長大橋の耐震性能向上策における せん断パネルダンパーの適用効果

杉岡弘一1·藤林美早2·杉山尚希3

¹正会員 阪神高速技研株式会社 技術部(〒550-0011 大阪市西区阿波座1-3-15) E-mail:koichi-sugioka@hanshin-tech.co.jp

²正会員 阪神高速道路株式会社 大阪管理部 (〒552-0006 大阪市港区石田3-1-25) E-mail: misa-fujibayashi@hanshin-exp.co.jp

³正会員 ㈱綜合技術コンサルタント大阪支社 (〒533-0033 大阪市東淀川区東中島3-5-9) E-mail:n-sugiyama@sogo-eng.co.jp

長大橋のレベル2地震動に対する耐震性能向上対策として、制震・免震設計法の適用が増加している. ここでは、せん断パネルダンパーに着目し、その適用効果を検証するため、1質点系簡易モデルを用いた 時刻歴応答解析を実施した.解析ケースの設定に際し、耐震性能向上対策としてせん断パネルダンパーを 適用した長大鋼アーチ橋の固有振動周期の違いに着目し、その違いを表現できる上部工重量、橋脚剛度・ 降伏耐力を考慮した.その結果、固有振動周期をはじめとする橋梁諸元によって、せん断パネルダンパー を設置する橋梁の地震応答低減効果が変化することを明らかにするとともに、せん断パネルダンパーの固 定支承側橋脚、可動支承側橋脚および両橋脚への配置が地震時水平力の分散効果に及ぼす影響を示してい る.

Key Words : Shear panel damper, Seismic retrofit, Dynamic analysis, Long span bridge

1. はじめに

兵庫県南部地震による道路橋の震災経験を踏まえ,巨 大地震に対する橋梁の安全性向上は必須となっており, 全国で橋梁の耐震補強が実施されてきている. 橋脚補 強,支承取替,落橋防止システムの設置など,既設一般 高架橋に対する耐震補強は既設長大橋より先行して進め られ,長大橋の耐震補強は遅れをとっていることも多い. 長大橋の耐震補強においては,一般高架橋の耐震補強に 適用される通常の耐力・じん性補強を用いた場合,補強 部材の大型化や重量増加による施工性の低下,あるいは 構造体の剛性や重量の増加による補強規模の増大などの 問題が生じる場合もある.

この様な中,道路橋の耐震補強法として,従来の耐 カ・じん性を向上させる方法でなく,ダンパーなど取換 え可能な制震デバイスを用いて積極的に損傷を制御する 制震・免震設計法¹⁾の適用が増加してきている.これ らの制震・免震設計法によれば,主構造の損傷の回避や 補強範囲の縮小,あるいは補強部材の小規模化などコス ト縮減効果が期待できる.阪神高速道路においても制震 デバイスとして履歴減衰型のせん断パネルダンパーの適 用を試み、従来の変位制限構造による補強案との比較設 計を通して、長大橋の構造的特性を考慮した最適な耐震 補強構造を提案している 2%.長大鋼アーチ橋では、橋 軸方向地震動に対して、塑性変形によるエネルギー吸収 により、水平変位の抑制と地震時応答値の低減を可能に する支承部せん断パネルダンパーを適用している.併せ て、固定支承側の上下部構造間にせん断パネルダンパー を設置する場合,常時およびレベル1地震時までは固 定支承として機能を維持し、これを超える水平力が作用 した場合に支承の固定機能を開放し制震デバイスに地震 力を伝達させるためのいわゆるノックオフ機能を有する 構造を提案している.長大鋼斜張橋では、橋軸直角方向 地震動に対して、主塔下部に配置された斜材の座屈防止 と応答値低減が期待できる複数の制震パネルで構成され たガセット部せん断パネルダンパーを設置している. こ れらの耐震補強については文献 7)にも示している.し かしながら、それぞれの耐震補強対策は個別橋梁ごとに 設計されることから、せん断パネルダンパーが適用可能 な橋梁諸元や、その適用効果が明確でない、せん断パネ

ルダンパーの適用にあたっては、対象橋梁の地震応答特 性を把握した上で、適用条件やその設置効果を明らかに しておく必要があると考えられる.

