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 This paper presents automated construction of a lumped mass model which is consistent with a contin-

uum mechanics model for a road network. GIS data conversion is first introduced to estimate parameters 

for the network, which include configuration of the road network. A set of hierarchy objects are then intro-

duced to construct a lumped mass model. The applicability of the automatically constructed lumped mass 

model to seismic response analysis is studied, and it is shown that drift ratio is computable by using the 

model in a systematic manner. A possibility of extending the automated model construction methodology 

to more sophisticated models is discussed. 
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1. INTRODUCTION 

 
For a more reliable estimation of possible damage 

induced by an earthquake, we need to improve the 

accuracy of seismic response analysis using a model 

of higher fidelity; with the progress of computers, 

large scale computation that is needed for the analysis 

of a high fidelity model can be conducted. It is mod-

eling that hinges this analysis, since the number of 

target structures are huge. The development of auto-

mated model construction i.e., a data conversion of 

the available digital data of a target structure to an 

analysis model which can be directly inputted to a 

suitable seismic response analysis method, is thus re-

quired.  

The quality of an analysis model that is produced 

by the automated model construction must be exam-

ined. In general, there is a trade-off relation between 

the accuracy and the complexity of the model. A 

more complicated model produces a more accurate 

estimate, but it ought to be difficult to examine the 

quality of all model components. In developing auto-

mated model construction, we have to pay full atten-

tion to this trade-off relation for the model quality. 

The authors propose a methodology of automated 

construction which accounts for the model quality. 

The key point of the proposed methodology is to con-

struct a set of consistent models for one structure. The 

consistency means to solve the same problem of the 

target structure response. Suitable mathematical ap-

proximations are made, so that approximate solutions 

of different accuracy are obtained for each of the con-

sistent models. The model quality is more easily ex-

amined for a simpler consistent model. Comparing 

the analysis results with the simpler model, the qual-

ity of which is examined, we are able to examine the 

quality of a more complicated model. By repeating 

this comparison, we will realize the quality check of 

a most complicated model of a target structure. 

Meta-modeling1) theory is established as a theoret-

ical foundation of the methodology of constructing a 

consistent model set. This theory starts from contin-

uum mechanics and identifies the target problem of 
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structure response in the form of a Lagrangian. A 

subset of continuum mechanics function space is 

used to choose suitable approximate functions, and 

the resulting Lagrangian produces a consistent 

model. Meta-modeling theory actually proves that a 

shear beam model is consistent with a continuum me-

chanics model; a Bernoulli-Euler beam model at 

quasi-static state is consistent but one at dynamic 

state is not consistent1). 

This paper is aimed at developing an automated 

model construction for a consistent lumped mass 

model, which is the fundamental model for the seis-

mic response analysis2), 3). A road network, which 

consists of numerous bridges, is chosen as a target 

structure. The contents of this paper are as follows. 

First, the concept of meta-modeling is briefly ex-

plained in Section 2. According to meta-modeling, 

we clarify an approximation which is made in deriv-

ing governing equation for lumped mass system from 

continuum mechanics theory in Section 3. Data con-

version from GIS data with practical example and an 

automated construction of consistent lumped mass 

model with proper example are discussed in Section 

4. We carry out numerical experiments of applying 

the developed consistent lumped mass bridge model 

under selected ground motion in Section 5. Conclud-

ing remarks are made in Section 6. 

 

2. META-MODELING 

 
In meta-modeling, modeling means to pose a 

mathematical problem. For a common physical prob-

lem, there are many ways to pose a different mathe-

matical problem, depending on the accuracy re-

quired. Meta-modeling specifies a set of modeling (or 

mathematical problem) which produces an approxi-

mate solution of the most sophisticated modeling. For 

structural problems, meta-model uses continuum me-

chanics problem as the most sophisticated modeling. 

Some structure mechanics modeling are specified as 

a consistent modeling of this continuum mechanics 

modeling. It should be emphasized that a consistent 

structure mechanics modeling produces an approxi-

mate solution of the continuum mechanics modeling. 

The continuum mechanics modeling is formulated 

as a Lagrangian problem. This Lagrangian is slightly 

different from the standard one; the Lagrangian con-

sists of a standard kinetic energy term and a potential 

term which includes a complementary strain energy. 

