下水道埋設管路の地震被害率曲線の構築

庄司 学¹·寺嶋 黎²·永田 茂³

¹正会員 筑波大学准教授 システム情報系(〒305-8573 茨城県つくば市天王台1-1-1)
 E-mail: gshoji@kz.tsukuba.ac.jp
 ²学生会員 筑波大学大学院 システム情報工学研究科(〒305-8573 茨城県つくば市天王台1-1-1)
 E-mail: s1320944@u.tsukuba.ac.jp
 ³正会員 鹿島建設(株)技術研究所 (〒182-0036 東京都調布市飛田給2-19-1)
 E-mail:nagata-shigeru@kajima.com

本研究では、下水道の汚水管渠を対象とし、1995年兵庫県南部地震および2011年東北地方太平洋沖地震 における被害データから、地震動やそれに伴う液状化による被害の分析を行った.被害延長を敷設延長で 除した値を被害率とし、地震動強さとしてPGVおよび計測震度IJとの関係を管種、管径、地形区分および 液状化の影響度の観点から分析した.その上で、被害率と地震動強さの関係を地震被害率曲線としてモデ ル化した.

Key Words : sewer buried pipeline, seismic damage, liquefaction, damage function, the 1995 Kobe earthquake, the 2011 off the Pacific Coast of Tohoku earthquake

1. はじめに

2011年3月11日に発生した東北地方太平洋沖地震によ り、水処理系ライフラインとして重要な役割を担う下水 道システムにおいて甚大な被害が発生し、社会経済活動 に大きな影響をもたらした¹⁾. それらの要因として, 津 波による甚大な被害に加え、地震動および液状化により、 多様な損傷モードの被害が発生したことが挙げられる. これらの被害データを統計的に分析し、被害の予測式を 構築することは、将来の発生が予測されている東南海・ 南海等の巨大プレート間地震や首都直下などの大規模地 震に対して、被害想定とその事前対策の立案の観点から 極めて重要である.これに関して、例えば、大規模地震 による下水道被害想定検討委員会2,下水道地震対策技 術檢討委員会³⁾,下水道地震·津波対策技術檢討委員会⁴⁾, 永田ら⁵およびShoji et al.⁶などにより検討が行われてきた が,いずれも管種や管径,地盤情報などの要素を考慮し た高精度な推定には至ってはいない.

このような状況を踏まえ、本研究においては、1995年 兵庫県南部地震および2011年東北地方太平洋沖地震にお いて下水道管渠に生じた実際の被害のデータを対象と し、地震被害率曲線の構築を行う.具体的には、被害延 長と敷設延長の比で表される被害率と地震動強さの関係 から、管種、管径、微地形区分および液状化の影響度を 考慮した下水道の地震被害率曲線を構築する.

2. 1995年兵庫県南部地震の際の被害の分析

(1) 分析対象とするデータ

兵庫県南部地震における被害の分析対象領域は、神戸 市全域とした.下水道管渠の被害データとしては、兵庫 県南部地震の際の神戸市内の被害のデータベースである 「神戸JIBANKUN」[№]8を用いた.なお、本研究において は、その中で扱われている、管径 ∮900mm以下の汚水管 の枝線の被害データを分析対象とする.図-1に、対象領 域における下水道管渠被害データを示す.滞水箇所は、

135°00°E 135°100°E 135°100°E 135°100°E 135°100°E 135°100°E 135°100°E

物理的な被害や地盤変状などにより下水道管渠内に滞水 が生じ、復旧を要したスパンを表す線データである.こ

表-1 神戸市における管種, 管径および微地形区分のグ ループ会け

		<i>J</i> N			
			(a)	管種	
	分類	略称	()		管種
				鉄筋コ	コンクリート管
				鉄筋コン	/クリート半割管
	ヒューム管	HP	扌	隹進工法用	鉄筋コンクリート管
			£	失筋コンク	リート特厚管(1種)
_					ニューム管
				(使質) () () () () () () () () () () () () () (塩化ビニル管
				() () () () () () () () () ()	16ビール卵形官
	塩化ビニル管	VP		高剛性碩	「雪恒化ビニル管
				推進工法用	目硬質塩化ビニル管
				硬質	塩化ビニル管
	強化プラスチック管	FRPM	弜	魚化プラス [、]	チック複合管F.R.P.M
				ポリ	エチレン管
	ポリエチレン管	PP		軟質オ	ポリエチレン管
				高圧送水	用ボリエチレン管
_			工业力	<u> </u>	ホリエナレン管
	ダクタイル鋳鉄管	DIP	LIVY	レノイーン ダク	タイル鋂鉄管
-				//	銅管
	2100 605	CD		塩化ビニ	ルライニング鋼管
	沙阿'官'	SP			鋼管
				ステンレフ	、管 材質 SUS304
-	岡管	TP	And	///	陶管
-	<u> 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一</u>	CP その他	***	肪コンクリ	- 下官 (現場打ら) その他
-	(上) (左)	X		(a)	金融ですべ
	(D) 倍1	全		(C)	一
	分類	官径[mm]		分類	微地形区分
		75		山地	山地
		100		- Дарания С С С С С С С С С С С С С С С С С С С	山廠所互出
	$0 \leq \Phi \leq 300$	150		口地	<u></u>
		200			百匹匹地
		216			白伏堤防
		250	. 沖	積平野	谷背湿地
		300			三角州・海岸低地
		319			一 月 / 一 尚 / 一 過 / 一 尚 / 一 過 / 一 尚 / 一 尚 / 一 過 / 一 尚 / 一 過 / 一 尚 / 一 過 / 一 尚 / 一 過 / 一 尚 / 一 過 / 一 尚 / 一 過 / 一 尚 / 一 過 / 一 / 一
		350	世	里立地	埋立地
		400			
	$300 \leq \Phi \leq 600$	406			
		450			
		492			
		500			
		560			
		600			
		700			
	<pre>////////////////////////////////////</pre>	750			
	$600 \le 0 \le 1000$				

こで定義するスパンとは、複数の管が連結された下水道 管渠においてそのまとまりを表すものである.以下では 滞水箇所の長さを被害延長と定義する.被害延長の総延 長は83.782kmであった.下水道管渠の敷設データに関し ては、神戸市建設局によるデータを活用した.なお敷設 データは、各スパンごとに、管種および管径の情報が入 力されたものとなっている.データの処理にあたって、 被害データと敷設データの質を同一にするため、敷設デ ータの中から管径 \$ 900mm以下の汚水管の枝線のみを抽 出し、分析に用いた.また、敷設データの管種および管 径の情報を、同一のスパンにおける被害データに統合し た.図-2には、抽出した敷設データの分布を示す.敷設

800

850

900

図-5 神戸市における推定地震動分布

データの総延長は、3,528kmとなった. 微地形区分に関 しては、J-SHIS⁹による250mメッシュ単位のデータを用 いた(図-3). 液状化領域としては、先述の図-2に示し た「神戸JIBANKUN」における噴砂の発生範囲を用いた. また、液状化危険度の指標として、PL値¹⁰を用いた. 兵 庫県南部地震におけるPL値の分布は、ボーリングデー タに基づき、地盤の特性を考慮した上で、250mメッシ ュ単位で算出した(図-4).