そこで、本研究では、まず、せん断パネルダンパーを 用いた耐震性能向上対策を実施した2つの長大鋼アーチ 橋について、それらの固有振動周期の違いに着目し、そ の違いを表現できる上部工重量、橋脚剛度・降伏耐力を 考慮した解析ケースを設定した上で、1質点系簡易モデ ルを用いた時刻歴応答解析を実施した.次に、せん断パ ネルダンパーの適用効果を応答値の比較から考察し、せ ん断パネルダンパーの適用効果が高い橋梁諸元を示した. 併せて、地震時水平力の分散効果について、せん断パネ ルダンパーを固定支承側、可動支承側および両橋脚に設 置した場合の応答値の比較を通して考察した.

2. 固有振動周期の違いに着目した解析

(1) 解析対象

対象とする橋梁は、例えば下路式の長大鋼アーチ橋を 想定している.ここでは、橋梁諸元について限定せず、 レベル2地震動に対する耐震性能向上対策として、せん 断パネルダンパーを適用した長大鋼アーチ橋^{4,6}を参考 にして、解析パラメータを設定した.比較対象とする橋 梁諸元を**表-1**に示す.

(2) 解析モデルと解析条件

解析では、図-1に示す1質点系解析モデルを用いて、 非線形時刻歴応答解析を実施した.上部構造の質量を橋 脚およびせん断パネルダンパーのバネが支持する構成と した.

解析ソフトはDYNA2E (Ver 8.0.0) を用い,数値積分

図-11質点系解析モデル

はニューマークのβ法で,積分時間間隔 0.002秒とした. 減衰定数は、0.02とした.

入力地震動は、道路橋示方書V耐震設計編[®]に示されるレベル2地震動のタイプIおよびタイプIIとした.ここでは、**表**-1に示すアーチ橋AとBの地盤種別が共にⅢ 種地盤であることから、Ⅲ種地盤における波形とした.

せん断パネルダンパー設置前の解析では、タイプ I お よびタイプ II の各 3 波形を用いたが、せん断パネルダン パー設置後の解析では、設置前の解析における最大応答 値を考慮し、各タイプから I - III-2および II - III-3の 2 波 を選定し、解析を実施した.

(3) 解析パラメータの設定

解析パラメータの設定に際し,表-1に示す長大鋼アー チ橋の固有振動周期の違いに着目し,その違いを表現で きる上部工重量,橋脚剛度・降伏耐力を考慮した上で解 析ケースを表-2に示すとおり設定した.

上部工重量は、表-1に示すアーチ橋AとBに加え、それらの平均重量程度の3つのパラメータを設定した.

橋脚剛度は、材料種別、断面剛性、橋脚高、基礎バ ネ等により変化するため、固有振動周期に着目して設定

表-1	せん断パネ	レダンパー	ーを適用し	~た長大鋼ア	ーチ橋の諸元
-----	-------	-------	-------	--------	--------

表-2 解析ケース名称と解析パラメータ

橋期剛度	降伏耐力	上部工重量(kN)				
(kN/m)	(kN)	45,000	49,500	54,400		
	28,000	CASE-A11	—	_		
36,000	21,000	CASE-A12	—			
	14,000	CASE-A13 —				
	55,000	—	CASE-B21	—		
180,000	40,000	—	CASE-B22	—		
	25,000	—	CASE-B23	—		
	55,000	—	—	CASE-C31		
960,000	40,000		_	CASE-C32		
	25,000	_	_	CASE-C33		

表-3各解析ケースの固有振動周期

解析ケース	固有周期(秒)
CASE-A11	
CASE-A12	2.24
CASE-A13	
CASE-B21	
CASE-B22	1.05
CASE-B23	
CASE-C31	
CASE-C32	0.48
CASE-C33	

した.設定に際しては,表-1に示すアーチ橋AとBの固 有振動周期を参考にして,3つのパラメータを設定した. 表-3に各解析ケースの固有振動周期を示す.

橋脚の降伏耐力は、適用設計基準や、経年劣化の状況 などにより異なるため、表-1に示すアーチ橋AとBの橋 脚の降伏耐力を中央値として、それぞれ前後の降伏耐力 を加えた3つのパラメータを設定した。

(4) せん断パネルダンパーの設定

せん断パネルダンパーの構造概要を図-2 に示す. せん断パネルダンパーは、大規模地震時に塑性せん断変形 するせん断パネルと、フランジ、補剛材およびベースプ レートで構成される. せん断パネルには、降伏強度のば らつきが小さく、塑性後の変形性能が高い低降伏点鋼 (材質 LY225)を用いており、塑性変形後の安定した履歴 減衰によって地震エネルギーの吸収を図っている.

