2011年東北地方太平洋沖地震の強震動生成域を 対象とした地震規模の推定

池田 隆明1・釜江 克宏2・小長井一男3・高瀬 裕也4

¹正会員 飛島建設 技術研究所 部長(〒270-0222 千葉県野田市木間ヶ瀬5472)
E-mail:takaaki_ikeda@tobishima.co.jp
²非会員 京都大学 原子炉実験所 教授(〒590-0494 大阪府泉南郡熊取町朝代西2丁目)
E-mail:kamae@rri.kyoto-u.ac.jp
³正会員 横浜国立大学 教授(〒240-8501 神奈川県横浜市保土ケ谷区常盤台79-1)
E-mail:konagai@ynu.ac.jp
⁴正会員 飛島建設 技術研究所 副主任研究員(〒270-0222 千葉県野田市木間ヶ瀬5472)
E-mail:yuya_takase@tobishima.co.jp

2011年東北地方太平洋沖地震は観測史上最大のMw9.0の極めて規模が大きい地震であり、複数の震源域の破壊が連動したと考えられている.地震観測記録には強震動生成域に起因すると考えられる波群が確認され、少なくとも大きな強震動生成域が3つ存在すると想定された.各地で観測された地震動は、周辺の強震動生成域の影響を受けており、本地震の地震動生成過程や地震被害メカニズムの解明のためには、強震動生成域の地震規模を明確にすることが重要と考えられたことから、距離減衰式を用いて強震動生成域の地震規模を推定を試みた.

Key Words : the 2011 off the pacific coast of Tohoku earthquake, strong motion generation area, source model, magunitude, attenuation equation

1. はじめに

2011年3月11日に発生した東北地方太平洋沖地震は太 平洋プレートと陸のプレートの境界で発生した西北西-東南東方向に圧縮軸を有する逆断層型の地震であり,規 模は我が国における観測史上最大のMw9.0と公表されて いる.震源域の大きさは南北約450km,東西約200kmと 推定され,主な破壊継続時間は約160秒に達したとされ ている¹.

観測された地震動には、震源が複雑に破壊したと考え られる特徴が示されている.図-1に想定震源域の走向に 沿った6地点(IWT023, IWT011, MYG013, FKS009, IBR004, TKY028, いずれもK-NET²⁾)での観測地震動を 北から南に並べて示す.それぞれの時間軸の初期値は最 も早く地震動が観測されたMYG013の観測開始時間 (14:46:20)に一致させている.☆印は気象庁による震 央を示す¹⁾.

地震動波形を並べてみると複数の波群が認められる. 震央に近いMYG013やIWT011では二つの大きな波群,や や離れたIBR004やTKY028では一つの波群が見られる. FKS009では二つの大きな波群が見られるが,90秒以降 の後半の波群は3つに分解することができる.また, IBR004の120秒以降の大きな揺れも2つの波群に分解する ことができる.

これらの波群の生成過程についてはいくつかの考え方 が示されている^{例えば3)}.これらの考え方を参考に観測記 録に見られた4つの波群の生成過程を以下のように整理 する.

- ①最初の大きな震源破壊は宮城県沖で発生し,強い地震 動が東北日本全体に伝播した.
- ②その数十秒後に、最初の震源破壊領域よりも東側(太 平洋沖合)で大きな震源破壊が再び発生し、強い地震 動が伝播した.地震波の到着時間は震源からの距離に 応じて遅くなるが、二番目の破壊による各地の地震動 の到着時間の差は最初の破壊の到着時間の差よりも短 いことから、二番目の破壊の方が最初の破壊に比べて 遠い地点で発生したと考えられる.
- ③三番目の破壊が、それまでの二つの破壊域よりも南側 に離れた福島県沖で発生した.
- ③四番目の破壊が、三番目の破壊に引き続き茨城県沖で 発生した。三番目と四番目の破壊により生成された地 震動により茨城県を中心に関東地方広範に大きな揺れ

図-1 東北地方太平洋沖地震の震源域と川辺・釜江¹¹⁾の強震動生成域,および断層面走向方向に沿った地震観測点 で得られた加速度時刻歴波形と波群(▼,▼,▼,▼)

を引き起こした.