敷設延長L,被害延長L_d,および,被害延長L_dを敷設 延長Lで除した被害率R_Lを管種,管径,微地形区分およ び噴砂の有無の観点からクロス集計した.なお集計の際, 管種,管径および微地形区分は,**表-1**に示すようにグル ープ分けした上で集計を行った.グループ分けの際には, 管種に関しては都市ライフラインハンドブック¹¹⁾,管径 に関しては永田ら⁵,微地形に関しては磯山ら¹²⁾や若松 ら¹³の知見をそれぞれ参考とした.

(2) 地震動分布の推定

地震動強さとしては、Jeon and ORourke¹⁴により埋設管の被害との相関が明らかにされているPGVおよび国内において被害想定等で広く用いられている計測震度JJを指標として用いた.これらの分布に関しては、既往の研究として、たとえば文献15,16,17)のように推定が行われているが、いずれもその領域は海沿いの都市部のみであり、神戸市全域がカバーされていない.本研究では、神戸市全域における均一なメッシュでの地震動分布を得るため、震源データ¹⁸から距離減衰式¹⁹に基づき推定した工学的基盤面における地震動強さを平均値とし、それを神戸市内外の合計45箇所の地震観測点における観測値によりSimple Kriging法²⁰で空間補間した250mメッシュ単位の推定結果を用いた.その際、PGVの地盤増幅率は藤

本・翠川²¹⁾の知見,計測震度*IJ*の地盤増幅度は末富ら²²⁾の知見を用いた. 図-5には,得られた地震動分布を示す.

(3) 被害率曲線のモデル

以上の各データから、点データおよび線データとして 記述された下水道管渠被害データを、面データである推 定地震動分布、微地形区分および噴砂データと統合した. その際、2つ以上の統合対象にまたがる線データについ ては、またがる点で分割を行い、別の識別番号で新たに 定義し直したうえで、統合した.

被害率としては,次式に示す被害延長*L*_d[km]に関する 被害率*R*_d[km/km]と定義した.

$$R_L = \frac{L_d}{L} \tag{1}$$

この被害率を指標として,被害率曲線は,磯山ら¹⁰による上水道管路の被害予測式を参考に,次式に示す形とした.

$$R_{m}^{*}(x) = C_{p}C_{d}C_{g}R^{*}(x)$$
(2)

ここで $R_m^*(x)$ は地震動強さxにおける補正後の被害率, C_p , C_d および C_s はそれぞれ,管種,管径および微地形の属性 に関する補正係数, $R^*(x)$ は標準被害率曲線を示す.なお, これらの補正係数は**表-1**のように分類された管種,管径, 微地形区分に関して被害率間の倍率を表す係数である.

表-2 神戸市のデータによる噴砂なしのデータを用いた場合の標準被害率曲線の回帰定数

	С	λ	ζ	μ	σ	ζ,	制約条件
PGV	0.159	4.716	0.330	117.972	40.015	0.300	$\zeta_v \leq 0.3$
IJ	0.096	-	-	6.040	0.217	0.300	$\zeta_v \leq 0.3$

表3	神戸市のデータによ	るPL≦5のデータを	用いた場合の)標準被害率曲線の回帰定数
----	-----------	------------	--------	---------------

	С	λ	ζ	μ	σ	ζ_v	制約条件
PGV	0.176	4.805	0.358	130.201	48.146	0.300	$\zeta_v \leq 0.3$
IJ	0.080	-	-	6.040	0.223	0.300	$\zeta_v \leq 0.3$

(4) 標準被害率曲線の構築

標準被害率曲線は、最尤法に基づきモデル化した.管種に関しては、都市ライフラインハンドブック¹¹⁾や永田ら⁵⁰の知見を参考に塩化ビニル管VP、管径に関しては、永田ら⁵⁰の知見を参考に管径 $0 \le \Phi < 300$ mm、微地形に関しては、磯山ら¹²⁾の知見を参考に沖積平野を基準の分類

とした.これらに該当し、さらに、液状化による被害は 下水道管渠被害の中でもメカニズムが異なると考えられ るため、噴砂の発生した領域に含まれないデータのみを 用いた.また、PGVの場合は10cm/s、IJの場合は0.1の区 間幅をそれぞれ設け、LおよびL₄は、その区間幅で集計 した値を用いた.被害率曲線のモデルとしては、

					17	水道				上7	K 道
		宮城県(2004) 仙台市(2002)	さいたま市 (2010)	川崎市(2010)	福岡県(2012)	青森県(1997) 秋田県(1997) 広島県(1997) 宮崎県(1997)	札幌市(1997)	新潟県(1998)	福井県(1997)	日本水道協 会 (1998)	高田ら(2001)
	ヒューム管HP	2.0	0.5	0.5	1.0	0.5	0.5	-	0.5	-	-
	塩化ビニル管VP	1.5	1.5	1.0	1.5	1.5	1.5	1.5	1.2	1.0	1.0
	強化プラスチック管FRPM	1.0	1.5	0.1	-	-	-	1.5	-	-	-
	鋼管SP	2.0	-	2.0	0.1(溶接)	-	0.1(溶接)	2.0	-	0.3(参考値)	0.3
管種で	無筋コンクリート管CP	6.0	-	-	-	1.5	1.5	-	1.2	-	-
H HEC p	ダクタイル鋳鉄管DIP	-	0.2	0.3	0.2	-	0.2	0.2	-	0.3	0.3
	鋳鉄管CIP	1.0	-	-	-	-	1.0	1.0	-		
	ポリエチレン管PP	-	-	-	-	-	-	0.1	-		
	陶管TP	2.0	2.0	2.0	2.0	2.0	-	-	1.6	-	-
	不明	-	1.0	1.0	-	1.0	-	1.0	-	-	-
	$0 \le \Phi \le 100$	12	1.2	Ν	Λ	12	Ν	Ν	1.0	1.6	1.6
	$100 \le \Phi \le 150$			$\langle \rangle$	\backslash		$\langle \rangle$	\backslash	1.0	1.0	1.0
	150≦Φ<200			$\langle \rangle$	$\langle \rangle$		$\langle \rangle$	\backslash			
	200≦Ф<300	0.6	0.6	$\langle \rangle$	\backslash	0.6	$\langle \rangle$	$\langle \rangle$	0.6		0.9
管径Ca	300≦Ф<400				\backslash					0.8	0.7
[mm]	<u>400≦Φ<500</u>	0.4	0.4	$\langle \rangle$	\backslash	0.4	$\langle \rangle$	$\langle \rangle$	0.4		
	<u>500≦</u> Φ<1000	0.0									
	1000≦Φ<2000 2000≤ * ≤ 4000	0.2	0.2	$\langle \rangle$	$\langle \rangle$	0.2			0.2	0.5(参考値)	0.5(参考値)
	2000≦0<4000 4000≤Φ	0.1	0.2	$\langle \rangle$	$\langle \rangle$	0.1			0.1		
	4000≧Ψ ∠==	0.05	1.0		\setminus	0.05			0.05		
	小明	-	1.0			1.0			-	-	-
	山地	0.4	-	$\langle \rangle$	\backslash	Ν	\	\	Ν	-	\mathbf{A}
	山阪地	0.4	-	$\langle \rangle$	\backslash		$\langle \rangle$	\backslash		-	$\langle \rangle$
	カ建立時	1.0	1.0		\backslash		$\langle \rangle$	\backslash		1.5	\sim
	公库亚野	1.0	1.0		\backslash		$\langle \rangle$			3.2	
地形 C_g	旧水部	-	-		1					3.2	\ \
	自然提防	1.0	2.0		\setminus					-	$\langle \rangle$
*:液状化係数	献弱地盤・後背湿地	2.0	-				$\langle \rangle$			-	
を別に設定	平地部诰成地	2.0	-		$\langle \rangle$		\			-	
	山地部造成地	2.0	-		\backslash		$\langle \rangle$			1.1	
	その他良質地盤	-	-		$\langle \rangle$					0.4	
	液状化地盤	$(5 \le PL \le 20)$ 2 (20 < PL) 4.7	$(5 \le PL \le 15) = 2$ $(15 \le PL) = 4.7$		*					*	*
	PL=0	\land		\backslash					\backslash	1.0	1.0
	$0 \le PL \le 5$					-	- 1			1.0	1.0
液状化C1	$5 \le PL \le 15$				0.85+0.05*PL	2.9(秋田県のみ)				2.0	2.7
	$15 \le PL \le 20$					7.0	7.0			24	4.0
	20 <pl< td=""><td></td><td></td><td></td><td></td><td>7.0</td><td>7.0</td><td>7.0</td><td></td><td>2.4</td><td>4.0</td></pl<>					7.0	7.0	7.0		2.4	4.0

