2011 年東日本大震災において 地震動で被災した河川堤防の事例解析

森島 直樹1・林 健二2・廣瀬 栄樹3・金 炅奐4 今井 康雅5・鈴木 明憲6・北出 圭介7・岡村 未対8・飛田 哲男9 ¹正会員株式会社ダイヤコンサルタント(〒331-0811 埼玉県さいたま市北区吉野町2-272-3) E-mail: n.morishima@diaconsult.co.jp ²正会員 株式会社フォレストエンジニアリング(〒631-0032 奈良県奈良市あやめ池北1-8-59) E-mail:hayashik@kcn.ne.jp 3正会員 株式会社マイダスアイティジャパン (〒101-0021 東京都千代田区外神田5-3-1) E-mail: e.hirose@midasit.com 4正会員株式会社マイダスアイティジャパン(〒101-0021東京都千代田区外神田5-3-1) E-mail: khkim@midasit.com 5正会員株式会社荒谷建設コンサルタント(〒730-0833広島県広島市中区江波本町4-22) E-mail: yasumasa.imai@aratani.co.jp 6正会員 株式会社海洋河川技術研究所(〒160-0023 東京都新宿区西新宿7-3-1) E-mail: suzuki@mrt-eng.co.jp 7正会員 中電技術コンサルタント株式会社 (〒734-8510 広島県広島市南区出沙2-3-30) E-mail: kitade@cecnet.co.jp ⁸正会員 愛媛大学大学院 理工学研究科 生産環境工学専攻(〒790-8577 愛媛県松山市文京町3番) E-mail:okamura@cee.ehime-u.ac.jp 9正会員 京都大学防災研究所 地盤災害研究部門(〒611-0011 京都府宇治市五ヶ庄) E-mail: tobita.tetsuo.8e@kyoto-u.ac.jp

2011年3月11日に発生した東日本大震災では、2分以上の長い継続時間の地震が発生し、多くの構造物が 被災した。本研究では、基礎地盤の液状化により被災した河川盛土を対象に、解析コードFLIPによる再現 解析を試みることを目的とし、検討を実施した。十分な土質試験結果がない事などから、最初に簡易設定 法を用いて液状化パラメータを設定し、マルチスプリングモデルを用いた検討を実施した。さらに、長継 続時間地震動下における透水を考慮したカクテルグラスモデルの妥当性の検証を行った。

Key Words : dynamic response analysis, effective stress analysis ,liquifaction, river embankment, the 2011 off the Pacific coast of Tohoku earthquake

1. はじめに

2011年東日本大震災では、広範囲にわたって河川堤防が被災した。河川盛土の被害状況は、「河川堤防耐 震対策緊急検討委員会資料」¹⁾(以下、委員会資料とす る)で公開されており、被災パターンは3パターン(パ ターンI:基礎地盤の液状化によるもの、パターン II:堤体の部分液状化によるもの、パターンIII:基礎 地盤液状化と堤体液状化の複合によるもの)に分類さ れている。

本研究では、被災パターン I (基礎地盤の液状化) に分類される、表-1、図-1、図-2に示す河川盛土の被災 事例を対象に、解析コードFLIP²⁰⁴⁰による被災状況の再 現解析を実施した。また、長継続時間地震動下におけ る解析の妥当性を検証するとともに、本震のあとに比 較的大きな余震が発生していたことから、余震の影響 についても検証した。

河川堤防においては、地震後の津波、洪水や高潮な どによる二次災害を防ぐため、堤防高を十分に確保す る必要があり、地震時の堤防沈下量の予測精度が求め られている。一方、堤防法尻の変形は、せん断変形、 過剰間隙水圧の消散に伴う沈下やすべりによる滑動変 形など複合的な変状が現れることから、従来の再現解 析では再現が難しいとされている。本研究では、堤防 天端の沈下量の再現に重点をおき、被災時に計測され た本震と余震による堤防の変状の再現性を確認した。

検討 ケース			堤防の変状		
	被災箇所	モデル断面 の距離標	堤防天端 沈下量 (m)	法尻 水平変位量 (m)	
1	利根川下流右岸 27k+80m~27k+150m (小見川)	26. 5k	1. 2	4. 32	
2	吉田川右岸 16.0k~16.2k付近 (山崎観測所位置)	16. 0k	0. 8	2. 6	
3	利根川下流右岸 39.0k+64m~ 39.5k+79m (佐原地先)	39.5k+5m	0. 92	1.49 (スケッチでは Om)	