地震調査研究推進本部では過去に発生した地震履歴な どに基づき日本列島および周辺域における地震発生源を 設定している⁴.東北地方太平洋沖地震の震源域と考え られる三陸沖から房総沖にかけては、①三陸沖北部、② 三陸沖中部、③宮城県沖陸型、④宮城県沖海溝側、⑤福 島県沖、⑥茨城県沖、⑦房総沖、そしてそれらよりも日 本海溝軸寄りの⑧三陸沖北部から房総沖の海溝寄り、の 8つの領域が設定されていた。観測記録に見られた波群 より、少なくとも③~⑥の領域が連動したと考えられて いる.

この地震では様々な被害が発生したが、地域によって 強震動生成域の影響は異なると考えられる.この地震で は東京湾岸の埋立地および緩い砂層で構成された軟弱地 盤において多くの液状化が発生したが、この液状化は四 番目の茨城県沖で発生した震源破壊により生成された地 震動に大きく影響されていると考えられている⁹.

今後発生すると考えられる巨大海溝型地震や内陸活断 層を対象とした直下型地震に対する地震防災・減災を考 える上では、被害を与えた地震の規模を明確にすること が重要と考えられる.筆者は関東地方で観測された地震 動の最大値が茨城県沖の強震動生成域により支配された と想定し、関東地域のKiK-netの地中観測記録と司・翠川 の距離減衰式を使用し、最大速度の観測値と距離減衰式 による推定値との一致度から、この地震規模をMw7.7~ 8.0程度と推定している⁵. そこで本報告では、同様の手法を用いて宮城県沖の二 つの強震動生成域の地震規模を推定する.また、茨城県 沖の強震動生成域についても地震規模の再検討を実施し た.

2. 検討手順

本検討では、強震動生成域を異なる地震イベントと想 定し、特定の強震動生成域から生成された地震動の最大 値が距離減衰式で評価できると仮定し、最も観測記録を 評価可能な地震規模を推定する.具体的な手順を以下に 示す.

 ①既往の研究成果に基づき,強震動生成域を設定する.
②特定の強震動生成域からの地震動が卓越した地震観測 記録を収集し最大値を算出する.

③強震動生成域を個別の地震とみなし、距離減衰式により地震動の最大値を推定し、最も最大値を評価できる 地震規模を推定する.

強震動生成域は既往の震源モデルに基づき設定する. 波形インバージョン結果を参考に、断層面上のすべりの 大きい場所に強震動生成域を配置し、強震動生成域の位 置、面積、地震モーメント、応力降下量などのパラメー タを定量化する震源のモデル化手法が釜江・入倉^のによ り行われている.強震動生成域の形状を矩形とし、強震 動生成域内のすべり量を均一にした単純なモデル化であ

るが、その後国内外で発生した複数の地震に適用され、 その有効性が確認されている^{例えばり}.この手法を用いて 東北地方太平洋沖地震の震源モデルがKurahashi & Irikura⁸, 佐藤⁹, Asano & Iwata¹⁰, 川辺・釜江¹¹により提案されて いる.いずれも宮城県沖に2つの強震動生成域が設定さ れているという共通点を有するが、茨城県沖を含むそれ 以外の強震動生成域については差異が見られる. 川辺・ 釜江の震源モデルは、それ以外の震源モデルに比べ観測 波形の到達時間および波群の形状を良く再現できている ことから、本検討では強震動生成域は川辺・釜江の震源 モデルを基本として設定する.なお、福島県沖と茨城県 沖の強震動生成域から生成された地震動は重なって到達 している観測地点が多く、分類することが困難であるた め一つの強震動生成域として評価する. 図-1に川辺・釜 江の震源モデルを示す. SMGA1とSMGA2を宮城県沖の2 つの強震動生成域に、SMGA5を福島県沖・茨城県沖の 強震動生成域とする.