表-4 既往の補正係数 (a) 管種, 管径および地盤条件ごとに定められた補正係数

(b) 永田ら²³⁾による補正係数

		液状化地盤		非液状化地盤			
	$0 \leq \Phi \leq 300$	$300\!\leq\!\Phi\!<\!600$	600≦Φ	$0 \leq \Phi \leq 300$	$300\!\leq\!\Phi\!<\!600$	$600 \leq \Phi$	
VP	22.75	33.97	0.00	1.48	1.01	-	
その他	0.05	2.87	0.00	0.00	0.00	0.00	
全データ	19.24			1.00			

永田³³の知見を参考とし、最尤法に基づく被害率のばら つきを考慮した予測式を適用した.このモデルは、標準 正規分布の累積分布関数で表された曲線を平均とし、そ の上下に、対数正規分布で表された確率密度のばらつき を与えたモデルである.具体的には、地震動強さxにお ける平均のモデル $R^*(x)$ は、標準正規分布の累積分布関 数 $\Phi()$ により、次式のように表される.

$$\begin{cases} R^*(x) = C \cdot \Phi\left(\frac{\ln x - \lambda}{\zeta}\right) & (x:PGV) \\ R^*(x) = C \cdot \Phi\left(\frac{x - \mu}{\sigma}\right) & (x:IJ) \end{cases}$$
(3)

ここで, *C*, *λ*, *ζ*, *μ*, *σ*は未定係数であり, これらを定 めることでこの平均のモデルの形が決まる. 一方, 地震 動強さ*x*でのばらつきを表す確率密度関数は対数正規分 布で表され, 式で示せば, 次式のようになる.

$$f(R(x)) = \frac{1}{\sqrt{2\pi} \cdot \zeta_{v} \cdot R(x)} e^{-\frac{1}{2} \left(\frac{\ln R(x) - \lambda_{v}}{\zeta_{v}}\right)^{2}} \quad (4)$$

ここで、 λ_i は $\ln(R(x))$ の平均値、 ζ_i は $\ln(R(x))$ の標準偏差である. 先述したように、このばらつきの平均値は式(3)の $R^*(x)$ とするが、これはR(x)の平均であるため、次式のような変換を行う.

$$\lambda_{v} = \ln(R^{*}(x)) - \frac{1}{2}\zeta_{v}^{2}$$
(5)

式(5)を式(7)に代入し、その上でさらに式(5)を式(4)に代入することで、ばらつきを表す確率密度関数とした.未 定係数は、実被害データに、上述のモデルが最も適合す るように定められる.具体的には、最尤法の考え方に基 づき、ばらつきのモデル上で表される実被害データの確

図-8 神戸市における微地形を噴砂の有無で分類した場合の多変量解析の結果

表-5 神戸市における噴砂の有無を考慮した場合の補正 係数

	分類	補正係数
	HP	1.01
答插 c	VP	1.00
目 小里 C p	FRPM	0.91
	TP	3.70
答 ශ c	$0 \leq \Phi < 300$	1.00
	$300 \leq \Phi < 600$	0.96
[mm]	$600 \le \Phi < 1000$	0.72
	山地	0.11
	台地	0.45
学生が	沖積平野[噴砂なし]	1.00
城地 ルクし _g	沖積平野[噴砂あり]	4.14
	埋立地[噴砂なし]	0.85
	埋立地[噴砂あり]	2.13

率密度の積 $L(C, \mu, \sigma, \zeta; R(x))$ もしくは $L(C, \lambda, \zeta, \zeta; R(x))$ で表 される尤度関数が最大となるように未定係数を定める. これを式で表すと,次式のようになる.

$$L(R(x)) = \prod_{i} f(R_i(x_i))$$
(6)

ここで, *R*(*x*)は番目の実被害データ, *x*はは番目の実被害 データが晒される地震動強さ*x*を表す. なおここで, *R*(*x*)が0の場合には式(6)が定義できないため, 除外して いる. ここで, 両辺の対数を取り, 対数場における尤度 を考えると, 次式のようになる.

$$\ln(L(R(x))) = \sum_{i} \ln(f(R_i(x_i)))$$
(7)

本研究においては、式(7)に、さらに地震動強さ x_i における敷設延長 $L(x_i)$ を掛け合わせることで重み付けを行った次式を目的関数として最大化することで、未定係数C, λ , ζ , μ , σ , ζ を定める.

$$g(R(x)) = \sum_{i} \left\{ \ln \left(f(R_i(x_i)) \right) \cdot L(x_i) \right\}$$
(8)

なお、最大化の計算手法としては、信頼領域法を用いた. 図-6 および表-2 には、最尤法を用いて噴砂なしのデー タにより構築した標準被害率曲線とその回帰定数および 制約条件を示す. 図-6 より、*PGV*の場合には 49.1cm/s付 近で平均値がが 10³[km/km]を越え、150cm/s で 0.151[km/km]を示した. 計測震度 *IJ* の場合には、5.6 で平 均値がが 10³[km/km]を越え、計測震度 6.5 では 0.095[km/km]を示した. 図-7 および表-3 には、*PL* \leq 5 の データにより構築した標準被害率曲線とその回帰定数お よび制約条件を示す. 図-7 より、*PGV* の場合には 49.4cm/s 付近で平均値が 10³[km/km]を越え、150cm/s で 0.126[km/km]を示した. 計測震度 *IJ* の場合には、5.6 で平 均値が 10³[km/km]を越え、計測震度 6.5 では 0.078[km/km] を示した.

