広域的な地震動評価のための 地盤の非線形性の簡易補正方法

池田隆明1・小長井一男2・釜江 克宏3・入倉孝次郎4・清田 隆5・目黒 公郎6

¹正会員 飛島建設 技術研究所 室長(〒270-0222 千葉県野田市木間ヶ瀬5472)
 E-mail:takaaki_ikeda@tobishima.co.jp
 ²正会員 横浜国立大学 教授(〒240-8501 神奈川県横浜市保土ケ谷区常盤台79-1)
 E-mail:konagai@ynu.ac.jp
 ³非会員 京都大学 原子炉実験所 教授(〒590-0494 大阪府泉南郡熊取町朝代西2丁目)
 E-mail:kamae@rri.kyoto-u.ac.jp
 ⁴非会員 京都大学名誉教授(〒550-0012 大阪市西区立売堀4丁目3番2号7F 入倉孝次郎地震動研究所)
 E-mail:irikura@geor.or.jp
 ⁵正会員 東京大学 生産技術研究所 准教授(〒153-8505 東京都目黒区駒場4-6-1)
 E-mail:kiyota@iis.u-tokyo.ac.jp
 ⁶正会員 東京大学 生産技術研究所 教授(〒153-8505 東京都目黒区駒場4-6-1)

経験的グリーン関数法は、大地震と小地震の地震の相似則と震源スペクトルの相似則に基づき経験的グ リーン関数の線形な重ね合わせで地震動を表現するため、軟弱地盤では合成波形が過大評価となり直接的 な適用には限界がある.経験的グリーン関数法と地盤の地震応答解析を組み合わせた方法を提案している が、評価地点が多い場合には困難を伴う.そこで、評価対象を応答スペクトルに変更し、評価地点の AVS30と経験的グリーン関数法から得られた直接得られた地震動から、地盤の非線形性を考慮した応答ス ペクトルを評価する方法を考案した.実観測記録を用いた検証解析により、提案手法は地震応答解析と組 み合わせた方法と同程度の精度で応答スペクトルを評価することが可能であることが分かった.

Key Words: empirical Green's function method, non-linear, AVS₃₀, Normalized period, soft soil deposit

1. はじめに

経験的グリーン関数法¹⁾²⁾(以下, EGFM)は, 適切な 小地震記録を経験的グリーン関数に用いることにより, 地震動評価に必要なサイト特性、伝播経路特性、震源特 性の3つの特性のうち、伝播経路特性とサイト特性が自 動的に評価できるという特徴を有する.しかし、この方 法では評価対象の地震動が、大地震と小地震の地震の相 似則と震源スペクトルの相似則に基づき経験的グリーン 関数の線形な重ね合わせで表現されるため、岩盤サイト のように地盤が硬質で大地震時でも小地震時と同程度の 非線形状態しか示さないような地点では、精度よく地震 動を評価することができるが、大地震時に顕著な非線形 性を示すような軟弱な地点では、小地震時と大地震時の 地盤の非線形性が異なり、 合成波形が過大評価となり直 接的な適用には限界がある. 我国の大部分の都市は、軟 弱な堆積層の上に発展しており、地震観測網の整備が急 速に進み地震観測地点が増え,経験的グリーン関数法に

よる地震動評価の機会が増えることを想定した場合,地 盤の非線形性が考慮できる手法への拡張は重要である.

筆者らは地震被害と相関が高いS波主要動の再現性に 焦点を絞り,地盤の非線形性を受ける地表面で地震動を 合成せず,地盤の非線形性が小さい硬質な基盤面で地震 動を合成し,別途地盤の非線形性を考慮した地盤の地震 応答解析を行い,地表面の地震動を算出する方法により, 地盤が軟弱な地点に対する経験的グリーン関数法の適用 性を実地震記録を用いて確認した^{3,4}.

