開削トンネルの破壊箇所と耐力の関係把握の ための静的載荷実験

川西 智浩1·清野 純史2·井澤 淳3

¹正会員 (公財)鉄道総合技術研究所 構造物技術研究部 (〒185-8540 東京都国分寺市光町2-8-38) E-mail: kawa@rtri.or.jp

²正会員 京都大学大学院工学研究科教授 (〒615-8540 京都市西京区京都大学桂Cクラスター) E-mail:kiyono@quake.kuciv.kyoto-u.ac.jp

³正会員 (公財)鉄道総合技術研究所 構造物技術研究部 (〒185-8540 東京都国分寺市光町2-8-38) E-mail:izawa@rtri.or.jp

開削トンネルの中柱・中壁がせん断破壊した場合には、兵庫県南部地震における神戸高速鉄道の大開駅 のように、トンネル全体が崩壊し、大きな被害が生じることが危惧される一方、その他の部材が損傷した 場合にトンネル全体系がどのような破壊となるかはよくわかっていない.著者らはこれまでに、開削トン ネル模型を用いて側壁をせん断破壊させる静的載荷試験を実施しているが、実験における結論の確度の向 上を目指すためには、破壊させる部材箇所を変えたケースとの比較検討が必要である.そこで本報告では、 前回の実験から条件を変化させた2ケースの追加実験を行い、開削トンネルの破壊箇所がトンネル全体の 耐力に及ぼす影響について検討した.

Key Words : Cut and cover tunnel, static loading test, shear failure, side wall

1. はじめに

兵庫県南部地震において、神戸高速鉄道の大開駅では 中柱がせん断破壊を起こし、上床版およびその上部の土 による荷重を支えられない状態となってトンネルが崩落 した¹⁾³⁾.これにより、開削トンネルにおいては中柱の 耐力が不足するとトンネルの崩壊につながることが明ら かとなり⁴⁾、中柱のせん断破壊防止を目的として、鋼板 巻きや添え柱の設置などの耐震対策が順次実施されるこ ととなった.

また、中柱を有する箱型トンネルの挙動解明や損傷お よび耐力を把握するための実験的研究も、これまでに数 多く実施されている.遠藤ら⁹は、鉄筋コンクリート製 ボックスラーメン構造物と地盤の非線形連成挙動の解明 を目的として、静的な地盤・構造物連成実験を行ってい る.大友ら⁹は、大型振動台実験により鉄筋コンクリー ト製地中構造物の塑性領域での変形挙動を把握する検討 を行っている.これらの実験は、主に箱型トンネル部材 の曲げ破壊を対象としたものである.石川ら⁹は、曲げ 破壊型だけでなくせん断破壊型の鉄筋コンクリート製ボ ックスカルバート模型を製作して静的載荷試験を実施し ているが、隔壁、つまり中壁がせん断破壊を起こす破壊 パターンであり、中壁以外がせん断破壊を起こした場合 の挙動把握まではなされていない. 曽良岡ら⁸の実験で も同様に隔壁がせん断破壊した場合の挙動を対象として いる. また,鉄筋コンクリート製地中構造物の実験はこ の他にも静的・動的を問わず多数実施されている⁹⁻¹⁴が, 中柱・中壁へのひずみの集中を解明する研究や土圧の解 明に関する研究など,中柱・中壁以外の部材が大きく損 傷しない研究である他,中柱・中壁を有しない地中構造 物を対象としているものが多い.