(5) 被害率間の倍率の算出

各被害率間の倍率を示す係数は,表-1の分類に従って 設定した.その上で,磯山ら¹²⁾の知見を参考に,管種, 管径および液状化を含む地形区分のそれぞれを説明変数 とした上で,基準の属性に対する各組合せにおける被害 率の比を目的変数として,敷設延長による重み付けを行 い,対数場での数量化理論 I 類による多変量解析を行っ た.基準となる区分としては,管種は塩化ビニル管VP,

表-6 補正係数に用いた PL 値による液状化危険度の判定基準

PL值	$PL \leq 5$	$5 < PL \leq 15$	15< PL
液状化危険度	低い	高い	極めて高い

図-10 神戸市における微地形をPL値で分類した場合の多変量解析の結果

	分類	補正係数
	HP	1.00
答看 <i>C</i>	VP	1.00
E 小里 C p	FRPM	0.62
	TP	3.02
管径C.	$0 \leq \Phi < 300$	1.00
	$300 \leq \Phi < 600$	0.88
[mm]	$600 \le \Phi < 1000$	0.34
	山地	0.14
	台地	0.60
学生がた	沖積平野[PL≦5]	1.00
TRUE NOC g	沖積平野[5 <pl≦15]< td=""><td>1.70</td></pl≦15]<>	1.70
	沖積平野[15 <pl]< td=""><td>2.38</td></pl]<>	2.38
	埋立地	1.63

表-7 神戸市における PL 値を考慮した場合の補正係数

管径は0≦Φ<300mm,地形区分は沖積平野[液状化なし] とした. なお対象データにおいてPP, DIP, SP, CPおよ びその他の管種に該当するデータは被害率が0となって いるため、あらかじめ分析から除外している、係数は、 以上の解析により統計的に求められた値を、データの質 や既往の結果との比較に基づきキャリブレーションした 上で決定する.表-4には、これまでに自治体24~27)や既往 の研究として磯山ら12および高田ら28により定められた 下水道および上水道における被害予測式の補正係数をま とめて示す. なおこのうち, 宮城県, さいたま市, 川崎 市および福岡県以外の自治体に関しては、損害保険料率 算定協会による資料³⁰中に記載されている値を用いた. また、表-4に含まれていない自治体に関しては、被害想 定手法が確認できなかった場合があり、また下水道協会 のマニュアル33による補正係数を用いない手法を採用し ているため、ここには示していない.

まず,微地形区分と液状化による噴砂の有無の相関を 考慮し,液状化地域ゾーニングマニュアル³⁴により液状 化が発生する可能性があるとされている沖積平野および 埋立地をさらに噴砂の有無で分けた上で,多変量解析を 行った.結果として得られた多変量解析の結果を図-8に 示す.解析結果に基づく推定被害延長と実被害延長の相 関係数は0.945となった.

以下に、図-8で得られた値を基準とした場合の補正係数のキャリブレーションの過程を示すとともに、最終的な補正係数の値を表-5にそれぞれ示す.なお、図-9には、管種、管径および微地形区分のそれぞれの観点から、得られた補正係数を考慮した標準被害率曲線と、それらに対応する実被害率を示す.

i) 管種(基準: VP)

- ・ HP:解析結果は1.01である.既往のケースではVPより小さい場合と大きい場合があることから,解析結果に従い1.01とした.
- FPRM:解析結果は0.91である.既往のケースではVP と同じ場合からVPの1/10まで幅広いが、ここでは解 析結果に従い0.91とした.
- TP:解析結果は3.68である.既往のケースの最大値
 2.0より大きな値となっているが,安全側の値として, 解析結果に従い3.68とした.

ii)管径(基準:0≦Φ<300)

300≤Φ<600:解析結果は0.96であり、既往の下水道のケースと比べ大きな値となっている.これは、0≤Φ<300の管渠に比べて、300≤Φ<600の管渠は震度6強の強い地震動に晒されている割合が倍以上高いためではないかと考えられる.これを踏まえた上で、

図-11 神戸市における PL 値を考慮した補正係数を掛け合わせた標準被害率曲線と実被害率の比較

ここでは、基準の $0 \leq \Phi < 300$ に近い値となってしま うが、解析結果に従い0.96とした。 $600 \leq \Phi < 1000$: 解析結果は0.72であり、既往の下水道のケースと比 べ大きな値となっている。これは、 $600 \leq \Phi < 1000$ の 管渠も震度6強の強い地震動に晒されている割合が倍 以上高いためではないかと考えられる.しかしなが ら、安全側の値として、解析結果に従い0.72とした. iii)微地形(基準:沖積平野[噴砂なし])

- ・山地:解析結果は0.11である.これは、宮城県および仙台市における値の0.4より小さいが、参考資料²⁴⁾より、宮城県および仙台市では、山地、丘陵地および段丘・台地をまとめて0.4としている.このことと、既往のケースが宮城県の1つしかないという点も踏まえ、解析結果に従い0.11とした.
- ・ 台地:解析結果は0.45である. 宮城県および仙台市 における値の0.4と近い値であることから,解析結果 に従い0.45とした.
- ・ 沖積平野[噴砂あり]:解析結果は4.14である.既往の ケースの5<PL≦15の場合と対応していると考えれ ば、宮城県、仙台市およびさいたま市における値の 4.7と近い値であり、また、上水道のケースではある が、高田ら²⁸⁾の値とも合っている.以上を踏まえ、 解析結果に従い4.14とした.
- ・ 埋立地[噴砂なし]:解析結果は0.85である.軟弱な地盤にも関わらず、沖積平野[噴砂なし]の値より小さくなっているが、これは、兵庫県南部地震における被害の報告書³⁰の記述より、神戸市の埋立地においては特に耐震化が進められていたためであると考えられる.これより、解析結果に従い0.85とした.
- ・ 埋立地[噴砂あり]:解析結果は2.13であり、これは、
 埋立地[噴砂なし]の場合の0.85の2.51倍である.既往のケースの5<PL≦15の場合と対応していると考えると、上水道のケースではあるが、水道協会における2.4とは近い値となっている.このことと、先述の報告書³²⁾の記述より、神戸市の埋立地では耐震化とともに液状化対策が進められていたという点を踏まえ、ここでは、解析結果に従い2.13とした.

上記の噴砂の有無という指標とは別に,液状化危険度 としてPL値を考慮し,噴砂の有無の代わりに採用した 場合について,同様に検討を行った.なお,補正係数の 設定にあたり,PL値による液状化危険度は,液状化地 域ゾーニングマニュアル³¹⁾を参考に,表-6に示すように 区分した.この場合の多変量解析の結果を図-10に示す. 解析結果に基づく推定被害延長と実被害延長の相関係数 は、0.938となった.以下に、図-10で得られた値を基準 とした場合の補正係数のキャリブレーションの過程を示 すとともに,最終的な補正係数の値を表-7に示す.なお, 図-11には,管種,管径および微地形区分のそれぞれの 観点から,得られた補正係数を考慮した標準被害率曲線 と,それらに対応する実被害率を示す.

i) 管種(基準: VP)

・ HP:解析結果は1.00である.既往のケースではVPより小さい場合と大きい場合があることから,解析結果に従い1.00とした.