せん断パネルダンパーの設定に際しては, せん断パネ ルダンパーの設置に伴うスペースや取付部の制約がない

図-2 せん断パネルダンパーの構造概要

ものとした.ただし、せん断パネルについては、板厚は t=45mm 以下とし、高さと幅は同じとした.せん断パネ ル本体の履歴曲線などの特性値については、既往の研究 成果ⁿを参考に決定した.せん断パネルの水平力H_D-水 平変位 δ_D 関係は、バイリニア型とした.せん断パネル 本体の要求性能についても同様に、既往の研究成果ⁿを 参考に決定した.各解析ケースにおいて、その要求性能 を確保した上で応答値低減効果の高いせん断パネルダン パーの構造諸元を**表-4**に示す.

(5) せん断パネルダンパー設置による応答低減効果

耐震性能向上対策におけるせん断パネルダンパーの適 用効果を検証するために,**表-2**に示す各解析ケースに ついて,せん断パネルダンパー設置前後における橋脚の 応答値を比較した.

表-5 ではタイプ II 地震動に対する橋脚の応答水平変 位 δ_{p} を,表-6 ではタイプ II 地震動に対する橋脚の応答 水平反力 Hを,それぞれ示す.

まず,橋脚の応答水平変位に着目すると,せん断パネ ルダンパー設置による応答値の低減幅にばらつきがある

表-4 せん断パネルダンパーの諸元一覧表

項		記号	単位	A11	A12	A13	B21	B22	B23	C31	C32	C33
パネル	幅	b _p	mm	850	750	600	850	850	700	850	850	700
	高さ	h _p	mm	850	750	600	850	850	700	850	850	700
	板厚	tp	mm	38	33	27	38	38	31	38	38	31
	材質			LY225								
フランジ	幅	b _f	mm	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	板厚	t f	mm	45	45	45	45	45	45	45	45	45
	材質			SM490Y								
設置基数		Ν	基	4	4	4	8	6	6	8	6	6

解析ケース	①設置前 (m)	②設置後 (m)	(1)-(2) (m)	2/1
CASE-A11	1.048	0.936	0.112	0.89
CASE-A12	1.062	0.947	0.115	0.89
CASE-A13	0.802	0.755	0.047	0.94
CASE-B21	0.500	0.404	0.096	0.81
CASE-B22	0.471	0.435	0.036	0.92
CASE-B23	0.472	0.441	0.031	0.93
CASE-C31	0.088	0.051	0.037	0.58
CASE-C32	0.105	0.048	0.057	0.46
CASE-C33	0.139	0.091	0.048	0.65

表-6橋脚の応答水平反力 H (タイプⅡ)

解析ケース	 ①設置前 ②設置後 (kN) (kN) 		①-② (kN)	2/1
CASE-A11	28,650	28,380	270	0.99
CASE-A12	22,160	21,880	280	0.99
CASE-A13	15,000	14,880	120	0.99
CASE-B21	57,350	56,190	1,160	0.98
CASE-B22	43,000	42,570	430	0.99
CASE-B23	29,020	28,640	380	0.99
CASE-C31	56,960	48,580	8,380	0.85
CASE-C32	44,040	40,390	3,650	0.92
CASE-C33	32, 280	29,170	3,110	0.90

ものの、すべての解析ケースにおいて応答水平変位が低減していた. 表-5のせん断パネルダンパー設置前後の比率(2)/①)に着目すると、固有振動周期が短い解析ケースCASE-C31~C33で大きく低減している.ただし、これは橋脚の剛性や耐力が大きく、設置前の応答水平変位が小さい場合であり、低減量(①-2)はわずかであった.一方、橋脚の応答水平変位の低減量が大きかったのは、固有振動周期が長い解析ケースCASE-A11~A13であり、最大の応答水平変位低減量は115mmであった.

次に,表-6に示す橋脚の応答水平反力に着目すると, 固有振動周期が長い解析ケースCASE-A11~A13では,応 答水平反力Hの低減量は小さいが,固有振動周期が短い 解析ケースCASE-C31~C33では,最大の応答水平反力低 減量が8,400kN程度と大きくなった.

なお、タイプ I 地震動に対して、せん断パネルダンパー設置前後における橋脚の応答値を比較すると、タイプ Ⅱ地震動に対する比較と同様の結果が得られた.