距離減衰式は、震源タイプおよび地盤条件を考慮した 司・翠川¹³の方法を使用する. 震源からの距離は断層面 最短距離を使用し、基盤における最大速度の一致度から 地震規模を推定する.式(1)に司・翠川の距離減衰式を 示す.

$$\log PGV = 0.58Mw + 0.0038D - 1.29 - \log(X + 0.0028 \times 10^{0.50Mw}) - 0.002X$$
(1)

ここで、PGVは硬質地盤上の最大速度(cm/s), Mwはモ ーメントマグニチュード, Dは震源深さ(km), Xは断層 面最短距離(km)である.

距離減衰式での推定値と比較する最大速度は、司・翠 川の距離減衰式のコンパイル条件に従い、二方向の最大 値とし、地表で観測された最大値を式(2)、式(3)に基づ き硬質地盤上の値に変換する.

 $\log R = 1.83 - 0.66 \log AVS_{30} \tag{2}$

$$V_{cor} = \frac{V_{org}}{R}$$
(3)

ここで、Rは最大速度の地盤増幅度、AVS₃₀は地表から30mまでの平均S波速度^{13,14}、 $V_{\alpha r}$ と $V_{\alpha g}$ はそれぞれ地表で観測された最大速度と硬質地盤上の最大速度である.

司・翠川の距離減衰式では、Mw7.0以上の地震は断層 面最短距離が300km以下、Mw6.6-7.0の地震では200km以 内のデータを用いてコンパイルされている.本検討では 地震規模がMw7.0以上と推測されることから基本的に 300km以下のデータを使用する.地震観測記録が得られ ていても地盤条件が公開されておらず硬質地盤上の最大 値に変換できないサイトは検討対象から除外する.

マグニチュードはMw7.0~Mw8.5まで0.1刻みで変化させ,式(4)に示す指標(R値)が最小になるマグニチュードを算出する.

$$R = \sqrt{\frac{\sum (\log(Obs_{\max}) - \log(Atten))^2}{N}}$$
(4)

ここで, *R*は一致度を示す指標, *Obs_{max}*は硬質地盤上 の最大速度, *Atten*は司・翠川式で推定した最大速度, *N* はサイト数である.

3. 検討に使用する距離減衰式の検証

検討に先立ち、太平洋沖合で発生したプレート間地震 に対する司・翠川の距離減衰式の適用性を検証する.検 討に用いた地震は、東北地方太平洋沖地震の余震で、 2011年3月11日15時08分の地震である.震源メカニズム は本震と同じく、西北西-東南東方向に圧力軸を持つ逆 断層型であり、マグニチュードはMw7.4とされている¹⁵.

図-2にこの地震で観測されたK-NETとKiK-netの最大速 度と司・翠川の距離減衰式を比較して示す.速度波形は 加速度波形に0.1Hz~10.0Hzのバンドパスフィルターを作 用させた後、数値積分により算出した.司・翠川の距離 減衰式は断層面最短距離の式を使用したが、この地震の 震源モデルが明らかになっていないことから、距離は気 象庁の震源情報¹⁶に基づき算出した震源距離を使用した. 表-1に震源情報を示す.

図-2からわかるように、司・翠川の距離減衰式はK-NETおよびKiK-netの最大速度を精度よく再現できている。 前述のように、司・翠川の距離減衰式は、Mw7.0以上の 地震は断層面最短距離が300km以内のデータを用いてコ ンパイルされているが、それよりも距離が離れている地 点の最大速度も評価できている。

これらの結果より,東北地方太平洋沖地震の硬質地盤 上の最大速度は司・翠川の距離減衰式で評価可能と考え られる.