- FRPM:解析結果は0.62である.既往のケースの中央 値として定められている宮城県でVPの場合の2/3と近 い値を示していることから,解析結果に従い0.62と した.
- TP:解析結果は3.02である.既往のケースの最大値
 2.0より大きな値となっているが,安全側の値として
 解析結果に従い3.02とした.

ii)管径(基準:0≦Φ<300)

- 300≤Φ<600:解析結果は0.88であり、既往の下水道のケースと比べ、大きな値となっている.これは、0
 ≤Φ<300の管に比べて、300≤Φ<600の管は、震度
 6強という強い地震動に晒されている割合が倍以上高いことが関係しているのではないかと考えられる.これを踏まえた上で、ここでは、解析結果に従い 0.88とした.
- 600≦Φ<1000:解析結果は0.34である.既往の下水 道のケースとほぼ同等の値であることから,解析結 果に従い0.34とした.

iii)微地形(基準:沖積平野[PL≦5])

- ・山地:解析結果は0.14である.これは、宮城県および仙台市における値の0.4より小さいが、宮城県および仙台市では山地、丘陵地および段丘・台地をまとめて0.4としているため、既往のケースが1つしかないという点も踏まえ、解析結果に従い0.14とした.
- ・ 台地:解析結果は0.60である.既往の下水道のケースの平均値である0.65とほぼ同等の値であることから,解析結果に従い0.60とした.
- ・ 沖積平野[5<PL≦15]:解析結果は1.70である.5<PL ≦15の場合の既往のケースと比べると、最も近い水 道協会の値で20とやや小さめにはなっているが、沖 積平野のみを考慮しているという点も踏まえ、解析 結果に従い1.70とした.
- ・ 沖積平野[15<PL]:解析結果は2.38である。沖積平野 [5<PL≦15]の場合と同様、15<PLの場合の既往のケ ースと比べると、水道協会の値の2.4とほぼ同じであ るため、解析結果に従い2.38とした。
- ・ 埋立地:分析はPL値ごとに分けて行ったが、実際には、PL≦5のメッシュにおいても広く噴砂が発生していることや、PL≦5および5<PL≦15の場合の敷設延長が12.2kmと相対的に短いこと、5<PL≦15の場合の被害データが存在しないことを考慮し、埋立地に関しては、PL値を考慮しない値を設定することとした。その上で、ここでは、15<PLの場合の解析結果が1.63であることを踏まえ、1.63とした。

図-8と図-10を比較すると、管種に関してはFRPM、管

径に関しては600≦Φ<1000の補正係数に大きな違いがみ られる. FRPMに関しては、噴砂の有無でみると、沖積 平野[噴砂なし]および埋立地[噴砂なし]でしか被害が生 じていないが、これらの微地形による補正係数の値は、 いずれも1.0以下となっている.一方で、PL値による区 分でみると、被害は沖積平野[5<PL≦15]、沖積平野[15 <PL および埋立地で生じており、これらの微地形によ る補正係数の値はいずれも1.0より大きい. このような 関係から、噴砂の有無でみた場合には、微地形による補 正係数が小さいためFRPMの補正係数が大きくなり、PL 値による区分でみた場合には、微地形による補正係数が 大きい分FRPMの補正係数が小さくなっているといえる. 600≦Φ<1000に関しては、敷設延長の長い噴砂なしの 場合における被害率の高さを噴砂なしの補正係数で表せ ていない一方で、PL値による区分でみた場合には、PL 値が大きいほど被害率が大きくなっているという関係を PL値による補正係数で表せているため、噴砂の有無で みた場合の方が600≦Φ<1000の補正係数が大きいという 結果になっている.

2011年東北地方太平洋沖地震の際の被害の分析

(1) 分析対象とするデータ

東北地方太平洋沖地震における被害の分析対象領域は, 強震動および液状化による被害が顕著であった茨城県お よび千葉県の市町村のうち,詳細な情報が入手できた神 栖市,ひたちなか市,千葉市美浜区とした.下水道管渠 の被害データおよび敷設データは,各市区により提供さ れたものを用いた.図-12に,各市区における下水道管 渠被害データと後述の地震動分布の関係を示す.被害デ ータは,前章で示した神戸市の被害データと同様に,下 水道管渠の管体や人孔の破損に伴って滞水が発生し,復 旧を要した管渠延長を表す.各対象地区における総敷設 延長は,神栖市が242km,ひたちなか市が452km,千葉 市美浜区が412km,総被害延長は,神栖市が16km,ひた ちなか市が10km,千葉市美浜区が12kmとなっている. 微地形区分に関しては,J-SHIS⁹による250mメッシュ単 位のデータを用いた(図-13)

地震動の分布に関しては、IJおよびPGVを空間補間に よって推定した結果を用いている.空間補間にあたって は、K-NET, KiK-net³³の573観測点,気象庁³⁴⁾の43観測点, 国土技術政策総合研究所³⁵(以下,国総研)の364観測点に より得られた強震観測波形ならびに青森県,岩手県,宮 城県,山形県,福島県,茨城県,栃木県,群馬県,埼玉 県,千葉県,神奈川県,新潟県,山梨県および長野県の の地方公共団体³⁴⁾が観測し気象庁に提供した134観測点

図-12 対象市区における震度階と下水道データ

により得られた強震観測波形と震源データに基づき,末 冨・福島³⁰,産業技術総合研究所³⁷⁾,櫻井ら³⁸⁾などの手 法を参考に,Simple Kriging法による空間補間を適用し, IJおよびPGVを250mメッシュ単位で推定した.

分析にあたり, 液状化範囲の判定を行った. ひたちな か市および千葉市美浜区に関しては, 国土交通省関東地

図-13 対象市区における微地形区分と下水道データ

方整備局・地盤工学会による報告書³⁹に掲載された液状 化範囲の画像データを参考にし、液状化範囲に重なる敷 設および被害データは液状化ありと目視で判断した.な お、報告書においては、液状化範囲として、噴砂や噴水 などを目視により観測した点データおよび道路における 液状化などを表す線データに加えて、専門家が現地調査 と地形・地質情報から推定した液状化発生領域の面デー

図-14 対象市区における液状化に晒された管渠の分布

タが示されている.本研究では、この中で、液状化範囲 の線データおよび面データと重なる下水道を液状化あり と判断した.また、神栖市に関しては、築地ら⁴⁰によっ て同定された液状化領域を用いる.これは上述の関東地 方整備局による情報に、液状化に関わる罹災証明が交付 された建物データから推定した液状化領域を加えたもの である.具体的には、まず液状化により罹災証明が交付

表-8 3市区合算における管種,管径および微地形区分のグループ分け

	(a) 管	管種		(b) 管径		
分類	略称	管種	分類	管径[mm]	分類	管径[mm]
		ヒューム管		50*		1000
ドュー人管	НР	ヒューム卵形管		75		1100**
	111	ヒューム管(ICP工法)		80*		1200
		ヒューム管(SPR工法)	(b) 有 注種 分類 管径[m -厶管 50* 公卵形管 75 (ICP工法) 80* (SPR工法) 100 1ビニル管 0 $\leq \Phi < 300$ 150 ビニル卵形管 180* チック複合管 200 クリート管 230* 小铸鉄管 300 報管 300 小牛 300 小牛 300 300 400 100 450 200 500	100		1300**
塩化ビニル管	VP	硬質塩化ビニル管	$0 \le \Phi < 300$	150		1350
	• •	硬質塩化ビニル卵形管		180*		1500
強化プラスチック管	FRPM	強化プラスチック複合管		200		1600**
無筋コンクリート管*	CP	無筋コンクリート管		230*		1650**
	01	無筋コンクリート管(ICP工法)		250		1660**
ダクタイル鋳鉄管	DIP	ダクタイル鋳鉄管		300		1800**
石綿管*	ACP	石綿管		350		2000**
鋼管**	SP	鋼管		360**	1000≦Φ	2100**
コルゲートパイプ**	CRP	コルゲートパイプ	$300 \leq \Phi \leq 600$	400		2200**
コンクリート管**	CP	コンクリート管		450		2200
*神栖市にのみ敷設 *	*千葉市	5美浜区にのみ敷設		500		2400**