このように、中柱・中壁が大きな損傷を受けた場合に トンネル全体系に及ぼす影響は明らかになっているが、 一方、開削トンネルにおいて中柱・中壁以外の部材が大 きく破壊した事例がこれまでにないことから、側壁や上 床版などの部材が破壊した場合に、トンネル全体系の形 状が確保されるのか、あるいは耐力がどの程度維持され るのか、といった問題については明らかにされていない. 実際にはトンネルに大きな地震作用が入力されることで、 中柱・中壁以外の部材が大きな損傷を受ける可能性は十 分にある.しかし、開削トンネルは一般に不静定構造で あることから、その構造の特性を考慮すると、どこか一 部材が破壊しても構造物としての形状は確保され、構造 全体系としての安全性が確保される場合も十分考えられ

表-1 解析ケース一覧			
Case No.	上段 : トンネル寸法(箱型部分) 下段 : 部材厚さ	せん断補強筋の有無	圧縮強度 (N/mm ²)
Case 0 (前回の実験)	図-1 (a) <幅1.6m×縦0.95m> 中壁:0.10m, その他部材:0.15m	側壁:せん断補強筋なし その他:せん断補強筋あり	29.7
Casel	図-1 (b) <幅1.6m×縦0.95m> 側壁:0.10m, その他部材:0.15m	中壁:せん断補強筋なし その他:せん断補強筋あり	34.2
Case2	図-1 (c) <幅1.6m×縦0.70m> 全部材:0.15m	側壁:せん断補強筋なし その他:せん断補強筋あり	

図-1 製作した開削トンネル模型の寸法(単位はmm)

る.

そこで、著者らはこれまでに、開削トンネル模型を用 いて主に側壁にせん断破壊を含む大きな損傷を発生させ る静的載荷試験(以下,前回の実験)を実施しており¹⁵, その結果、側壁がせん断破壊を起こすことでトンネル全 体系の耐力は低下するが、せん断破壊が進行しても中壁 が破壊しなければ一定の耐力を維持できることを確認し ている.ただし、この結果は限られた条件下における1 ケースの実験結果に過ぎず、大きく損傷する部材の違い による影響など、実験における結論の確度の向上を目指 すためには、さらなる実験ケース・データの蓄積が必要 である.そこで本報告では、前回の実験から条件を変化

させて開削トンネル模型の追加実験を行い,開削トンネルの破壊箇所がトンネル全体の耐力に及ぼす影響について検討する.

2. 静的載荷実験の概要

(1) 実験ケース

本検討では、前回の実験とトンネル模型寸法や配筋条件を変えた2ケースの追加実験を行い、前回の実験と挙動や耐力の比較を行うことで、開削トンネルの損傷状況がトンネル全体の耐力に及ぼす影響について検討する. 各実験ケースにおける開削トンネル模型の寸法を図-1に示す.まず、図-1(a)には前回の実験で用いたトンネル模型(Case0)を示している.一方、今回の実験では、2種類の寸法のトンネル模型を用いており、図-1(b)に示す本

図-3 静的載荷試験の状況

体部寸法:幅1.6m×縦0.95mのトンネルは、トンネル幅お よび高さについては前回の実験で使用したトンネル模型 と同じであるが、部材厚さを上下床版および中壁を 0.15m、左右側壁0.1mとすることで中壁をせん断破壊さ せやすい仕様としており、側壁をせん断破壊させた前回 の実験との挙動や耐力の比較を目的としたものである.

また、図-1(c)に示す本体部寸法:幅1.6m×縦0.70mのトン ネルは、側壁あるいは中壁をよりせん断破壊させやすく する目的でトンネル高さを低く設定したトンネル模型で あり、すべての部材厚さを0.10mとしている. この模型 を用いることで、トンネル大きさが変化した別のトンネ ル模型においても、部材がせん断破壊した場合の挙動・ 耐力低下に同様の傾向が得られるかどうかを把握するこ とを目的としている. トンネルの奥行きはいずれのケー スも1mである.

大開駅では中柱構造が採用されているが、本実験では 中壁構造を採用した. どちらの構造も、上下床版の中央 位置をつないで上部からの荷重を支えており、その部材 が破壊するとトンネルの崩壊の危険性があるという特性 は同じであるため、模型製作の難易性を考慮して中壁構 造を採用することとした.