For simplicity, assuming linear elasticity, we can 

write 

𝓛[𝐯, 𝛜, 𝛔] = ∫
1

2
𝜌𝐯. 𝐯

𝑉

− (𝛔: 𝛜 −
1

2
𝛔: 𝐜−1: 𝛔)  𝑑𝑣, 

(1) 

where 𝜌 and 𝒄 are density and elasticity. It is readily 

proved that this 𝓛 is equivalent with the standard La-

grangian, by substituting 𝐯 =  �̇� and 𝛜 = 𝑠𝑦𝑚{𝛁𝐮}, 

where ()̇ and 𝛁() stand for temporal and spatial dif-

ferentiation for a function ().  

Without making an additional assumption, such as 

one-dimensional stress-strain relation4) of  σ = 𝐸ϵ 

with σ and ϵ being normal stress and strain compo-

nents and 𝐸 being Young's modulus, we can derive a 

governing equation for a beam problem or a plate 

problem. The derivation needs the selection of a sub-

set of the continuum mechanics function space of 

{𝐮, 𝛔} (not only for 𝐮). A distinct initial boundary 

value problem is derived in stationarizing the Lagran-

gian. This mathematical problem (or modeling) is 

consistent with the continuum mechanics’ three-di-

mensional initial boundary value problem (or contin-

uum modeling). 

  

3. CONSISTENT LUMPED MASS 

MODELING 

 
According to meta-modeling explained above, a 

lumped mass model which is consistent with a con-

tinuum mechanics model is obtained by substituting 

approximate functions of displacement to the modi-

fied Lagrangian. As a simple example, we consider a 

pier of a road network. We regard the pier as a canti-

lever of span 𝐿, and choose approximate functions 

that corresponds to the beam at quasi-static state. 

Functions which correspond to the beam at dynamic 

state can be used as other approximate functions; see 

Appendix A. 

According to meta-modeling, the approximate dis-

placement functions of the following form are used: 

{𝑢1 , 𝑢2 , 𝑢3} = 𝑈(𝑡){−𝑧𝑤′(𝑥), 0, 𝑤(𝑥)}, (2) 

where  𝑤 is a solution of the beam problem,  

{

(𝐸𝐼𝑤′′)′′        = 0          0 < 𝑥 < 𝐿,
(𝑤, 𝑤′)    = (0,0)  𝑥 = 0,
(𝑤, 𝑤′′)  = (1,0)  𝑥 = 𝐿.

 (3) 

Note that the coordinate 𝑥 is chosen in the vertical di-

rection and, for simplicity, 𝑧 is in the direction per-

pendicular to the bridge; 𝐸 is Young's modulus and 

𝐼 is the second moment of inertia with respect to the 

𝑧 direction. This 𝑤 is fully determined since Eq. (3) 

has a unique solution. Substituting 𝐮 of Eq. (2) and 

the corresponding 𝛔, we can compute the modified 

Lagrangian as 

𝓛 =
1

2
𝑀�̇�

2
(𝑡) −  

1

2
𝐾𝑈2(𝑡), (4) 

where 

{𝑀, 𝐾} = ∫{𝜌(𝐴𝑤2 + 𝐼(𝑤′)2), 𝐸𝐼(𝑤′′)2}  𝑑𝑥 (5) 
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 with 𝐴 being the cross-sectional area of the pier. 

It should be emphasized that, while ∫ 𝜌𝐴𝑤2 𝑑𝑥  is 

usually used as a mass of the pier, meta-modeling 

yields ∫ 𝜌𝐼(𝑤′)2 𝑑𝑥  as additional mass, which ac-

counts for the effect of angular momentum. While 

Bernoulli-Euler beam modeling neglects it, shear 

beam modeling includes the angular momentum ef-

fect. Therefore, the lumped mass modeling is given 

by the Lagrangian of Eq. (4) is in accordance with the 

shear modeling that is known to be more accurate 

than Bernoulli-Euler beam modeling.  

Beside for translation, we can readily include rota-

tion in the consistent lumped mass modeling. We use 

other approximate displacement functions, 
{𝑢1 , 𝑢2 , 𝑢3} = 𝛩(𝑡){−𝑧ℎ′(𝑥), 0, ℎ(𝑥)}, (6) 

where ℎ is a solution of the other beam problem, 

{

(𝐸𝐼ℎ′′)′′        = 0          0 < 𝑥 < 𝐿,
(ℎ, ℎ′)     = (0, 0) 𝑥 = 0,
(ℎ′, ℎ′′′)  = (1, 0) 𝑥 = 𝐿.

