浩平:構造物の減衰が車両の走行性に 与える影響の解析的検討,第18回性能に基づく橋梁等 の耐震設計に関するシンポジウム講演論文集,pp.111-118,2015.
- 13) 日本建築学会:建築物の減衰,日本建築学会,2000.

(2015.9.11 受付)

EFFECT OF STRUCTURAL PROPERTIES AND DAMPING ON DYNAMIC BEHAVIOR OF THE RUNNING TRAIN

Akihiro TOYOOKA and Kohei IIDA

It is generally understood that the structural damping affects not only the structural response but also the running safety of the train on the structure. Despite the safety of the train under strong motion might be degraded if the structural damping is significantly small, only a few studies are available to investigate the relationship between the structural properties and running safety of a train.

In this paper, effects of the structural damping, nonlinear character and soil condition on behavior of the high-speed train were studied by combining the structural analysis and vehicle dynamics simulation. It was clarified that the structural damping dominated the train behavior significantly if the strength of the structure is high and its natural period is long, whereas only a small effect was observed when the structural response was in an inelastic region.