次に、開削トンネル模型の部材の配筋略図を図-2に、 解析ケース一覧を表-1にそれぞれ示す.別途コンクリー トの圧縮試験を実施したところ、圧縮強度は34.2(N/mm²) であり、前回の実験の値(Case0, 29.7(N/mm²))を少し上回 っている.また、主鉄筋およびせん断補強筋には前回の Case0を含めた全ケースでD6(SD295)を用いており、今回 の検討では各部材をせん断破壊させることを目的として、 Case1における中壁、Case2における側壁にはせん断補強 筋を配置していない.また、今回のCase1およびCase2で は、曲げ耐力の増加によりせん断破壊をしやすくする目 的で、主鉄筋間隔を40mmに狭めている.

(2) 実験方法

次に、静的載荷実験の状況を図-3に示す.この図では

(a) 全体図

(0) 元端部方のイメーシ 図-4 アクチュエーター先端の載荷治具

一例としてCaselの状況を示している. できる限り設置 面との間に滑りによるズレが生じないよう、トンネル模 型を反力床にPC鋼棒で固定し、左側壁の上方をアクチ ュエーターで右方向に静的載荷する. 今回の実験に用い たアクチュエーターの載荷性能は、変位が±250(mm)、荷 重が±40(tf)(約±392(kN))となっており,前回の実験 (Case0)よりも載荷できる変位の大きなアクチュエーター を用いることで、部材がせん断破壊した後も大きな変形 が加えられるようにしている.具体的には、今回のアク チュエーターは最大限引いた状態からは+500(mm)まで の載荷が可能であるが、トンネル模型の設置位置の関係 で、今回の実験では約200~350(mm)まで載荷が可能な状 況となっている.また、前回の実験と同様に、載荷にお いては奥行き方向に均一に載荷できるよう,図-4に示す ような載荷治具を用いることとした. なお, 前回の実験 では、治具先端に8cmの厚みがあり、細長い「面」で載 荷していたが、今回の実験ではアクチュエーターを変え て載荷変位が前回の実験よりも大きくなるため、大変位 時に側壁が大きく傾くことから細長い「面」でトンネル 面に追従することが難しくなる. そこで、治具先端に丸 棒状の部材をさらに取り付け、「線」で載荷できるよう にした.

また,トンネルの上載荷重を模擬するために,トンネ ル上部に計40(kN)のインゴットを載せており,これは前 回の実験の倍の重さとしている.そして,アクチュエー ターの変位を1~2mmずつ増加させ,その都度損傷状況

図-5 荷重-相対変位関係 (Case0)

をチェックするとともに、アクチュエーター位置の荷重 と変位を計測することにより、開削トンネルの損傷過程 とトンネルの耐力との関係を整理することとした.ただ し、トンネルは下床版位置にて固定しているものの、載 荷によりわずかにトンネルがずれる可能性があるため、 図-3に示したようにトンネル下床版の手前側および奥側 にターゲットを設置し、レーザー変位計を用いてトンネ ル下床版位置の変位を計測することとした.そして、式 (1)により算定した変位Dをトンネルの相対変位とし、こ の相対変位とアクチュエーター位置の荷重を用いて、ト ンネルの荷重-変位関係を整理することとした.

$$D = D_A - (D_{L1} + D_{L2})/2 \tag{1}$$

ここで, D_A : アクチュエーターで計測されたトンネル の変位(mm), D_{Ll} : レーザー変位計で計測されたトンネ ル下床版位置(手前側)の変位(mm), D_{L2} : レーザー変 位計で計測されたトンネル下床版位置(奥側)の変位 (mm) である.

実際のトンネルでは側方にも地盤が存在しており、側 方地盤の影響も考慮することで、損傷状況にも影響を及 ぼす可能性があるが、前回の実験や本実験は、構造体と しての安定性が損傷箇所によってどのように変わるかを 調べる基本的検討と位置付け、トンネル躯体の損傷過程 が容易に確認できるように、側方の拘束効果を考慮しな い実験とした.

3. 実験結果

ここでは、主にCase1およびCase2について実験結果を 述べるが、損傷箇所と耐力の関係という観点について比 較するため、Case0の実験結果¹⁵についても概略を述べる.