 (7) 

The modified Lagrangian is computed in the same 

form as Eq. (4) if {𝑀, 𝐾} of Eq. (5) are computed by 

using ℎ instead of 𝑤. 

The modified Lagrangian for coupling of transla-

tion and rotation is readily obtained by substituting 

the sum of 𝐮 given by Eqs. (2) and (6). That is, 

𝓛 =
1

2
𝑀𝑈�̇�2(𝑡) − 

1

2
𝐾𝑈𝑈2(𝑡) +  

1

2
𝑀𝛩�̇�2(𝑡) −

 
1

2
𝐾𝛩𝛩2(𝑡) + 𝑀𝑈𝛩�̇�(𝑡)�̇�(𝑡) − 𝐾𝑈𝛩𝑈(𝑡)𝛩(𝑡) ,  

(8) 

where {𝑀𝑈, 𝐾𝑈} and {𝑀𝛩, 𝐾𝛩} are given by Eq. (5) us-

ing 𝑤 and ℎ, respectively, and 

{𝑀𝑈𝛩, 𝐾𝑈𝛩} = ∫{𝜌(𝐴𝑤ℎ

+ 𝐼𝑤′ℎ′), 𝐸𝐼𝑤′′ℎ′′}  𝑑𝑥 

(9) 

As it is seen, the coupling between translation and ro-

tation naturally appears via {𝑀𝑈𝛩, 𝐾𝑈𝛩} of Eq. (9). 

In substituting the sum of 𝐮 given by Eqs. (2) and 

(6), we have to pay attention to coupling of transla-

tion and rotation. For instance, at 𝑥 = 𝐿, we have 

𝑢3 = 𝑈 + 𝛩ℎ(𝐿),     𝛩 (
𝜕𝑢3

𝜕𝑥1
) = 𝑈𝑤′(𝐿) + 𝛩; 

recall, 𝑤(𝐿) = 1 and ℎ(𝐿) = 1 . {𝑢3, 𝜃} that can be 

measured at site. Therefore, the measured data should 

be compared with  {𝑈 + 𝛩ℎ(𝐿)} ,  {𝑈𝑤′(𝐿) + 𝛩}  ra-

ther than {𝑈, 𝛩}.  

 

4. DATA CONVERSION 
 

Automated modeling is required for a large net-

work of highway that runs a few kilometers in length 

and includes many bridge structures, when digital 

data of such a road network is available. Accuracy is 

of primary importance in constructing a model of 

high fidelity by automated modeling. Meta-modeling 

enables us to construct a sequence of modeling that 

lead to higher fidelity. The initial modeling is to con-

struct a lumped mass model, which is the simplest as 

it consists of only two parameters as explained in the 

preceding section. 

 

(1) Decoding of GIS data  
The following two types of GIS data are used for 

automated modeling: 1) 2D GIS data that include 2D 

polygon data about a road network; and 2) 3D GIS 

data of ground surface elevation. Information about 

how polygons are connected to form a structure is not  

included in the 2D GIS data. Thus, the 3D GIS data 

and the attribute tables in the 2D GIS data are used to  

guess the connection of neighboring polygons, so that 

the configuration of a structure is identified. 

Decoding programs are developed for these GIS 

data. They create a separate file which includes a set 

of connected polygons for a particular segment of a 

road network. The segment is specified according to 

class information of the road network; there are four 

main classes as shown in Table 1. Fig.1 presents a 

typical example of the segment that is created by the 

decoding classes. As it is seen, there are no flaws in 

the segment. Detailed manual inspection is made to 

examine this segment by comparing it with photos 

provided by Google Earth.  

The decoded GIS data need to be interpreted in or-

der to construct an analysis model. As an example, 

the interpretation of the configuration and elevation 

of the center line of the road network is presented. 

First, the plane configuration of the line is interpreted 

by using the 2D GIS data, as follows:  

1. Convert vector data of polygons to raster data. 

2. Apply thinning to identify the center line5). 

3. Prune line segment shorter than 10m in each 

junction. 

4. Separate line segments at each junction, re-

moving complexity at junctions. 