この方法では、対象とする地点が有する地盤の非線形 特性を詳細に評価できるという長所を有する.一方,評 価地点毎に詳細な非線形地震応答解析が必要なため、地 域防災計画のように予測範囲が広域で対象地点が多い場 合には、各地点に対して十分に精度を有する非線形性を 含む地盤のモデル化が困難であるとともに、検討に多大 な労力と時間を要すること等の要因から現実的ではない. そのため、地震動予測の目的を満足する精度を有する簡 略的な方法が期待される. 構造物の設計入力地震動の基準では、入力地震動の強 度特性を応答スペクトルで定義するものがある^{5,0}. そ のため、応答スペクトルを予測対象とすることも強震動 予測において有効である. そこで、本論文では、予測対 象を応答スペクトルとし、EGFMを直接適用して評価し た地震動の応答スペクトル(地盤の非線形性が考慮され ていない応答スペクトル)から、地盤の非線形特性を考 慮した地表地震動の応答スペクトルを算出するための、 応答スペクトルの補正方法を検討し報告する. 本論文で は、文献3で示す示す地盤の地震応答解析法を組み合わ せた方法を詳細法、本提案手法をスペクトル補正法もし くは簡易法と呼ぶ. なお、本論文で示す応答スペクトル は減衰定数5%の擬似速度応答スペクトルとする.

2. 詳細法による軟弱地盤での地震動評価

詳細法は地表の小地震動を工学的基盤に引き戻し, EGFMで波形合成を行い,再び地盤の非線形地震応答解 析により地表の地震動を評価する.ここでは,既往の論 文を引用し詳細法を用いた場合の軟弱地盤での強震動評 価結果を紹介する^{3,4}.

検討対象地点は,K-NET小千谷(NIG019,2004年新潟 県中越地震),K-NET福岡(FKO006,2005年福岡県西 方沖の地震), K-NET穴水 (ISK005, 2007年能登半島地 震)の3地点である.

図-1に3地点における観測地震動,EGFMで直接評価した地震動,詳細法により地盤の非線形性を評価した地震動の応答スペクトルを示す(NS成分).

対象地点によりややばらつきは見られるものの, EGFMで直接評価した地震動の応答スペクトルは観測地 震動の応答スペクトルに比べ約1秒以下の領域で大きく 増幅しているのに対し,詳細法で補正した地震動の応答 スペクトルは増幅が抑えられ,観測地震動との一致度が 向上している.

3. 地盤の非線形性と考慮した地震動と考慮しな い地震動の応答スペクトルの関係

図-2に地盤の非線形性を考慮しない応答スペクトルを 考慮した応答スペクトルで除した応答スペクトルの比を 示す.応答スペクトルの比の形状には特徴があり,ある 周期よりも短周期領域では一定値を示し,そこから急激 にある周期まで増加し,周期5秒程度まで一定値となる. この応答スペクトルの比を,地盤特性と入力地震動レベ ルで規定できれば,応答スペクトルの比を補正関数とし て経験的グリーン関数法により直接評価された地震動の

応答スペクトルに乗じることにより、地盤の非線形性を 考慮した応答スペクトルを評価することができる.

図-3に図-2に示す3地点の応答スペクトルの比を重ね て示す.図からわかるように、3地点の地盤特性や入力 地震動レベルが異なるため、応答スペクトルの比はばら つき、一定の基準に則った応答スペクトルの比のモデル 化は困難と考えられる.

そこで、図-3の横軸を各地点の弾性固有周期で基準化 した基準化周期(Normalized period)で再整理して図-4に 示す.各地点の弾性固有周期は各地点の地盤モデルに基 づき、NIG019が0.51秒、FKO006が0.55秒、ISK005が0.79 秒とした.図-4からわかるように、横軸を基準化周期と して3地点の地盤特性を基準化することにより、応答ス ペクトルの比のモデル化が可能と考えられる.

図-5に応答スペクトルの比のモデルを示す. T₁よりも 短い規準化周期,およびT₂よりも長い規準化周期では一 定とし, T₁とT₂の間は直線的に変化させる. T₁側の一定 値をCA₁, T₂側をCA₂とする. 今後,応答スペクトルの 比をスペクトル補正関数と呼ぶ.

図-3 NIG019, FKO006, ISK005の応答スペクトルの 比の比較(横軸:周期)

図-4 NIG019, FKO006, ISK005の応答スペクトルの 比の比較(横軸:規準化周期)

図-5 規準化周期を用いた,応答スペクトルの比(スペ クトル補正関数)のモデル化

4. スペクトル補正法(簡易法)の提案

(1) 補正方法

経験的グリーン関数法により直接算出した地震動の応 答スペクトルに対し、対象地点の地盤特性および入力地 震動レベルからスペクトル補正関数を設定し、応答スペ クトルにスペクトル補正関数を乗じることにより、地盤 の非線形性を考慮した地震動の応答スペクトルを評価す る.式(1)に補正方法を示す.

$$S_{NL}(t) = S_L(t) \times C(t) \tag{1}$$

*S_{NL}(t), S_L(t), C(t)*はそれぞれ,地盤の非線形性を考慮した応答スペクトル,地盤の非線形性を考慮しない応答スペクトル(経験的グリーン関数法から直接算出した応答スペクトル),スペクトル補正関数である.