図-6 載荷終了時の損傷状況 (Case0)

(1) CaseOの実験結果

トンネル模型の荷重-相対変位関係および損傷状況を 図-5に示す.まず載荷を進めていくと、部材の至るところに曲げひび割れが発生し、その後も左右側壁や中壁の 曲げによる損傷が進行する形でトンネルが変形していき、 相対変位が約29(mm)の時点で荷重は最大点に達したが、 その後荷重はそれほど低下することなく曲げ破壊が進行 していった.そして、変位が約65.6(mm)の時点で、左側 壁に新たにせん断ひび割れが発生し、せん断ひび割れの 進展とともに耐力が低下した.しかし、このように左側 壁のせん断ひび割れが進展してもトンネル全体系の形状 はほぼ維持されており、図-6に示すように最終的に変位 が約82(mm)に達しても、全体系が崩壊することはなか った.

(2) Case1の実験結果

トンネル模型の荷重-相対変位関係および損傷状況を 図-7に示す.まず,荷重が増加するにつれて,隅角部や 中壁に曲げひび割れが生じ始めるが,荷重はそのまま増 加し続ける(①).その後,相対変位が約10(mm)(変 形角:約11/1000)になった時点で,中壁にせん断ひび割 れが現れ始める(②).この時点で荷重はピークとなり, その後一気にせん断破壊が進行する.続いて,相対変位 が約17(mm)(変形角:約18/1000)になった時点から, 右側壁にもせん断破壊が現れ始めて荷重が急激に低下し, まもなく右側壁のせん断ひび割れも貫通した(③,図-8(a)).

その後いったん耐力は回復するものの,最大荷重時に 比べると耐力はかなり低下しており,さらなるせん断破 壊の進行とともに荷重は徐々に低下していく(④).相 対変位が約102(mm)(変形角:約107/1000)になると中壁 に別のせん断ひび割れも現れ始め,このあたりから上床 版が崩れ落ち始める.なお,インゴットの設置状況の都

(a) ステップ③

(b) ステップ⑤(載荷終了時点)図-8 主な損傷状況(Casel)

合で途中からインゴットが上床版から浮き始めてしまい, 上載荷重が十分に載っていないことも影響しているが, 上床版が完全に崩落する形にはならず,相対変位が約 351(mm)(変形角:約369/1000)の時点で載荷を終了した (⑤,図-8(b)).

(3) Case2の実験結果

トンネル模型の荷重-相対変位関係および損傷状況を 図-9に示す.最初のうちは、荷重が増加しても細かなひ び割れ以外は大きな損傷が見られない状態が続く(①) が、相対変位が約26mm(変形角:約37/1000)に達する 前後で、右側壁と中壁にほぼ同時にせん断ひび割れが生 じ、荷重が一気に低下する(②,図-10(a)).

その後は、両者のせん断破壊が進行する形で、破壊が 進んでいく.相対変位が約47mm(変形角:約67/1000)

図-9 荷重-相対変位関係 (Case2)

(a) ステップ②

(b) ステップ④ (載荷終了時点)図-10 主な損傷状況 (Case2)

となった頃から、中壁と右側壁のせん断破壊により上床 版が右下方向へ沈み始める(③). Case2では、Case1の 結果を踏まえてインゴットを上床版の沈みに追随させる ようにしたため、途中まではせん断破壊により分離した 中壁・右側壁の下方側の部材に上床版が乗っている形に なっているが、次第に右側壁は上床版およびインゴット の重みに耐えきれずに下方側の部材がさらなる破壊を起 こす形になった. 載荷終了時の損傷状況は図-10(b)の通 りである(④).