表-1 検討対象箇所

a)利根川26.5k,39.5k

2. 対象堤防の被災状況と地盤状況

(1)利根川右岸26.5k

図-2に示すように、地震後に堤防天端沈下量1.2m、堤防法尻水平変位4.32mの変位量が計測されている。また、堤防中央付近に約3mの陥没が確認されている。

被災地付近には、国土交通省国土技術政策総合研究 所小見川振動観測所にて堤防天端および堤防下部の地 震動が記録されており、本研究では入力地震動とした。

地盤状況は図-3に示すように、基礎地盤上部に沖積砂層(As層、Asf層)が約2~3m堆積し、この沖積砂層が 液状化し堤防が被災した。また、堤体材料は川表と川 裏で異なり、この境界付近で陥没が確認されている。

(2)吉田川右岸16.0k

図4に示すように、地震後に堤防天端沈下量0.8m、堤防法尻水平変位2.6mの変位量が計測されている。また、 川裏の小段で縦断方向に亀裂が確認されている。

被災地付近には、国土交通省国土技術政策総合研究 所山崎振動観測所があり、堤防天端およびBr層(工学 的基盤)の地震動が記録されており、本研究では入力 地震動とした。

地盤状況は図-5に示すように、基礎地盤には、上層に 層厚lm程度のAcl層(上部沖積粘性土層)が堆積し、そ の下位に層厚3.5m程度のAs層(沖積砂質土層)が堆積 しており、この沖積砂層が液状化し堤防が被災したも のである。

(3)利根川右岸39.5k

図-6に示すように、地震後に堤防天端沈下量0.92m、 堤防法尻水平変位1.49m(スケッチから推測)の変位量 が計測されている。また、堤防天端や法面に段差、亀 裂が複数の箇所で確認されている。

被災地付近には、防災科学技術研究所強震観測網⁵⁾ (K-NET佐原)で地震動が記録されており、本研究で は入力地震動とした。

地盤状況は図-7に示す通り、基礎地盤にはAc(沖積 粘性土層)とBc(盛土粘性土層)が1~5m程度堆積し、 その下位にAsl、As2(沖積砂質土層)が厚く堆積して おり、沖積砂層が液状化し堤防が被災したものである。

標品

3. 解析方法および解析条件

(1)解析方法

被災状況の再現解析は、解析コード FLIP を用いて、 以下に示す①~⑥に示す方法で検討を進めた。各検討 ケースでは、液状化特性に関する情報が RL20¹⁰のみであ ることから、マルチスプリングモデルを用いた解析を 行い解析沈下量の妥当性を確認した上で、透水を考慮 したカクテルグラスモデルの妥当性について検討した。 ①公開地盤モデルをもとに解析モデルの作成 ②公開地盤情報(N 値、密度、Fc 等)をもとに FLIP 簡易設定法⁰で地盤定数を設定 ③FLIP に用いる液状化パラメータは公開データ (RL20)をもとに要素シミュレーションで決定
④マルチスプリング(非排水)およびカクテルグラ スモデル(排水)を用いた解析の実施
⑤解析結果のまとめおよび評価
⑥その他、各検討ケースで必要な検討を実施

(2)利根川右岸26.5k解析条件

検討断面のモデル図を図-8に示す。解析に用いる各種 パラメータは、地盤情報をもとに簡易設定法(再訂版)⁶ で設定した。液状化パラメータについては、液状化強 度RL20¹⁾にフィッティングするように、要素シミュレー ションから液状化強度曲線を設定し、各種パラメータ を設定した。解析パラメータを図-9に示す。

入力地震動は、検討地点の近傍にある国土交通省国 土技術政策総合研究所小見川振動観測所強振動記録デ ータから、NS 成分とEW 成分を用いて堤防横断方向に合 成した水平方向の地震波形とした。地震動の入力位置 は、強振動記録データの同等の土層と考えられるAc3 層 とし、図-8 に示す位置を解析モデル底面とした。表-2お よび図-10 に示す本震(3/11 14:47:00、東北地方太平洋沖 地震)と、本震後約29 分後に発生した余震(3/11 15:15:53、茨城県沖地震)を用いた。また、被災状況か ら、堤体内に不連続面を考慮(多点拘束条件)した。