Next, the elevation of the center line is estimated by 

using the difference between the profile and the ter-

rain data that are stored in the 3D GIS data. Noises of 

estimated elevation data are removed. 

In Fig.2, we present an example of the decoding 

procedures explained above. The target is a segment 

of a highway road network, the most part of which is 

bridges, though the tunnel sub-class is excluded; see 

Fig.2(a). The ramp part of the segment, the configu-

ration of which changes in a short distance, is re-

moved due to the poor resolution of the profile eleva-

tion data which are available for this area; see 

Fig.2(b).  
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Table 1 Main and sub classes of road network. 

 

Main Class Sub Class 

Highway Tunnel 

National road Intersection 

General road Surface 

Main local road  

 

 

 
 

(2) Automated construction of consistent 

lumped mass model 
As explained in the preceding section, a lumped 

mass model requires two parameters, namely, equiv-

alent mass and stiffness coefficient2),3). According 

to meta-modeling, lumped mass modeling is to use 

an approximate displacement function of the form of  

(a) 

(b) 

(c) 

Fig.1 Example of decoding of GIS data to identify network 

configuration: (a) decoded configuration; (b) extraction of 

main local road; and (c) extraction of highway. 
 

(a) 

(b) 

(d) 

Fig.2 Example of applying decoding procedures to GIS data: 

(a) exclusion of highway main-class tunnel sub-class; (b) ex-

clusion of highway main-class tunnel and ramp part; (c) ex-

traction of 2D centre line arrangement; and (d) arrangement 

of 3D centre line. 
 

Ramp part of  

selected highway 

1
st
  Segment 

2
nd

 Segment 

3
rd

 Segment 

6500

6450

6400

6350

37400

37200

37000

0

2

4

6

8

With elevation data 

Without elevation data 

(c) 
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Eq. (2); recall that 𝑈 is an unknown function. The 

modified Lagrangian yields an ordinary differential 

equation for 𝑈, and the mass and stiffness are com-

puted by using 𝑤. 

As for the bridge structure, we use quasi-static 

beam theory, assuming that the pier provides stiffness 

and the deck moves like a rigid body, to determine 𝑤. 

That is, setting the 𝑥1- and 𝑥2- axes parallel and nor-

mal to the bridge direction, respectively, and 𝑥3- axis 

as the vertical direction, an approximate function is  

{𝑢1 , 𝑢2 , 𝑢3}

= {
𝑈(𝑡){−𝑥𝑤′(𝑧),0, 𝑤(𝑧)}  0 < 𝑥 < 𝐻,

𝑈(𝑡){−𝑥𝑤′(𝐻),0, 𝑤(𝐻)}         𝐻 < 𝑧 < 𝐻 + 𝑇
 

where 𝑥 = 𝑥1  and 𝑧 = 𝑥3 ; 0 < 𝑥 < 𝐻  is for a pier 

and 𝐻 < 𝑧 < 𝐻 + 𝑇 is for a deck. Note that the dis-

placement function of the above ensures that the deck 

moves as a rigid body. Posing suitable boundary con-

ditions, we can determine 𝑤. For instance, we choose  
𝑤(0) = 0, 𝑤′(0) = 0, 𝑤(𝐻) = 1, 𝑤′(𝐻) = 0. 

Here, setting 𝑤(𝐻) = 1 means that 𝑈 is the displace-

ment of the pier top as well as the movement of the 

whole deck. 

The approximate function 𝑤, which is selected ac-

cording to quasi-static beam theory, is fully deter-

mined by solving the boundary value problem. When 

it is given, the modified Lagrangian becomes 

          ℒ =
1

2
𝑀�̇�

2
(𝑡) −  

1

2
𝐾𝑈2(𝑡), (10) 

where 

𝑀 = 𝑀𝑑 + ∫ 𝜌(𝐴𝑤2 + 𝐼(𝑤′)2)
𝐻

0

, (11) 

                   𝐾 = ∫ 𝐸𝐼(𝑤′′)2𝑑𝑧
𝐻

0

, (12) 

with 𝐴 and 𝐼 being the cross section area and the 

second moment of inertia of pier, respectively. 𝑀𝑑 is 

the mass lumped of the deck. 

The task needed for the automated construction of 

lumped mass model is the automated computation of 

𝑀 and 𝐾 by using Eqs. (11) and (12) to the decoded 

and interpreted data of the target structure; for in-

stance, 𝑀𝑑  is computed from the volume calculation 

of the solid CAD model of the deck. 