4. 部材のせん断破壊箇所と耐力低下の関係

Case0~Case2の各ケースについて、アクチュエーターの荷重を実験時の最大荷重で除した値を算出し、部材の

図-11 部材のせん断破壊箇所と耐力低下の関係

せん断破壊の状況との関係を比較した結果を図-11に示 す. 前回の実験(Case0)では、中壁の変形性能を高めると ともに側壁がせん断破壊しやすくなるようにトンネル模 型を製作し、側壁がせん断破壊しても中壁がせん断破壊 しなければトンネルは一定の耐力(7割程度)を維持で きる可能性があることを確認したが、Caselでは中壁が せん断破壊した後に右側壁がせん断破壊し、結果として、 耐力の急激な低下後に再び耐力が安定した後でもピーク 時の半分程度となっている. 中壁がせん断破壊したこと で耐力に余裕のない両側壁の荷重負担割合が増大したこ とで,右側壁にもせん断破壊が生じ,耐力が一気に低下 したものと思われる、Case2については右側壁および中 壁のせん断破壊がほぼ同時に起こっているが、最終的に 中壁と右側壁の2部材がせん断破壊を起こしていること はCaselと同様であり、せん断破壊後の耐力がピーク時 の半分程度となっている傾向もCaselと同じである.

中壁がせん断破壊した場合に考えられる現象としては、 本実験のように他部材に損傷が波及するケースの他、大 開駅のように上部からの荷重が支えきれなくなってトン ネル自体が崩壊する場合もある.1層2径間の開削トンネ ルにおいて中壁(中柱)は中央に位置していることから、 上載荷重を支えるうえで非常に重要な部材であること、 および中央の部材が損傷すると他部材への荷重負担増大 への影響が大きいことから、今回の実験や大開駅と同様 の大きな損傷となる懸念がある.一方、前回の実験 (Case0)では側壁が損傷しても中央に位置する中壁(中 柱)がせん断破壊を起こしておらず、トンネル全体とし ての残存耐力はある程度有することを確認している.

以上の結果を俯瞰すると、前回の実験(Case0)と今回の 実験(Case1,2)は、破壊箇所の違いを生じさせるために部 材厚さや配筋を変える一方,上載荷重などその他いくつ かの条件が異なってはいるものの,破壊箇所の違いがト ンネル自体の破壊状況や残存耐力にも影響を及ぼす可能 性があり,中壁がせん断破壊した場合の方がトンネルの 耐震性への影響がより大きいことがわかる.つまり,中 壁(中柱)のせん断耐力が不足する場合の鋼板巻き等の 耐震対策を優先的に実施する必要があることを改めて示 唆している.したがって、本実験で得られた結果は,既 設開削トンネルの地震時挙動および耐力の傾向を把握し, 補強の優先順位等を検討するのに有効なものであると言 える.

ただし、これらの実験では地震動の繰り返しの影響, 上載荷重の大小の影響,周辺の土の影響などを加味して おらず,一般的な1層2径間の開削トンネルの条件にこ の結果を準用する場合には、これらの影響を考慮する必 要があることに注意する必要がある.

5. まとめ

本研究では、開削トンネルにおいてせん断破壊する部 材と耐力の関係を把握するために、鉄筋コンクリートを 用いた1層2径間の開削トンネル模型を製作し、気中静 的載荷試験を実施した.その結果、今回の実験条件では、 中壁がせん断破壊すると耐力の低下が大きく、トンネル 全体として大きな破壊につながる恐れがある一方、側壁 がせん断破壊しても中壁が大きく損傷しなければ、トン ネルの崩壊を免れることができ、水平荷重に対する耐力 もある程度残存することが確認できた.

既設開削トンネルでは中壁の補強,あるいは添え柱の 設置が容易な一方,側壁の耐震対策には制約が伴うため に補強が実施されていないケースも多い.その結果,中 壁のみ耐震対策を実施した場合に側壁がせん断により損 傷する破壊形態になることは十分考えられる.したがっ て,今後は本実験の結果を踏まえて,側壁が弱点箇所と なるトンネルの安全性について評価方法の検討を行い, 実際のトンネルの安全性の評価,あるいはより危険な開 削トンネル箇所の抽出に活かしていきたいと考えている.