(3)吉田川右岸16.0k解析条件

検討断面のモデル図を図-11 に示す。基礎地盤には、 上層に層厚 lm 程度の Acl 層(上部沖積粘性土層)が堆 積し、その下位に As 層(沖積砂質土層)、Ac2 層(下 部沖積粘性土層)、Ap 層(腐植土層)が順に堆積して いる。Ap 層下層の N 値 50 が確認されている Br 層を工 学的基盤とした。水位線は Acl 層の上面に設定した。 As 層は細粒分含有率 26%、N 値 6 程度の緩い砂地盤で あるため、液状化対象層として設定した。

入力地震動は、図-12に示す東日本大震災の際に解析 地点近傍の国土交通省国土技術政策総合研究所山崎振 動観測所で観測された強震記録データとした。強震記 録データによると、本震終了から約100分後に余震が発 生しているが、余震は最大37gal程度と小さいため、解 析では本震のみを対象とした。なお、強震記録データ は、基盤層上端で観測されたものとし、NS成分波とEW 成分波を河川堤防の法線直角方向に角度補正した合成 波を使用した。

設定した解析パラメータを図-13に示す。各種パラメ ータは解析地点の土質条件をもとに簡易設定法(改訂版)⁹により設定した。液状化対象層であるAs層の液状 化パラメータについては、RL20=0.24¹⁾を目標に要素シミ ュレーションを行い設定した。

図-8 解析モデル (利根川右岸26.5k)

	Bs(水位上)	Bs(水位下)	Bc(水位上)	Bc(水位下)	As	AsF	Ac1	Ac2	Ac3
	非液状化	液状化	非液状化	非液状化	液状化	液状化	非液状化	非液状化	非液状化
(t/m ³)	1.9	1.9	1.8	1.8	1.8	1.8	1.7	1.7	1.7
(kN/m ²)	27.75	57.75	30.00	63.00	69.00	84.75	3.00	75.75	119.25
$G_{ma} (kN/m^2)$	46204	46204	23800	23800	31816	31816	3400	3400	6800
^a G	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
(kN/m^2)	120492	120492	62067	62067	82972	82972	8867	8867	17733
K	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
v	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
$\exists r(^{\circ})$	36.67	35.1	30.0	30.0	33.02	32.77	30.0	30.0	30.0
Ξ, (*)	-	28.0			28	28			0
I max	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
	0.475	0.490	0.550	0.550	0.510	0.512	0.550	0.550	0.550
(kN/m^2)	2.20E+06								

a) FLIP入力パラメータ)

	Bs	As	Asf
\mathcal{E}_{d}^{cm}	0.10	0.20	0.20
rE _{dc}	3.50	4.00	5.00
rE d	0.15	0. 20	0.20
q_{1}	5.50	7.00	7.00
q_2	1.00	1.50	1.50
r_k''	0.50	0. 70	0.50
l_k	2.00	2.00	2.00
r_k	0.50	0.70	0.50
S_{I}	0.005	0.005	0.005
cl	2.600	1.980	1.980

(4)利根川右岸 39.5k

検討断面のモデル図を図-14に示す。基礎地盤には Ac (沖積粘性土層) と Bc (盛土粘性土層) が 1~5m 程度 堆積し、その下層に、As1・As2(沖積砂質土層)が厚 く堆積している。図-14 には記載が無いが、標高-38m 以 深に平均 N 値 50 の Ac2(沖積粘性土層)があることか ら、この層を工学的基盤面とした。液状化対象層およ び液状化強度は既往の再現解析を基に設定し、液状化 対象層は地表面から GL-20m¹⁾まで、液状化対象層の液 状化パラメータはN値から簡易設定法^のにより求めた後、 RL20¹⁾を目標に設定した。ここで、As1 層は RL20=0.18、 As2 (GL-20m 以浅) では RL20=0.25 である。解析に使用 したパラメータを図-15に示す。

入力地震動を図-16に示す。地震波形は、K-NET佐原⁵⁾ の強震記録データから本震と余震を抽出して作成した。 なお、強震記録データは、基盤層上端で観測されたも のとし、NS成分波とEW成分波を河川堤防の法線直角方 向に角度補正した合成波を使用した。

図-14 解析モデル (利根川右岸39.5k)

a) FLIP入力パラメータ

c)要素シミュレーション 図-15 入力パラメータ(利根川右岸39.5k)