表-12011年3月11日15時08分の地震の震源情報

発生日時15,	2011年3月11日			
発生時刻15,	15時08分53.4秒			
震央 ^{15),}	39° 49.2'N, 142° 46.0'E			
深さ ^{15),}	32km			
マグニチュード	Mj7.4 ¹⁵⁾ , Mw7.4 ^{16),}			
地震モーメント ^{16,}	$1.40 \times 10^{20} \mathrm{Nm}$			
STR/DIP/RAK ^{16),}	179/23/60			

4. 強震動生成域の地震規模の検討

東北地方太平洋沖地震の硬質地盤上の最大速度が司・ 翠川の距離減衰式で評価できると仮定し、東北地方太平 洋沖地震の強震動生成域の地震規模を検討する.前述の ように、強震動生成域は川辺・釜江モデルを参考に宮城 県沖に2つ(強震動生成域A,B),茨城県沖に1つ(強 震動生成域C)を仮定する.強震動生成域のパラメータ を表-2に示す.

表-2	強震動生成域のパラ	メ	ータ
-----	-----------	---	----

	強震動生成域					
	А	В	С			
大きさ	40km×40km	50km×50km	30km×30km			
深さ	27.8km	37.9km	48.0km			
走向	N195E	N195E	N195E			
傾斜	13°	13°	13°			

図-3 強震動生成域(A~C)に対する断層面最短距離の コンター図とK-NETおよびKiK-netの地震観測地点

大きさは断層面最短距離を設定するためのデータとし て使用し,距離減衰式に用いる深さは強震動生成域の中 心点での深さとする.図-3に各強震動生成域を対象とし た断層面最短距離のコンターを示す.

(1) 強震動生成域A

強震動生成域Aは宮城県沖に位置する.図-1からわか るように、この強震動生成域から生成された地震動は宮 城県、福島県、岩手県内では最初の大きな揺れを構成し ており、他の強震動生成域からの地震動と比較的分離し やすい.ここでは、宮城県、岩手県、福島県、山形県、 秋田県で観測されたK-NETおよびKiK-netの地表面地震動 記録を使用して地震規模の推定を行う.

図-4にMwとR値との関係を示す.図からわかるよう にMw=7.9の場合が最もR値が小さい.そのため,強震動 生成域の地震規模はMw7.9程度と推定される.図-5に Mw7.9の場合の司・翠川の距離減衰式と観測記録(硬質 地盤上の最大速度)との関係を示す.

図-4 強震動生成域Aを対象とした場合の地震規模Mwと
一致度指標(R値)との関係

図-5 強震動生成域Aからの地震動による硬質地盤上の 最大速度とMw7.9とした場合の司・翠川の距離減 衰式との比較

(2) 強震動生成域B

強震動生成域Bは強震動生成域Aよりもさらに沖合に 位置する.図-1からわかるように宮城県,岩手県内では 最初の大きな揺れから約70秒程度遅れて出現する二番目 の大きな揺れを構成している.ここでは,強震動生成域 Aと同様に,宮城県,岩手県,福島県,山形県,秋田県 で観測されたK-NETおよびKiK-netの地表面地震動記録を 使用して地震規模の推定を行う.なお,福島県の観測記 録の一部には,強震動生成域Cから生成されたと考えら れる地震動が干渉したと考えられるため,観測最大値の 抽出では波群を考慮し細心の注意が払って実施した.

図-6にMwとR値との関係を示す.図からわかるよう にMw=8.0の場合が最もR値が小さい.そのため,強震動 生成域の地震規模はMw8.0程度と推定される.図-7に Mw7.9の場合の司・翠川の距離減衰式と観測記録(硬質 地盤上の最大速度)との関係を示す.

なお、図-1からわかるように、強震動生成域Bからの 地震動は強震動生成域Aからの地震動の後半部と重複し ている.そのため、厳密には強震動生成域Bからの地震 動の最大値は、二番目の大きな揺れの最大値よりも小さ いと考えられる.