参考文献

- 1) 阪神淡路大震災調査報告編集委員会:阪神淡路大震 災調査報告 土木構造物の被害 第2章 トンネ ル・地下構造物,土木学会,1996.
- 佐藤工業株式会社:神戸高速鉄道東西線 大開駅災 害復旧の記録, 1997.
- 3) 土木学会関西支部:大震災に学ぶ-阪神淡路大震災 調査研究委員会報告書-, Vol.II, 1998.
- 4) 矢的照夫,梅原俊夫,青木一二三,中村晋,江嵜順 一,末富岩雄:兵庫県南部地震による神戸高速鉄

道・大開駅の被害とその要因分析,土木学会論文集, No.537/I-35, pp.303-320, 1996.

- 5) 遠藤達巳,青柳征夫,片平冬樹:鉄筋コンクリート 製地中構造物への限界状態設計法の適用に関する研 究-地盤と構造物との非線形連成実験とその解析-, 地震工学研究発表会講演概要, Vol.21, pp.445-448, 1991.
- 6) 大友敬三,末広俊夫,河井正,金谷賢生:鉄筋コン クリート製地中構造物の耐震性能照査法の開発(その1)大型振動台実験に基づく塑性変形評価とその 適用,日本地震工学シンポジウム論文集,Vol.11, pp.1097-1102,2002.
- 7) 石川博之,末広俊夫,金津努,遠藤達巳,松本敏 克:鉄筋コンクリート製地中構造物の変形性状と損 傷状態に関わる実験的考察,地震工学研究発表会講 演論文集, Vol.26-2, pp.885-888, 2001.
- 8) 曽良岡宏,足立正信,本田国保,田中浩一:地中ボ ックスカルバートの変形性能に関する実験的研究, コンクリート工学年次論文集,Vol.23, pp.1123-1128, 2001.
- 9) 武田篤史,樋口俊一,大内一,後藤洋三:RC地中 構造物の大地震時の破壊挙動,地震工学研究発表会 講演論文集, Vol.25-1, pp.485-488, 1999.
- 10) 伊藤浩二,大野了,松田隆:鉄筋コンクリート製地 中構造物の遠心力模型振動実験と解析,土木学会地

震工学論文集, Vol.27, No.200, 2003.

- 11) 橘泰久,佐藤誠,秋山伸一,荒添正棋:実際に使用 されてきた地中構造物の地震時耐力・変形性能に関 する研究-その1 載荷実験に基づく非線形挙動の検 討,地震工学研究発表会講演論文集,Vol.26-2, pp.889-892,2001.
- 佐藤泰,三浦篤,岩楯敞広,飯野貴嗣,木村良章: 模型振動実験による地中構造物の地震時挙動の検討, 土木学会年次学術講演会講演概要集第1部(B), Vol.52, pp.916-917, 1997.
- 13) 渡辺啓行,末広俊夫:地中ダクトの側壁動土圧に関 する実験的検討,土木学会論文集,No.432/I-16, pp.155-163,1991.
- 14) 渡辺和明, 志波由紀夫: 箱型地中構造物の地震時挙 動と耐震計算法に関する実験的検討, 土木学会年次 学術講演会講演概要集第1部, Vol.49, pp.858-859, 1994.
- 15) 川西智浩,清野純史,井澤淳:側壁の損傷に着目した開削トンネルの地震時耐力把握のための実験的研究,土木学会論文集 A1(構造・地震工学), Vol.69, No.4(地震工学論文集第 32 巻), pp.509-516, 2013.

(????.?.? 受付)

STATIC LOADING TESTS OF CUT AND COVER TUNNEL TO GRASP A RELATIONSHIP BETWEEN A PROCESS OF FAILURE AND STRENGTH

Tomohiro KAWANISHI, Junji KIYONO and Jun IZAWA

In the case of the collapse of the Daikai Station of the Kobe Rapid Transit Railway when the 1995 Kobe Earthquake occurred, it was clear that a shear failure of the center pillars of a cut and cover tunnel was partly the cause of the collapse of the whole tunnel. However, it has not been clarified how severe damage to a side wall influenced the degree of this collapse. In this research, we conducted static loading tests using reinforced concrete cut and cover tunnel models to grasp a relationship between a process of failure and structural strength when a member of the tunnel is damaged by shear failure.