In the same manner, we can construct a lumped 

mass model in the transverse direction. An approxi-

mate functions are 

{𝑢1 , 𝑢2 , 𝑢3}

= {
𝑈(𝑡){−𝑦𝑤′(𝑧),0, 𝑤(𝑧)}  0 < 𝑥 < 𝐻,

𝑈(𝑡){−𝑦𝑤′(𝐻),0, 𝑤(𝐻)}         𝐻 < 𝑧 < 𝐻 + 𝑇.
 

 

5. NUMERICAL EXPERIMENTS 

 
A consistent lumped mass model is automatically 

constructed for the first segment of the road  network; 

see Fig.2(c). That is, the value of 𝑀 and 𝐾 are com-

puted. As an example for selected pier in Fig.4(b), 

𝑀 = 314577 𝑘𝑔, 𝐾 = 1.458 × 108 𝑁𝑚, 
for both the longitudinal and transverse directions; no 

coupling is considered in the present model. 

The details in computing these value are itemized 

as follows: 

1. The interval of piers is fixed as 20m along the cen-

ter line and; see Fig.3; see also Fig. 4 for the frame 

and solid CAD models of this segment. 

2. A steel girder bridge deck is used to estimate the 

mass of deck for this experiment. 

3. Pin connection is used for the connection between 

the deck and the pier, to satisfy the posed bound-

ary conditions. 

These details are schematically presented in Fig. 5, 

and the material properties used are summarized in 

Table 2. The total mass of the deck in each span is 

lumped to the pin connected frame in both the longi-

tudinal and transverse directions, so that the segment 

is analyzed individually or fully ignoring coupling of 

neighboring segments. 

Seismic response is computed for each frame in the 

both longitudinal and transverse directions. The input 

surface ground motion is shown in Fig.6; this 1D mo-

tion is applied to transverse direction of bridge 

(Fig.4(a)). The maximum drift ratio of the pier is used 

as an index of the seismic response6),7), and they are 

plotted in Figs 7 and 8 for the longitudinal and trans-

verse directions, respectively. 

The quality of the constructed model ought is to be 

examined. Manual computation of the two parame-

ters, 𝑀  and 𝐾 , coincide with those automatically 

computed. The natural frequency for selected pier 

(Fig.4(b)), denoted by 𝑓, is easily computed, as 
𝑓 = 3.426 𝐻𝑧. 

We can check the accuracy of the natural frequency 

by comparing the observed value of the natural fre-

quency, if some data are available. 

 

 

A A 

B 

B 

A A 
A - A 

B - B 
16m 

1m

m 

1m 

1m 
1.3m 

Skeleton of 
pier 

Fig.3 Assumed geometry of piers. 
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The automated model construction can be ex-

tended to a larger part of the road network. Actually, 

it would be a straightforward task, since the programs 

of decoding and interpreting the GIS data and con-

structing a lumped mass model are already devel-

oped; the decoding and interpretation programs need 

to be improved, in order to be applied to segments of 

a more complicated configuration, such as a ramp. 

The methodology of the automated model construc-

tion can be extended from the simplest lumped mass 

model to a more sophisticated model; eventual goal 

is a full solid element model for non-linear finite ele-

ment analysis.  

 

Table 2 Martial properties and lumped mass information. 

 

Density of pier (Concrete) 2400𝑘𝑔/𝑚3 

Density of deck (Steel) 7800𝑘𝑔/𝑚3 

Young’s modulus (Concrete) 25𝐺𝑃𝑎 

Young’s modulus (Steel) 200𝐺𝑃𝑎 

Damping ratio ( Concrete structures) 5% 

 

  
Fig.6 Applied ground motion to the transverse direction. 

 

 

Fig.7 Drift ratio in each pier along local X-axis of pier. 

 

 

Fig.8 Drift ratio in each pier along local Y-axis of pier. 
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6. CONCLUDING REMARKS 

 
This paper presents the automated construction of 

a consistent lumped mass model for a road network. 

It is shown that meta-modeling could be used to con-

struct a lumped mass model in a systematic manner. 

It is also shown that the choice of approximated func-

tions is a key issue to make an accurate model. 