4 解析結果

(1) 利根川右岸26.5k解析結果⁷

a) 堤体不連続面のモデル化検討結果

本検討における堤体は、堤内側と堤外側で材料が異 なり、その近傍で大きな亀裂が発生していた。堤体内 のひずみ発生状況は図-17に示すように、堤内と堤外側 で異なる。ここで、堤体の土質境界付近に不連続面と して多点拘束条件(X方向拘束、Y方向自由)を考慮す ると、図-18に示すように天端周辺の鉛直変位が異なる 結果となった。不連続面を考慮した場合の天端沈下量 は、考慮しない場合と比較して、約50%程度大きくなり、 被災状況に近い結果となった。なお、解析はマルチス プリングモデルを用いた非排水解析である。

b)透水解析結果(カクテルグラスモデルの適用) 地盤の透水係数は、一般的な土質の透水係数を参考と し、表-3に示す3ケースで再現性について検討した。

図-19 より、堤防天端では本震で沈下が生じた後、余 震でさらに沈下が生じることがわかる。ケース A-3 の 余震終了 2時間後の天端沈下量は 139cm、法尻水平変位 は 245cm となり、実測値とほぼ一致している。

図-20および図-21から、過剰間隙水圧比は本震終了時 に液状化層(As層およびAsf層)の広い範囲で上昇し、 余震開始時にいくらかの消散が認められるものの、余 震の間に再び上昇していることが確認できる。間隙水 圧の消散状態によって、法尻の水平変位の異なること がわかる。さらに、ケースA-1とB-1の結果を比較する ことにより、液状化層の上部に難透水層がある場合、 水圧の消散が遅くなり法尻の水平変位が大きくなる。

(2) 吉田川右岸16.0k再現解析結果⁸

a) 地下水位のモデル化に関する検討

地下水位のモデル化がカクテルグラスモデル要素に よる解析に与える影響について検討するため、図-22に 示す3ケースの地下水位(間隙水圧自由度拘束面)で解 析を行い、解析結果を比較した。

図-23に示すように、実際の地下水位(Case 0)と仮の 地下水位(Case 1、Case 2)の間では有効応力に差が生 じるため、表-4に示すように天端鉛直変位と法尻水平変 位が大きく異なる結果となった。これより、地下水位 に間隙水圧境界を設置すると、地下水位付近の液状化 要素の過剰間隙水圧の上昇に影響を与えるため、適切 な地下水位のモデル化を行う必要がある。

図-20 過剰間隙水圧比分布図 (ケースA-3)

- 6 -

図-22 水位モデルと解析ケース

図-23 初期自重解析における有効応力分布

表4 応答変位量

解析ケース	Case1	Case0	Case2
地下水位	+0m	+1.5m	+4.5m
天端鉛直変位 (cn) -66.5	-80.6	-63.5
法尻水平変位 (cn) -36.8	-40.4	-37.7

b)透水解析結果(カクテルグラスモデルの適用)

解析では、液状化対象層であるAs層を挟むように堆 積しているA_{Cl}層およびA_C層の内部摩擦角を低減した場 合(Case 1、Case 2)、内部摩擦角ではなく粘着力で評 価した場合(Case 3、Case 4)の変形量を算出した。変 形量は、実測値が計測されている堤防天端の鉛直変位 と堤防法尻(川表側)の水平変位に着目した。検討ケ ースを表-5、図-24に最も大きな変形量となったCase 2-1(A_{Cl}層とA_C層の内部摩擦角を15°に低減)の変形図 と各ケースの結果を示す。参考として、カクテルグラ スモデル要素、マルチスプリングモデル要素において、 基本ケースをベースにqus値(定常状態における最大せ ん断応力)を0.0とした場合の解析も行った。図-24に示 す参考2のマルチスプリングモデル要素を用いた解析は、 前年度に実施し、堤防天端の鉛直変位については実測 値と整合が確認できていたものである。

堤防天端の鉛直変位に着目した場合、実測値の0.8~ 2.4倍の変形量となった。内部摩擦角を低減したCase 1、 Case 2では、内部摩擦角を小さくするにつれて変形量が 大きくなり、粘着力で評価したCase 3、Case 4では、粘 着力を大きくするにつれて変形量が大きくなった。堤 防法尻(川表側)の水平変位に着目した場合、実測値 の0.1~0.5倍の変形量となった。内部摩擦角を低減した Case 1、Case 2では、内部摩擦角を小さくするにつれて 変形量は実測値に近づき、粘着力で評価したCase 3、 Case 4では、粘着力を大きくするにつれて変形量は実測 値に近づいた。参考として行った解析結果から、qus値 を考慮した場合の方が考慮しない場合に比べ約2倍程度 変形量が大きくなり、カクテルグラスモデル要素より マルチスプリングモデル要素の方が約1.5倍程度変形量 が大きくなることが確認できた。