図-6 強震動生成域Bを対象とした場合の地震規模Mwと 一致度指標(R値)との関係

図-7 強震動生成域Bからの地震動による硬質地盤上の 最大速度とMw8.0とした場合の司・翠川の距離減 衰式との比較

(3) 強震動生成域 C

強震動生成域Cは、茨城県沖と福島県沖の強震動生成 域をあわせた強震動生成域である.強震動生成域の位置 は茨城県沖に設定した.図-1からわかるように茨城県以 南では強震動生成域Cからの地震動が支配的である.こ こでは、茨城県、宮城県、栃木県、群馬県、千葉県、埼 玉県、東京都で観測されたK-NETおよびKiK-netの地表面 地震動記録を使用して地震規模の推定を行う.福島県の 観測記録は強震動生成域からの地震動を分離することが 難しいことから検討対象から除外した.

図-8にMwとR値との関係を示す.図からわかるよう にMw=8.2の場合が最もR値が小さい.図-9にMw8.2の場 合の司・翠川の距離減衰式と観測記録(硬質地盤上の最 大速度)との関係を示す.

推定された地震規模は3つの強震動生成域の中で最も 大きい.地震調査研究推進本部が推定した福島県沖と茨 城県沖の地震の規模はM7.4とM6.8~M7.2であり¹⁷,これ に比べても大きい.前述のように,強震動生成域Cは福 島県沖と茨城県沖の二つの強震動生成域をあわせた強震 動生成域としているため,大きめのマグニチュードが推 定されたと考えられる.

図-8 強震動生成域Cを対象とした場合の地震規模Mwと 一致度指標(R値)との関係

図-9 強震動生成域Cからの地震動による硬質地盤上の 最大速度とMw8.2とした場合の司・翠川の距離減 衰式との比較

また,強震動生成域Bと同様に,観測記録の最大 値は強震動生成域Cからの地震動だけではなく,他 の強震動生成域からの地震動の影響も受けていると 考えられることから,地震規模はMw8.2よりも小さ いと考えられる.

5. まとめ

東北地方太平洋沖地震で観測された地震動記録と司・ 翠川の距離減衰式を用いて,強震動生成域の地震規模を 推定した.強震動生成域は川辺・釜江の震源モデルを参 考に,宮城県沖に2つ,茨城県沖に1つの計3つとした. 茨城県沖に設定した強震動生成域は福島県沖の強震動生 成域と茨城県沖の強震動生成域をあわせた強震動生成域 とした.

検討の結果,宮城県沖の強震動生成域の規模は,最初 に活動したと考えられる海岸線に近い強震動生成域が Mw7.9,約70秒後に活動した強震動生成域がMw8.0, 最後に活動した茨城県沖の強震動生成域がMw8.2と推 定された.茨城県沖の強震動生成域の規模は,福島県沖 の強震動生成域を含めているため、規模は最も大きくなった.また、二番目の宮城県沖の強震動生成域と茨城県 沖の強震動生成域から生成されたと考えた地震動には他 の強震動生成域からの地震動の影響を受けていると考え られるため、実際の地震規模はそれよりも小さいと想定 される.

今後,観測記録を詳細に分析し,推定精度の向上をは かる予定である.

謝辞:本研究では防災科学技術研究所の強震観測網K-NETおよびKiK-netの地震動記録ならびに地盤データを使 用させていただきました.また,本研究の一部は科研費 基盤研究(C)24560595(研究代表者:池田隆明)の助成を 受けて実施しました.最後に記して謝意を表します.

参考文献

- 1) 気象庁:平成 23 年(2011 年)東北地方太平洋 沖地震調査報告,気象庁技術報告,第 133 号, 2012.
- 防災科学技術研究所:強震観測網(K-NET, KiK-net), http://www.kyoshin.bosai.go.jp/kyoshin/ (2014.09.07参照)
- Furumura, T., Takemura, S., Noguchi, S., Takemoto, T., Maeda, T., Iwai, K. and Padhy, S.: 2011, Strong Ground Motions from the 2011 Off- the Pacific-Coast- of- Tohoku, Japan (Mw=9.0) Earthquake Obtained from a Dense Nation-wide Seismic Network, *Landslides*, Vol.8, No.3, pp.333-338, 2011.
- 4) 地震調査研究推進本部地震調査委員会:全国地 震動予測地図 – 地図を見て私の街の 揺れを知 る-,2009.,

http://www.jishin.go.jp/main/chousa/09_yosokuchizu /honpen.pdf (2014.09.07 参照)