(c) 微	地形区分
分類	微地形区分
ローム台地	ローム台地*
砂礫質台地	砂礫質台地
沖積平野	谷底低地 自然堤防* 後背湿地* 三角州・海岸低地** 砂洲・砂礫洲 砂丘
埋立·	干拓地**
干拓地	埋立地
**ひたちなか	市にのみ分布

*神栖市にのみ分布

された建物の1762件のデータからGoogle Mapsにより住所 と座標の対応関係が得られた1018件のデータを峻別した 上で,罹災証明が交付された建物に関してはその建物お よび敷地に面する配水管も液状化したと判断している. その上で,建物から最近傍の配水管までの距離を求め, そのヒストグラムの特徴を踏まえて罹災証明が交付され た建物の重心位置から半径30m以内に位置する配水管に ついては液状化したと判断している.以上より神栖市に ついては文献39)および罹災証明の建物データに対する 分析により得られた領域の和集合をとったものを本研究 における神栖市の液状化領域として取り扱う.図-14に は,各市区における液状化の判定結果を示す.

各市区において敷設延長L,被害延長L_d,および,被 害延長L_dを敷設延長Lで除した被害率R_Lを管種,管径, 微地形区分,先述した液状化の有無の観点から集計した. 各対象地区における管種,管径および微地形区分の分類 を**表-8**に示す.

(2) 標準被害率曲線の構築

 $600 \le \Phi \le 1000$

*神栖市にのみ敷設

**千葉市美浜区にのみ敷設

標準被害率曲線の構築にあたり、神戸市の場合と同様 に、管種に関しては VP、管径に関しては $0 \leq \Phi < 300$ [mm], 微地形に関しては沖積平野を基準の分類とし、 液状化領域に含まれないデータのみを用いた.また、地 震動強さには、*PGV*の場合は10cm/s、*IJ*の場合は0.1の区 間幅をそれぞれ設け、*L*(*x*)および*L*(*x*)はその区間幅で集 計した値を用いた.

600

700

750**

800

900

2600**

3200**

3300**

3400** 3900**

4200**

5500**

神戸市の場合と同様に,最尤法に基づき標準被害率曲 線を構築した.その際,各対象地区の被害率は合算せず, そのまま市区ごとの値を用いて曲線の構築を行った.

非液状化地盤におけるデータのみを用いた場合の結果 を図-15および表-9,液状化地盤におけるデータのみを 用いた場合の結果を図-16および表-10にそれぞれ示す. 図-15より,非液状化地盤のデータでは,PGVの場合に は27.3cm/sで平均値が10³[km/km]を越え,85cm/s以上で 0.164[km/km]に漸近した.計測震度IJの場合には,5.2で 平均値が10³[km/km]を越え,65以上で0.098[km/km]に漸近

図-15 3市区のデータによる最尤法に基づく非液状化地盤での標準被害率曲線

表-9 3市区のデータによる最尤法に基づく非液状化地盤での標準被害率曲線の回帰定数

	С	λ	ζ	μ	σ	ζ_v	制約条件
PGV	0.164	3.806	0.200	45.879	9.268	1.202	$\zeta \ge 0.2,$
IJ	0.100	-	-	5.852	0.300	0.700	$C \ge 0.1, \sigma \ge 0.3, \zeta_v \le 0.7$

表-10 3市区のデータによる最尤法に基づく液状化地盤での標準被害率曲線の回帰定数

	С	λ	ζ	μ	σ	ζ,	制約条件
PGV	0.254	3.147	0.100	23.383	2.344	0.531	$\zeta \leq 0.1$
IJ	0.200	-	-	5.000	0.100	0.555	$C \ge 0.2, \mu \ge 5, \sigma \ge 0.1,$

図-17 3市区合算における多変量解析の結果

した. 図-16より,液状化地盤のデータでは,PGVの場合には17.9cm/sで平均値が10³[km/km]を越え,45cm/s以上で0.254[km/km]に漸近した.計測震度*IJ*の場合には,4.8で平均値が10³[km/km]を越え,計測震度5.3以上で0.200[km/km]に漸近した.

(3) 補正係数の算出

神栖市,ひたちなか市,千葉市美浜区の3市区におけるデータを合算して,多変量解析を行った.分類は表-8 に基づいて行い,基準とする分類は,管種がVP,管径が0≦Φ<300,微地形に関しては,液状化発生の可能性がある沖積平野および埋立・干拓地をさらに液状化の有無で分け,沖積平野[液状化なし]を基準とした.

区分の中で砂礫質台地は,敷設延長が4.8kmと短くなっている.砂礫質台地における被害は,液状化ありの分類でのみ生じているが,砂礫質台地においては液状化は発生する可能性が低い³¹⁾.この地域は,鍬田・池尻⁴¹⁾による分析における知手に該当し,もともとは良質な砂礫層であったが,土木建築材料として上層が採取された後の埋め戻し土において液状化が発生した可能性があると報告されている.以上を踏まえ,砂礫質台地を分析から除外した.管種および管径が[不明]となっている区分のデータに関しては,あらかじめ解析から除外している. 得られた解析結果(図-17)について,既往の補正係数との比較からキャリブレーションを行い,補正係数を決定した.その過程を以下に示す.

i) 管種(基準: VP)

 HP:神戸市の結果である表-5,表-7 における 1.01, 1.00 よりやや小さいが,既往のケースと比較すれば 妥当であると考え,解析結果に従い 0.71 とした.

- CP:神栖市においてのみ該当する区分である.表-4 より CPの既往の補正係数は 1.5 から 60 とばらつき があるが、管種の中でも最大またはそれに次ぐ値と なっている.解析結果はそれらの値の間にあり、管 種についての解析結果の中でも最大であるため 1.99 とした.
- ii) 管径(基準:0≦Φ<300)
- 300≤Φ<600:市区ごとの場合と同様,基準の管径 より太いにも関わらず,値が 1.00 より大きくなって いる.これは、神栖市においては液状化地盤でのみ この管径の被害が生じたことに加え、千葉市美浜区 においては、この管径の HP 管が多く敷設されてい たことが原因と考えられる.これらを踏まえた上で、 ここでは、解析結果に従い 1.93 を採用した.
- 600≦Φ<1000:表-4の場合と比べて大きな値となっているが、3市区の合算として総敷設延長は78.4kmと十分であることから、解析結果に従い0.97とした.
- 1000≦Φ:表-4 より自治体で採用されている値は 0.2 以下である場合が多い。若干大きいものの、これらの値と近いことから妥当であると判断し、解析結果 に従い 0.30 とした。

iii)微地形(基準:沖積平野[液状化なし])

- ・ ローム台地:敷設延長は 364.5km と十分に長いこと から,解析結果に従い 1.01 とした.
- 沖積平野[液状化あり]:表-4より、自治体ではPL値が15を越える場合の補正係数を7.0としている場合が多い.加えて敷設延長も332.2kmと長いことから妥当と判断し、解析結果に従って9.21とした.