(2) スペクトル補正関数の評価方法

図-6に地盤の非線形性を考慮しない場合とした場合の応答スペクトルの増幅特性について模式的に示す.地 盤特性*i*を有する地盤モデルを想定した場合,地盤の非 線形性を考慮しない場合の応答スペクトルの増幅特性 $A_l(t)_i$ は,工学的基盤で設定した入力地震動レベル*j*の地 震動の応答スペクトル ($S_b(t)$)と地盤の線形地震応答解 析で得られた地表の地震動の応答スペクトル $S_l(t)_i$ から 式(2)に従い算出することができる.同様に,地盤の非 線形性を考慮した応答スペクトルの増幅特性 $A_{NL}(t)_i$ も地 盤の非線形地震応答解析で得られた地表の地震動の応答 スペクトル $S_{NL}(t)_i$ から式(3)に従い算出することができる. そのため,地盤モデルと入力地震動を複数設定し線形お よび非線形地震応答解析を行い,式(4)に従い $C(t)_i$ を算 出し,統計処理することにより $C(t)_i$ のモデル化が可能 と考えられる.

$$A_{L}(t)_{i} = \frac{S_{L}(t)_{i,j}}{S_{B}(t)_{i,j}}$$
(2)

$$A_{NL}(t)_{i,j} = \frac{S_{NL}(t)_{i,j}}{S_R(t)_{i,j}}$$
(3)

$$C(t)_{i,j} = \frac{A_{NL}(t)_{i,j}}{A_L(t)_i} = \frac{S_{NL}(t)_{i,j}}{S_L(t)_{i,j}}$$
(4)

(3) 地盤特性と入力地震動レベルの評価指標

a) 地盤特性

地盤構造は局所的に複雑な場合があり、近傍地点においても地盤構造が異なることが指摘されている⁵. そのため、地盤特性を正確に評価するためには地盤調査や室内土質試験結果に基づく詳細な地盤構造や物性値等が必要である.

一方,地震被害想定などのように広域範囲の地盤特性 を評価する方法として,表層のS波速度により地盤の増 幅特性を近似する研究が行われており,地盤の増幅特性 は地表から深さ30mまでの平均S波速度(AVS_{30})と相 関があることが指摘されている⁶⁷⁷. AVS_{30} の評価方法に ついても研究が行われ,長尾・紺野は微動から⁸,翠 川・松岡⁹は国土数値情報¹⁰の地形分類情報等に基づく 推定方法が提案されている.その他多くの研究者が地盤 調査を行うことなく広域に与えられたデータから AVS_{30} の推定精度の向上に取り組んでいる^{11,12,13,14}.そのため, 地盤特性の評価指標として AVS_{30} を使用する.式(5)に AVS_{30} の計算方法を示す. $d_k \geq Vs_k$ は k番目の層の厚さ (m)とせん断波速度(m/s)である.

$$AVS_{30} = \frac{30}{\sum \frac{d_k}{Vs_k}}$$
(5)

b) 入力地震動レベル

地盤の非線形性を考慮した応答スペクトルは,入力地 震動レベルに依存するため,入力地震動の評価指標が必 要である.しかし、本手法に対して既知の情報は経験的 グリーン関数法により直接的に評価された地盤の非線形 性を考慮しない地表面の地震動のみであり、工学的基盤 への入力地震動レベルは未知である.そこで、地盤の非 線形性を考慮しない地震動から算出された応答スペクト ルの最大値を入力地震動レベルの指標として適用する.