- 三輪滋,筒井雅行,本山寛,池田隆明,沼田淳 紀:2011年東北地方太平洋沖地震における関東 地方の液状化被害調査,土木学会論文集 A1 (構造・地震工学),Vol.68, No. 4(地震工学論文 集第31巻), pp.I 1250-I 1265, 2012.
- 6) 釜江克宏,入倉孝次郎:1995年兵庫県南部地震の断層モデルと震源近傍における強震動シミュレーション,日本建築学会構造系論文集,No.500, pp.29-36,1997.
- 7) 池田隆明, 釜江克宏, 三輪 滋, 入倉孝次郎:経 験的グリーン関数法を用いた 2000 年鳥取県西 部地震の震源のモデル化と強震動シミュレーシ ョン, 日本建築学会構造系論文集, No. 561, pp.37-45, 2002.
- 8) Kurahashi, S. and K. Irikura: Source model for gen-

erating strong ground motions during, The 2011 off the Pacific coast of Tohoku Earthquake, *Earth Planets Space*, Vol. 63, pp.571–576, 2011.

- 9) 佐藤智美:経験的グリーン関数法に基づく 2011 年東北地方太平洋沖地震の震源モデル、ープレ ート境界地震の短周期レベルに着目してー、日 本建築学会構造系論文集, Vol.77, No.675, pp.695-704, 2012.
- 10) Asano, K. and T. Iwata: Source model for strong ground motion generation in the frequency range 0.110 Hz during the 2011 Tohoku earthquake, *Earth Planets Space*, Vol. 64(No. 12), pp.1111-1123, 2012.
- 川辺秀憲, 釜江克宏: 2011年東北地方太平洋沖地 震の震源のモデル化,日本地震工学会論文集, Vol. 13, No.2 (特集号), pp.75-87, 2013.
- 12) 野津厚:東北地方太平洋沖地震を対象とするス ーパーアスペリティモデルの提案,日本地震工 学会論文集, Vol. 12, No. 2, pp.21-40, 2012.

- 認川三郎: 地震断層と地盤条件を考慮した地表面最 大加速度・最大速度分布の推定,第8回地盤震動シンポジウム, pp.59-64, 1980.
- 14) Midorikawa, S., Matsuoka, M. and Sakugawa, K.: Site effects on strong-motion records observed during the 1987 Chiba-Ken-Toho-Oki, Japan earthquake, *Proceedings of the 9th Japan Earthquake Engineering Symposium*, Vol.3, pp.85-90, 1994.
- 防災科学技術研究所:広帯域地震観測網, F-net, http://www.fnet.bosai.go.jp(2014.09.07 参照)
- 16) 気象庁: 強震観測報告, 2011年, No.1
- 17) 地震調査研究推進本部:三陸沖から房総沖にか けての地震活動の長期評価の一部改訂について, http://www.jishin.go.jp/main/chousa/09mar_sanriku/ index.htm(2014.09.07 参照)

ESTIMATION OF MAGNITUDES FOR STRONG MOTION GENERATION AREAS OF THE 2011 OFF THE PACIFIC COAST OF TOHOKU EARTHQUAKE

Takaaki IKEDA, Katsuhiro KAMAE, Kazuo KONAGAI and Yuya TAKASE

The 2011 off the Pacific coast of Tohoku Earthquake had been the biggest earthquake with M9.0 on record. Many wave groups were observed in strong ground motion records near source area. It was estimated that multiple source area were ruptured consecutively. It is important to explain magnitude of strong motion generation areas to find out a source rupture process and mechanism of earthquake damage. We tried to estimate the magnitude of strong motion generation areas using attenuation equation of peak ground motion.