図-18 3市区合算における PGVを指標とした場合の補正係数を掛け合わせた標準被害率曲線と実被害率の比較

図-19 3市区合算における Uを指標とした場合の補正係数を掛け合わせた標準被害率曲線と実被害率の比較

- ・ 埋立・干拓地[液状化なし]:表-4の09と比べると大幅に小さな値になっている.この区分のデータは、ほぼすべてが千葉市美浜区における値であるが、千葉市美浜区においては、液状化ありの地域における被害が支配的であったこと、また非液状化地盤の中には改良が施された健全な地盤が多いことが原因として考えられる.これらを踏まえた上で、解析結果に従い0.28とした.
- ・ 埋立・干拓地[液状化あり]:神戸市の結果である表-4における21と比べると多少大きいが、近い値となった.敷設延長は非常に短いが、解析結果に従い2.52とした.

解析結果に基づく推定被害延長と実被害延長の相関係 数は 0.983 が得られた. なお, 図-18 および図-19 には, 管種, 管径および微地形区分のそれぞれの観点から,得 られた補正係数を考慮した標準被害率曲線と,それらに 対応する実被害率を示す.

4. 結論

本研究では、下水道の汚水管渠を対象とし、1995年 兵庫県南部地震における神戸市および 2011年東北地方 太平洋沖地震における茨城県神栖市、ひたちなか市およ び千葉市美浜区における被害データを分析することで、 下水道管渠の地震被害率曲線の構築を行った.具体的に は、被害延長を敷設延長で除した値を被害率と定義し、 地震動強さの指標として PGV および計測震度 IJ を採用 した上で、それらと被害率の関係を対数正規および正規 分布の分布関数でモデル化した.

以下に本研究で得られた知見を示す.

- (1) 兵庫県南部地震における被害の分析
- ・ 噴砂の有無から液状化・非液状化を選別したデー タおよびPL値の大きさにより液状化危険度を選別 したデータから最尤法に基づく標準被害率曲線を 構築した. 噴砂なしの領域のデータを用いた場合, PGVの場合には49.1cm/s付近で平均値が10³[km/km] を越え, 150cm/sで0.151[km/km]に漸近した. 計測震 度の場合には, 5.6で平均値が10³[km/km]を越え,計 測震度6.5では0.095[km/km]に漸近した.
- ・ また、PL≦5のデータを用いた場合、PGVの場合には 49.4cm/s 付近で平均値が 10³[km/km]を越え、150cm/s で 0.126[km/km]に漸近した.計測震度の場合には、5.6 で平均値が 10³[km/km]を越え、計測震度 6.5 では 0.078[km/km]に漸近した.
- · 補正係数は,管種に関しては,HPが 1.01, 強化プ

ラスチック管 FRPM が 0.91, 陶管 TP が 3.68 となり, 管径に関しては、300 $\leq \Phi < 600$ が 0.96, $600 \leq \Phi <$ 1000 が 0.72 となった.また、微地形に関しては、 山地が 0.11、台地が 0.45、沖積平野[噴砂あり]が 4.14、埋立地[噴砂なし]が 0.85、埋立地[噴砂あり]が 2.13 となった.また、液状化の指標として PL 値を 用いた場合には、管種に関しては、HP が 1.00、 FRPM が 0.62、TP が 3.02 となり、管径に関しては、 300 $\leq \Phi < 600$ が 0.88、 $600 \leq \Phi < 1000$ が 0.34 となった. また、微地形に関しては、山地が 0.14、台地が 0.60、 沖積平野[5 $< PL \leq 15$]が 1.70、沖積平野[15 < PL]が 2.38、埋立地が 1.63 となった.

- (2) 東北地方太平洋沖地震における被害の分析
 - 神栖市,ひたちなか市および千葉市美浜区におけ るデータの合算値から最尤法に基づく標準被害率 曲線を構築した.非液状化地盤のデータでは, *PGV*の場合には27.3cm/sで平均値が10³[km/km]を越 え,85cm/s以上で0.164[km/km] に漸近した.計測震 度IJの場合には、5.2で平均値が10³[km/km]を越え, 6.5以上で0.098[km/km] に漸近した.液状化地盤のデ ータでは、*PGV*の場合には17.9cm/sで平均値が10³ [km/km]を越え、45cm/s以上で0.254[km/km] に漸近し た.計測震度IJの場合には、4.8で平均値が10³ [km/km]を越え、計測震度5.3以上で0.200[km/km] に 漸近した.
- 3市区の合算値から、液状化の有無により微地形を 区分した上で、補正係数の値を求めた。管種に関 しては、HPが0.71、CPが1.99となり、管径に関して は、300≦Φ<600が1.93、600≦Φ<1000が0.97、1000 ≦Φが0.30となった。また、微地形に関しては、ロ ーム台地が1.01、沖積平野[液状化あり]が9.21、埋 立・干拓地[液状化なし]が0.28、埋立・干拓地[液状 化あり]が2.52となった。

謝辞:本研究を実施するにあたり,元筑波大学の那波悟 志氏,水野陽介氏,および筑波大学大学院の築地拓哉氏, より多大なご協力を頂きました.また,被害データの収 集に関して神戸市,神栖市,ひたちなか市および千葉市 美浜区の下水道局の皆様にはデータの提供のみならず貴 重なご助言を頂きました.本研究は,国土交通省・建設 技術開発助成(平成21年度から平成22年度)「下水道シ ステムの地震被害応急復旧戦略シミュレータの開発」

(研究代表者:永田茂博士,鹿島建設(株)技術研究 所),加えて,筑波大学東日本大震災復興支援プログラ ム(研究代表者:金久保利之准教授,研究分担者:庄司 学),及び,筑波大学プロジェクト「巨大地震による複 合災害の統合的リスクマネジメント」(研究代表者:八 木勇治准教授,研究分担者: 庄司学)の一部助成を得て 実施されたものです.以上のプロジェクトに関係する皆 様方に深謝の意を表します.