5. スペクトル補正関数のモデル化

(1) 地盤モデルの設定

地盤モデルは砂質土と粘性土の三層構造とし、AVS₃₀ を 100m/s から 300m/s まで 10m/s 刻みで合計 21 モデルを 設定する. 各層の層厚は 10m とする. せん断波速度は2 層目の砂質土層のせん断波速度 Vs2 を AVS₃₀ と同一とし、 1層目のせん断波速度 Vs1 は 2 層目の 0.8 倍、3 層目のせ ん断波速度 Vs3 は AVS₃₀を満足するように式(6)から設定 する. 地盤の密度は標準的な値として 1 層目の粘性土層 が 1.70t/m³、2 層目の砂質土層が 1.90t/m³、3 層目の粘性土 層が 1.80t/m³とし、AVS₃₀に依らず同一とする. 地盤の非 線形特性は砂質土と粘性土の平均的な値 ¹⁵を使用する.

$$Vs_3 = \frac{10 \times AVS_{30}}{7.5} \tag{6}$$

(2) 地盤モデルの設定

入力地震動は道路橋示方書・同解説V耐震設計編¹⁶に 規定された内陸地殻内地震を想定したタイプII地震の加 速度応答スペクトルに準拠した地震動と,建設省告示 1461号¹⁷に規定された極めて稀に発生する地震の加速 度応答スペクトルに準拠した地震動を使用する.いずれ も地震動の位相特性には,1995年兵庫県南部地震にお いて神戸海洋気象台で観測された地震動(NS成分)を 使用する.地震動はそのまま使用せず,最大加速度を 100cm/s²から1,000cm/s²まで100cm/s²刻みで調整する.前 者を道示波,後者を告示波と呼ぶ.図-7に最大加速度 を調整する前の入力地震動の加速度時刻歴を示す.

図-7 検討に用いる入力地震動(原波)の加速度時刻歴 波形(上段:道示波,下段:告示波)

(3) スペクトル補正関数のモデル化

図-8, 図-9に道示波と告示波を入力した場合の地盤の 非線形を考慮した場合の応答スペクトルと考慮しない応 答スペクトルおよびスペクトルの比を,入力地震動レベ ルと AVS₃₀について示す.入力地震動レベルは 100cm/s², 500cm/s², 1,000cm/s²の3種類で, AVS₃₀は 100m/s, 150m/s, 200m/s, 250m/s, 300m/sの5種類を抜粋する.

入力地震動レベルが小さい場合,応答スペクトルの比の形状は AVS30 によらずほぼ同じ形状を示す.入力地 震動レベルが大きくなるにつれて応答スペクトルの比の 形状は変化し T₂が大きくなる. AVS30 が小さいほど

(地盤が軟弱なほど)その傾向は顕著である.一方,入 力地震動レベルが大きくても,AVS30が大きいとT₂の 値はそれほど大きくならず,応答スペクトルの比に対す る入力地震動レベルの影響は小さい.

これらの傾向は,道示波,告示波ともに共通した傾向 であり,応答スペクトルの比の形状に及ぼす入力地震動 の影響は大きくないと想定される.

図-8, 図-9よりT2およびCA1に対してT₁, CA2の変 動は小さく, T₁はほぼ0.9~1.0, CA2はほぼ1.0~1.2の範 囲にある.そこで,本検討では簡略化のため, T₁=0.9, CA₂=1.1として, T₂およびCA₁を設定する.

図-10, 図-11に T₂および CA₁と入力地震動指標との 関係を示す.この図より, T₂および CA₂と入力地震動指 標との関係式を構築する.式(7)および式(8)に関係式を 示す.図-10,図-11中に実線で示す.

$$T_2 = a1 \times PVRS_{\max} + b1 \tag{7}$$

$$CA_1 = a2 \times PVRS_{\max} + b2 \tag{8}$$

*PVRS*_{max}は入力地震動指標, *al*, *bl*, *a2*, *b2*は*AVS*₃₀ および*PVRS*_{max}に依存する係数で表-1に示す.

表-1 T₂およびCA₁と入力地震動指標との関係式に 用いる係数

	- 14 · · · · · · · · · · · · · · · · · ·					
AVS ₃₀ (m/s)	PVRS _{max} (cm/s)	al	b1	PVRS _{max} cm/s	a2	b2
100	100-1000	1/18	4/9	100-1000	0	0.2
	1000-	0	6	1000-	0	0.1
150	0-3000	5/2900	24/29	100-2000	0	0.2
	3000-	0	6	2000-	0	0.1
200	100-900	3/1600	13/16	100-250	-1/750	8/15
	900-	0	2.5	250-	0	0.2
250	100-700	1/1200	11/12	100-300	-3/2000	23/20
	700-1000	1/300	-5/6	300-	0	0.2
	1000-	0	2.5	-	-	-
300	100-800	1/1600	15/16	100-300	-3/2000	23/20
	800-	0	1.5	300-	0	0.2

6. スペクトル補正法(簡易法)の検証

(1) 地盤モデルの設定

前章で提案したスペクトル補正方法について,地盤の 非線形性を考慮する必要があると考えられる地点に適用 し,妥当性の検証を行う.対象地点は,詳細法を適用し て良好な結果が得られた NIG019, FKO006, ISK005の3 地点とする.