(3)利根川右岸39.5k再現解析結果

a) 地表面段差のモデル化検討

盛土の被災状況から、地表面に段差が発生している ため、その再現方法として図-25 に示すようにジョイン ト要素を設けたモデルで解析を実施した。

図-26 の変位図に見られる通り、ジョイント要素の Ks=0 の条件で段差を再現することができたが、ジョイ ント要素を用いない解析結果と比較して、盛土天端の 沈下量にはほとんど影響がなかった。

図-25 ジョイント要素設定位置

b)透水解析結果(カクテルグラスモデルの適用)

解析は、入力地震動の継続時間 600 秒の地震応答解 析の後、過剰間隙水圧の消散として 59400 秒の消散解析 を行ったため解析継続時間は60000秒である。また、被 災状況で見られたような亀裂や段差を再現するために、 表層の適切な箇所に鉛直方向のジョイント要素を設け た。残留変形図を図-27 に、堤体天端の沈下量の時刻歴 図を示す。残留変形量は 73cm 程度と被災状況よりは小 さい結果となり、図-28の時刻歴では沈下は、ほぼ収束 しているように見受けられる。しかし、図-29の過剰間 隙水圧分布図では、まだ消散途中であり 60000 秒以降の 解析により、沈下がさらに大きくなると考えられる。 検討段面の液状化層の上層には粘性土層が堆積してお り、過剰間隙水圧の消散時間が遅くなる原因となって いると考えられる。さらに、解析では、堤外側の地表 面が盛り上がり、すべりの変形モードが得られる結果 となっており、実際の被災と異なる結果となった。

本検討では、カクテルグラス要素および透水解析機 能を用いて、堤体の被災の再現を試みた。沈下量は、 被災状況よりも僅かに小さかったものの、消散途中の 結果であり、解析時間をさらに大きくして実施する必 要がある。

また、すべりの変形モードについては、粘性土層下 の砂質土で大きなせん断変形が生じていることから、 過剰間隙水圧の消散の遅れが影響していると考えられ る。

5. まとめ

本研究では、2011年東日本大震災で被災した河川堤 防の内、基礎地盤が液状化して被災に至った事例を対 象に再現解析を試みた。地震後に行われた被災調査か ら、堤防天端の沈下量や法尻の変位量が示されている。 ただし、変形量の時間変化や液状化層の過剰間隙水圧 の発生状況など詳細な計測結果が無いことから、再現 解析の評価は、堤防天端沈下量や法尻水平変位量のみ で行ったものである。各検討ケースの堤防天端沈下量 の再現性は高い結果となった。

(1)利根川右岸26.5k再現解析結果

東日本大震災における利根川右岸 26.5k の河川堤防被 災事例について、カクテルグラスモデル要素による再 現解析を行った。また、堤体内の鉛直クラックを考慮 するため、多点拘束条件を設定すると被災状況に近い 沈下量となった。

堤防天端の沈下量は、本震と余震の解析で実測沈下 量をほぼ再現できる結果となった。また、法尻水平変 位は、実測変位量の半分程度となり、せん断変形以外 の要因が考えられる。

法尻付近の水圧発生状況により水平変位に違いが見 られたことから、透水係数や水理境界の設定方法等が 今後の課題となる。また、液状化層の上部に難透水層 がある場合、水圧の消散が遅くなり法尻の水平変位が 大きくなる結果となった。

(2) 吉田川右岸16.0k再現解析結果

東日本大震災における吉田川右岸16kの河川堤防被災 事例について、カクテルグラスモデル要素による再現 解析を行った。

地下水位の設定によって、初期の有効応力状態が異 なり、地下水位付近の液状化要素の過剰間隙水圧の上 昇に影響を与えるため、変形量が大きく異なることが 確認された。

堤防天端の鉛直変位は実測値の0.8~2.4倍の変形量と なり再現性は確認できた。また、堤防法尻の水平変位 は実測値の0.1~0.5倍と全体的に実測値より小さい変形 量となった。小さい変形量となった原因としては、粘 性土層の滑りによる変形等、液状化以外の作用が影響 した可能性も考えられる。

図-30 変位ベクトル図(利根川右岸26.5k)