参考文献

- 1) 国土交通省:災害情報:東日本大震災-国土交通省, http://www.mlit.go.jp/saigai/saigai_110311.html.
- 大規模地震による下水道被害想定検討委員会:大規 模地震による被害想定手法及び想定結果の活用方法 に関するマニュアル,2006.
- 下水道地震対策技術検討委員会:下水道地震対策技 術検討委員会報告書, 2008.
- 下水道地震・津波対策技術検討委員会:下水道地 震・津波対策技術検討委員会報告書,2008.
- 5) 永田茂,石田寛,日下彰宏,濱田政則,庄司学,山本欣弥:近年の被害地震の被災データに基づく下水道管路網の地震被害率曲線の構築,第13回日本地震工学シンポジウム論文集,pp.1765-1772,2010.
- 6) Shoji, G., Naba, S. and Nagata, S.: Evaluation of seismic vulnerability of sewerage pipelines based on assessment of the damage data in the 1995 Kobe earthquake. *Applications of Statistics and Probability in Civil Engineering*, Faber, M. H., Köhler, J. and Nishijima, K. eds., Taylor and Francis Group, London, ISBN 978-0-415-66986-3, pp.1415-1423, 2011.
- 7) JIBANKUN とは: http://www.kobetoshiseibi.or.jp/matise n/jibankun/jibankun.htm.
- 沖村孝・鳥居宣之:高密度地盤情報データベース 「神戸 JIBANKUN」の構築とその活用事例,土木学 会論文集 C, Vol.63, No4, pp.1001-1019, 2007.
- 9) 防災科学技術研究所: J-SHIS, http://www.jshis.bosai.g o.jp/.
- 岩崎敏男, 龍岡文夫, 常田賢一, 安田進: 地震時地 盤液状化の程度の予測について, 土と基礎, Vol.28, No.4, pp.23-29, 1980.
- 11) (社) 土木学会:都市ライフラインハンドブック, 丸善株式会社, 2010.
- 12) 磯山龍二,石田栄介,湯根清二,白水暢:水道管路の地震被害予測に関する研究,水道協会雑誌,第67巻,第2号, pp.25-40, 1998.
- 13) 若松加寿江,松岡昌志,久保純子,長谷川浩一,杉 浦正美:日本全国地形・地盤分類メッシュマップの 構築,土木学会論文集,No.759/I-67, pp.213-232, 2004.
- 14) Jeon,S.-S and O'Rourke,T.D.: Northridge Earthquake Effects on Pipelines and Residential buildings, *Bulletin of the Seismological Society of America*, Vol.95, Issue 1, pp.294-318, 2005.
- 15) 翠川三郎・藤本一雄:墓石の転倒調査から推定した 兵庫県南部地震の際の神戸市およびその周辺での震 度分布,日本建築学会構造系論文集,No.490, pp.111-118,1996.
- 16) 林康裕, 宮腰淳一, 田村和夫: 1995 年兵庫県南部地 震の建物被害に基づく最大地動速度分布に関する考 察, 日本建築学会構造系論文集, 第 502 号, pp.61-68, 1997.
- 17) 山口直也・山崎文雄:1995 年兵庫県南部地震の建物 被害率による地震動分布の推定,土木学会論文集,

No.612/I-46, pp.325-336, 1999.

- 18) Sekiguchi, H., Irikura, K., Iwata, T., Kakehi, Y. and Hoshiba, M.: Minute locating of faulting beneath Kobe an the waveform inversion of the source process during the 1995 Hyogo-ken Nanbu, Japan, earthquake using strong ground motion records, *Journal of Physics of theEarth 44*, pp.473-487, 1996.
- 19) 司宏俊・翠川三郎:断層タイプ及び地盤条件を考慮 した最大加速度・最大速度の距離減衰式,日本建築 学会構造系論文集,第523号,pp.63-70,1999.
- Cressie, N. A. C. 1993. Statistics for spatial data: 356-359. John Wiley & Sons.
- 21) 藤本一雄・翠川三郎:近接観測点ペアの強震記録に 基づく地盤増幅度と地盤の平均S波速度の関係,日本地震工学会論文集,第6巻,第1号,pp.11-22, 2006.
- 22) 末冨岩雄,石田栄介,磯山龍二:空間補間による地 震動分布推定の高精度化のための一検討,第28回土 木学会地震工学論文集,CD-ROM, 2005.
- 23) 永田茂:地震時のライフライン機能支障による企業 の事業影響の簡易評価手法について、第2回相互連 関を考慮したライフライン減災対策に関するシンポ ジウム講演集, pp.54-59, 2010.
- 24) 宮城県:宮城県/総務部/危機対策課/宮城県第三次地震 被害想定報告書, http://www.pref.miyagi.jp/kikitaisaku/j ishin_chishiki/3higaishin/sanzihigaitop.htm.
- 25) さいたま市: さいたま市被害想定調査, http://www.cit y.saitama.jp/www/contents/1276565218504/.
- 川崎市:川崎市:川崎市における地震被害想定について、http://www.city.kawasaki.jp/160/page/0000017669. html.
- 27) 福岡県: 福岡県庁ホームページ 福岡県地震に関する 防災アセスメント調査報告書, http://www.pref.fukuok a.lg.jp/f13/jisinasesu.html.
- 28) 高田至郎,藤原正弘,宮島昌克,鈴木泰博,依田幹 雄,戸島敏雄:直下型地震災害特性に基づく管路被 害予測手法の研究,水道協会雑誌,第70巻,第3号, pp.21-37,2001.
- 29) 損害保険料率算出機構:自治体の地震被害想定にお ける被害予測手法の調査,2006.
- 30) (社) 日本下水道協会:下水道の地震対策マニュア ル, 2006.
- 31) 国土庁防災局:液状化ゾーニングマニュアル, 1999.
- 32) 阪神・淡路大震災調査報告編集委員会:阪神・淡路 大震災調査報告 ライフライン施設の被害と復旧, 1997.
- 33) 防災科学技術研究所:強震ネットワーク K-NET, Ki K-net, http://www.k-net.bosai.go.jp/k-net/, http://wwwol d.k-net.bosai.go.jp/k-net/.
- 34) 気象庁:強震波形(平成 23 年(2011 年)東北地方太平洋 沖地震), http://www.seisvol.kishou.go.jp/eq/kyoshin/jishi n/110311_tohokuchiho-taiheiyouoki/index.html.
- 35) 国土交通省国土技術政策総合研究所:最新地震リン ク,http://www.nilim.go.jp/japanese/database/nwdb/html/ newearthquake.html.
- 36) 末冨岩雄・福島康宏:2011 年東北地方太平洋沖地震 (東日本大震災)における地震動分布の推定,土木 学会第 66 回年次学術講演会,I-475, pp.949-950, 2011.

- 37) 産業技術総合研究所:QuakeMap, http://qq.ghz.geogrid.org/Qua keMap/.
- 38) 櫻井俊彰, 庄司学, 高橋和慎, 中村友治: 2011 年東 北地方太平洋沖地震における斜面に関わる道路構造 物の被害分析, 土木学会論文集 A1(構造・地震工学), Vol.68, No.4(地震工学論文集第 31-b 巻), pp.I_1315-I_1325, 2012.
- 39) 国土交通省関東地方整備局,地盤工学会:東北地方 太平洋沖地震による関東地方の地盤液状化現象の実 態解明報告書, 2011.
- 40) 築地拓哉, 寺嶋黎, 庄司学, 永田茂: 2011 年東北地 方太平洋沖地震において被災した上水道配水管網の 被害の傾向--茨城県潮来市および神栖市の事例分析 -, 土木学会論文集 A1 (構造・地震工学) Vol.69,No. 4,[特]地震工学論文, 2013.
- 41) 鍬田泰子,池尻大介:鹿島地域の液状化による管路 被害集中地域と地形変遷,日本地震工学会論文集, 第12巻,第4号(特集号),2012.

DEVELOPMENT OF DAMAGE FUNCTIONS ON SEWER BURIED PIPELINES SUBJECTED TO AN EXTREME GROUND MOTION FROM DAMAGE ASSESSMENT BASED ON THE DATA IN RECENT EARTHQUAKES

Gaku SHOJI, Ray TERAJIMA and Shigeru NAGATA

We evaluate the dependency of damage of sewer buried pipelines on the seismic hazards in the 1995 Kobe earthquake and the 2011 off the Pacific Coast of Tohoku earthquake focusing on the damage at Kobe city (Kobe data) for the Kobe earthquake and at Kamisu city (Kamisu data), Hitachinaka city (Hitachinaka data), Mihawa ward in Chiba city (Mihama data) for the Tohoku earthquake by quantifying damage ratio R_L defined by the ratio of disrupted lengths L_d divided by total lengths L of the systems. We analyze these damage data in terms of diameter, material of pipes, intensity scale, microtopography and the occurrence of liquefaction.