表-2に NIG019, FKO006, ISK005 における T₁, T₂, CA₁, CA₂を, 図-12 に推定したスペクトル補正関数と,

地盤の非線形性を考慮した地震動と考慮しない地震動か ら算出した応答スペクトルの比を比較して示す.

FK0006はややT₂を小さめに評価していること、本検 討ではCA₁を一定としたためISK005ではT₁よりも小さ い基準化周期で見られる増幅が再現できていないこと等 の差異がみられるが、定性的には本手法でスペクトルの 低下の状況をほぼ再現できていると考えられる.

図-13に地盤の非線形性を考慮しない応答スペクトルから本手法を用いて補正・推定した地盤の非線形性を考慮した応答スペクトルを示す.本手法で補正した応答スペクトルは,観測波形のスペクトルを近似できている.

図-14 に詳細法とスペクトル補正法で地盤の非線形性 を考慮した場合の地表の応答スペクトルを比較して示す. スペクトル補正法で地盤の非線形性を評価した応答スペ クトルは詳細法による応答スペクトルをほぼ近似できて いる.

表-2 3地点におけるスペクトル補正関数

Site	AVS ₃₀ (m/s)	方位	PVRS _{max} (cm/s)	T_1	T ₂	CA ₁	CA ₂
NIG019	245	NS	698	0.9	2.0	0.20	1.1
		EW	879	0.9	3.0	0.20	1.1
FKO006	209	NS	203	0.9	1.6	0.20	1.1
		EW	221	0.9	2.1	0.20	1.1
ISK005	133	NS	698	0.9	1.2	0.28	1.1
		EW	879	0.9	1.2	0.25	1.1

図-14 本手法(スペクトル補正法)と詳細方法で推定した地盤の非線形性を考慮した擬似速度応答スペクトル (h=0.05)の比較

7. まとめ

地盤が軟弱な地点に対する経験的グリーン関数法の適 用性の向上を目的に,地震被害想定のように強震動予測 の範囲が広域で予測対象サイトが多い場合を想定し,簡 易な方法で地盤の非線形性を考慮する方法を検討した. 以下に得られた結果を示す.

- ① 予測対象を応答スペクトルとし、経験的グリーン関数法から直接的に評価される地震動の応答スペクトルに補正関数を乗じることにより、地盤の非線形性を考慮した応答スペクトルを評価する方法(スペクトル補正法)を提案した。
- ② 応答スペクトルの補正関数は、経験的グリーン関数 法から直接的に評価される地震動の応答スペクトル の最大値と対象地点の地盤特性により設定する。
- ③地盤特性は表層 30mの平均 S 波速度(AVS₃₀)とする. 地盤の AVS₃₀は微動や微地形区分などから設定することができるため,地盤調査が十分ではない広域地震動予測問題にも適用可能である.
- ④ 検討対象地点の応答スペクトルはその地点の地盤特 性の影響を受けるため、スペクトル補正関数のモデ ル化には地盤特性というパラメータが要求されるが、 応答スペクトルの周期軸を地盤の弾性固有周期で基 準化した基準化周期を使用することにより、地盤特 性を消去することができ、スペクトル補正法に用い る応答スペクトルの補正関数の簡易モデル化に大き く貢献した.
- ⑤ 当該手法を,2004年新潟県中越地震における K-NET 小千谷(NIG019),2005年福岡県西方沖の地震における K-NET福岡(FKO006),2007年能登半島地震 における K-NET 穴水(ISK005)に適用した結果,地 盤の非線形性を地震応答解析で詳細に評価する方法 (詳細法)と同程度の応答スペクトルを再現するこ とができ,本手法が有効であることが確認された.

当該手法をは経験的グリーン関数法のみならず,統計 的グリーン関数法への適用も可能であるため,今後幅広 く使える方法に展開する予定である.

謝辞:本研究では防災科学技術研究所の強震観測網K-NETの地震動記録ならびに地盤データを使用させていた だきました.また,本研究の一部は科研費基盤研究 (C)24560595(研究代表者:池田隆明)の助成を受けて実 施しました.最後に記して謝意を表します.