図-31 変形形状(利根川右岸26.5k)⁷⁾

(3)利根川右岸39.5k再現解析結果

東日本大震災における利根川右岸39.5kの河川堤防被 災事例について、カクテルグラスモデル要素による再 現解析を行った。堤体表面の段差は、ジョイント要素 を適用することにより再現できたが、段差の有無によ り堤防の変形には大きな影響は見られなかった。

堤防天端沈下量は、被災状況よりも小さかったもの の、消散途中の結果であり、解析時間をさらに大きく すると被災状況と同程度の沈下量になると考えられる。

堤防法尻付近では、すべりの変形モードを示す解析 結果となっており、粘性土層下の砂質土で大きなせん 断変形が生じていることから、過剰間隙水圧の消散の 遅れが影響していると考えられる。

(4) 今後の課題

今回実施した3地点の再現解析結果から、法尻部の変 形や過剰間隙水圧の発生・消散について共通の課題が 示された。盛土端部の変形メカニズムは、図-30に示す ようなすべり破壊モードや液状化層のせん断変形、過 剰間隙水圧の発生・消散による沈下などが考えられ、 地盤・地下水位や盛土材料のモデル化が重要となる。

再現解析では、法尻の節点の移動量で評価した場合、 被災計測値より小さな解析結果となったが、図-31に示 すように、変形量の影響範囲で考えると、ほぼ被災状 況に整合する結果となっていることから、堤防変形に 伴う影響範囲という評価や考え方について、今後整理 が必要と思われる。

謝辞:本検討は、FLIPの改良と高度利用法の研究を推進する目的で設立された一般社団法人 FLIP コンソーシアム WG の活動の一環として実施されたものである。 関係者の方々、貴重な小見川および山崎振動観測所の 強震記録数値データを提供頂いた国土交通省国土技術 政策総合研究所危機管理技術研究センター地震防災研 究室に謝意を表します。

参考文献

- 1)(財)国土技術研究センター:第3回河川堤防耐震対策緊急検討委員会参考資料-1,2011.8.
- 2) Iai, S., Matsunaga, Y., and Kameoka, T. : Strain Space Plasticity Model for Cyclic Mobility, SOILS AND FOUNDATIONS, Vol.32, No.2, pp.1-15, 1992.
- 3) 井合進, 飛田哲男, 小堤治: 砂の繰返し載荷時の挙動モデルとしてのひずみ空間多重モデルにおけるストレスダイレイタンシー関係, 京都大学防災研究所年報第51号B,2008.
- Iai, S., Tobita, T., Ozutsumi, O. and Ueda, K.: Dilatancy of granular materials in a strain space multiple mechanism model.

International Journal for Numerical and Analytical Methods in Geomechanics, Vol.35, No.3, pp.360-392, 2011.

- 5) 防災科学技術研究所強震観測網(K-NET, kik-net) http://www.kyoshin.bosai.go.jp/kyoshin/(2012.11.1参照)
- 6) 森田年一, 井合進, Hanlong Liu, 一井康二, 佐藤幸博: 液状 化による構造物被害予測プログラム FLIP において必 要な各種パラメタの簡易設定法, 港湾技研資料, No.869, 1997.
- 7) 森島直樹,林健二,金 炅奐,一井康二:2011 年東日本大震 災で被災した利根川右岸 26.5k の河川堤防を対象とし た事例解析,第 48 回地盤工学研究発表会,2013.
- 8) 今井康雅,鈴木明憲,飛田哲男: 2011 年東日本大震災で 被災した吉田川右岸 16kの河川堤防を対象とした事 例解析,第48回地盤工学研究発表会,2013.

NUMERICAL SIMULATIONS FOR RIVER EMBANKMENT DAMAGED DUE TO THE 2011 OFF THE PACIFIC COAST OF TOHOKU EARTHQUAKE

Naoki MORISHIMA, Kenji HAYASHI, Eiju HIROSE, KIM KyungHwan, Yasumasa IMAI, Akinori SUZUKI, Keisuke KITADE, Mitsu OKAMURA and Tetsuo TOBITA

A large number of geotechnical structures were damaged due to the 2011 off the Pacific coast of Tohoku earthquake whose duration of shaking was more than 2 minutes. By using such a long duration earthquake as an input motion, a numerical simulation for stability of river embankments is performed with the effective stress analysis code called FLIP.

Firstly, analysis under undrained condition (the multi-spring model) is conducted with model parameters determined by the simplified empirical relationship of sands. Then, analysis under drained condition (the cocktail glass model) to consider dissipation of excess pore water pressure is carried out and validated the results through the comparison with observation.