The GIS data conversion and interpretation are 

employed to estimate the global parameters of a road 

network, namely, center line and elevation data of the 

road network. An example of the data conversion and 

interpretation demonstrates the usefulness of the de-

veloped programs. The interpreted data are used to 

automatically construct a set of lumped mass models 

for the example. It is shown that these models are 

used to conduct seismic response analysis. 

This automated model construction will be ex-

tended to a model of higher fidelity. An accurate 

modeling methodology of connection between deck 

and pier and a robust method to estimate each geo-

metric detail of the bridge components are needed. 

When a large road network is analyzed, we have to 

consider input ground motion since each pier may 

have distinct input due to the local topographical ef-

fects.  

 

APPENDIX A  USE OF MODAL ANALYSIS 

FOR LUMPED MASS MODELING 

 
Approximate displacement functions that are used 

to construct consistent lumped mass modeling are 

found by using modal analysis. Modal analysis 

means solving the following eigen-value problem of 

𝑤: 

 

{
𝜔2𝐴𝑤 + (𝐸𝐼𝑤′′)′′  = 0          0 < 𝑥 < 𝐿,
(𝑤, 𝑤′)                = (0,0) 𝑥 = 0,
(𝑤, 𝑤′′)              = (1,0) 𝑥 = 𝐿.

 (a.1) 

Here, 𝜔  is the natural frequency of the cantilever 

subjected to translation boundary conditions. An-

other modal analysis is made for the rotation bound-

ary conditions, i.e., 

{
𝜔2𝐴ℎ + (𝐸𝐼𝑤ℎ′′)′′  = 0         0 < 𝑥 < 𝐿,
(ℎ, ℎ′)                   = (0,0) 𝑥 = 0,
(ℎ, ℎ′′′)                = (1,0) 𝑥 = 𝐿.

 (a.2) 

The same symbols, 𝑤  and ℎ , are used as those at 

quasi-static state; see Eqs. (3) and (7).  

For each eigen-value of 𝜔 , the corresponding 

eigen-function for 𝑤 or ℎ is determined. The approx-

imate displacement function is expressed in terms of 

such eigen-functions as 

u3(𝑥, 𝑡) = ∑ 𝑈𝛼(𝑡)𝑤𝛼(𝑥)

𝛼

+ ∑ 𝛩𝛽(𝑡)ℎ𝛽(𝑥)

𝛽

, 

(a.3) 

where 𝑤𝛼 and ℎ𝛽 are the 𝛼th and 𝛽th eigen-functions 

for 𝑤 and ℎ. 

Substitution of u3 with corresponding u1 =  −𝑧𝑢3
′  

into the Lagrangian leads to the modified Lagrangian. 

For simplicity, replacing the symbol {𝛩𝛽 , ℎ𝛼  } with 

{𝑈𝑁+𝛽 , 𝑤𝑁+𝛽 }  with 𝑁  being the number of the 

modes used, we rewrite Eq. (a.3) as 

𝑢3(𝑥, 𝑡) = ∑ 𝑈𝛼(𝑡)𝑤𝛼(𝑥)

𝛽

. (a.4) 

Substituting this 𝑢3 into the Lagrangian, we have  

ℒ = ∑
1

2
𝑀𝛼𝛼 (�̇�

𝛼
)

2
(𝑡) − 

1

2
𝐾𝛼𝛼(𝑈𝛼)2(𝑡)

+ ∑
1

2
𝑀𝛼𝛽�̇�

𝛼
(𝑡)�̇�

𝛽
(𝑡)

− 
1

2
𝐾𝛼𝛽𝑈𝛼(𝑡)𝑈𝛽(𝑡) , 

(a.5) 

where 

{𝑀𝛼𝛽, 𝐾𝛼𝛽}

=  ∫ {𝜌 (𝐴𝑤𝛼𝑤𝛽

+ 𝐼(𝑤𝛼)′ (𝑤𝛽)
′
) , 𝐸𝐼(𝑤𝛼)′′ (𝑤𝛽)

′′
}  𝑑𝑥 

(a.6) 

Note that the integration of 𝑤𝛼𝑤𝛽, (𝑤𝛼)′(𝑤𝛽)
′
 and 

(𝑤𝛼)′′ (𝑤𝛽)
′′

 does not vanish for 𝛼 ≠ 𝛽, and hence 

coupling of different 𝑈𝛼 's always happens. 
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