参考文献

- Irikura, K., Prediction of strong acceleration motion using empirical Green's function, *Proceedings of the 7th Japan Earthquake Engineering Symposium*, pp.151-156, 1986.
- 2) 入倉孝次郎,香川敬生,関口春子:経験的グリ ーン関数を用いた強震動予測方法の改良,日本 地震学会予稿集 Vol2, 1997.
- 3) 池田隆明, 釜江克宏, 入倉孝次郎: 経験的グリ ーン関数法を用いた震源のモデル化と地盤の非 線形性を考慮した地震動評価, 2005 年福岡県西 方沖の地震と 2007 年能登半島地震への適用, 日 本建築学会構造系論文集, No.665, pp.1253-1261, 2011.
- K. Kamae, T. Ikeda, and S. Miwa :Source model composed of asperities for the 2004 Mid Niigata Prefecture, Japan, earthquake (M_{JMA}=6.8) by the forward modeling using the empirical Green's function method, *Earth Planets Space*, 57, pp.533–538, 2005.
- 5) 三輪滋,池田隆明,綾部孝之,沼田淳紀:2000年鳥 取県西部地震における境港市の地盤の地震時挙動, 土木学会構造工学論文集,Vol.48A,pp.445-455, 2002.
- 8) 翠川三郎: 地震断層と地盤条件を考慮した地表面最 大加速度・最大速度分布の推定,第8回地盤震動シ ンポジウム, pp.59-64, 1980.
- 7) Midorikawa, S., Matsuoka, M. and Sakugawa, K.: Site Effects

on Strong-motion Records Observed during the 1987 Chiba-Ken-Toho-Oki, Japan Earthquake, *Proceedings of the 9th Japan Earthquake Engineering Symposium*, Vol.3, pp.85-90, 1994.

- 長尾 毅, 紺野克昭: 常時微動アレー観測に基づく表 層地盤の平均 S 波速度推定精度に関する研究, 土木 学会論文集, No.696/I-58, pp.225-235, 2002
- 9) 翠川三郎, 松岡昌志: 国土数値情報を利用した地震 ハザードの総合的評価, 物理探査, Vol.48, No.9,pp.519-529, 1995.
- 国土庁計画・調整局: 国土情報シリーズ 8 国土数値 情報(改訂版), 大蔵省印刷局, 1992.
- 11) 久保智宏, 久田嘉章, 柴山明寛, 大井昌弘, 石田 瑞穂,藤原広行, 中山圭子:全国地形分類図による 表層地盤特性のデータベース化,および,面的な早 期地震動推定への適用,地震 2, Vol.56, No.1, pp.21-37, 2003.

- 12) 藤本一雄, 翠川三郎:日本全国を対象とした国土数 値情報に基づく地盤の平均S波速度分布の推定,日 本地震工学会論文集,Vol.3,No.3,pp.13-27,2003.
- 13) 若松加寿江,松岡昌志,久保純子,長谷川浩一,杉 浦正美:日本全国地形・地盤分類メッシュマップの 構築,土木学会論文集,No.759/I-67,pp.213-232,2004.
- 14) 松岡昌志,若松加寿江,藤本一雄,翠川三郎:日本
 全国地形・地盤分類メッシュマップを利用した地盤
 の平均 S 波速度分布の推定,土木学会論文集,
 No.794, I-72, pp.239-251, 2005.
- 15) 日本建築学会:建物と地盤の動的相互作用を考慮した応答解析と耐震設計,pp.442-444,2006.
- (社)日本道路協会:道路橋示方書・同解説V 耐震設計編,2012.
- 17) 建設省:建設省告示第 1461 号, 官報(平成 12 年 5 月 31 日), 2000.

(2013.9.19受付)

SIMPLIFIED CORRECTION TECHNIQUE OF NON-LINEAR SOIL CHARACTERISTICS FOR ESTIMATING STRONG GROUND MOTION IN WIDE AREA

Takaaki IKEDA, Kazuo KONAGAI, Katsuhiro KAMAE, Kojiro IRIKURA and Takashi KIYOTA

Empirical Green's function method doesn't consider a nonlinearity of the soil, so it is difficult to apply to the soft ground. We have already proposed the method that combines earthquake response analysis with empirical Green's function method. However, this method was not suitable for a wide area evaluation. We develop a simplified method using AVS30 and input motion level to estimate a response spectrum in consideration of a nonlinearity of the soil. By the verification analysis using the observation record, the simplified method was able to evaluate a response analysis at the same level as a detailed method.