それぞれの長大橋では、支間長、上部構造質量、下部 構造剛性、およびその高さなど構造諸元が異なるが、橋 梁構造に関する諸元の違いはいずれも固有振動周期に影 響すると考えられる.得られた結果について、固有振動 周期の違いに着目し、せん断パネルダンパー設置前後に おける橋脚の応答値を比較したものを、図-3および図-4

ダンパーの設置効果(CASE-C31)

に示す. なお, 図中のSPDは, せん断パネルダンパーで ある. 図-3に示す固有振動周期の長い橋梁は, 固有振動 周期の短い橋梁と比較して, 応答水平変位の低減量が大 きかった. 一方, 図-4に示すとおり, 応答水平反力の低 減量は, 固有振動周期の長い橋梁と比較して, 固有振動 周期の短い橋梁が大きいと考えられる.

3. 地震時水平力の分散効果に着目した解析

(1) 解析モデルと解析条件

せん断パネルダンパーの適用に伴う地震時水平力の分 散効果を検証するため、図-5に示す1質点系解析モデル を用いて、時刻歴応答解析を実施した.

解析モデルとして,固有振動周期の長い橋梁と,短い 橋梁の2つの橋梁を設定した.固定支承側橋脚および可 動支承側橋脚の解析モデルは,固有振動周期の長い橋梁 ではそれぞれ解析ケースCASE-A12およびCASE-A13を,固

表-7解析ケース

Í	解析ケース	固定橋脚	可動橋脚	
ケース1	現況	F	М	
ケース2	固定橋脚SPD設置	SPD	М	
ケース3	可動橋脚SPD設置	F	SPD	
ケース4	両橋脚SPD設置	SPD	SPD	

固定橋脚:固定支承側橋脚,可動橋脚:可動支承側橋脚 F:固定支承,M:可動支承,SPD:せん断パネルダンパー

有振動周期の短い橋梁ではそれぞれ解析ケースCASE-C32 およびCASE-C33を用いた.

また,せん断パネルダンパーを設置する橋脚として, 固定支承側橋脚のみに設置した場合,可動支承側橋脚の みに設置した場合,両橋脚に設置した場合の3つのケー スとしてモデル化した.解析ケースを表-7に示す.なお, 固定支承側橋脚にせん断パネルダンパーを設置する解析 ケース2およびケース4では,固定支承の可動化ととも に,常時およびレベル1 地震時までは固定支承として機 能を維持し,これを超える水平力が作用した場合に支承 の固定機能を開放しせん断パネルダンパーに地震力を伝 達させるためのいわゆるノックオフ機能を有する構造部 位の設置を想定した.

その他の解析条件は、前章と同様とした.

(2) せん断パネルダンパー設置による分散効果

固有振動周期の長い橋梁および短い橋梁の分散効果を それぞれ図-6および図-7に示す.各図において,橋脚お よびせん断パネルダンパーの荷重一変位曲線上に,各解 析ケースの最大応答値をそれぞれプロットしている.図 中の固定橋脚,可動橋脚,SPDは,それぞれ固定支承側 橋脚,可動支承側橋脚,せん断パネルダンパーを示して いる.せん断パネルダンパーの設置により,固定支承側 橋脚から可動支承側橋脚に地震時水平力を分散させてい るのは,表-7に示す解析ケース3とケース4である.

固有振動周期の長い橋梁を示す図-6において,可動支 承側橋脚にせん断パネルダンパーを設置したケース3と 現況のケース1との比較では,固定支承側橋脚の応答水

図-6 固有振動周期の長い橋梁の分散効果

平変位低減量は330mと大きく、分散効果が明確であっ た.両橋脚にせん断パネルダンパーを設置したケース4 では、橋脚の応答水平変位がさらに低減した.このこと から、固有振動周期の長い橋梁にせん断パネルダンパー を設置する場合は、分散効果を期待して、まず、可動支 承側橋脚にせん断パネルダンパーを設置することが有効 と考えられる.そして、さらなる地震エネルギーの吸収 による応答値の低減が必要な場合には、固定支承側橋脚 にもせん断パネルダンパーを設置する必要がある.ただ し、可動支承側橋脚にせん断パネルダンパーを設置する 際には、分散効果による応答水平反力の増加を考慮して、 可動支承側橋脚の耐力照査を実施する必要がある。一方、 応答水平反力の低減については、2つのケースとも固定 支承側橋脚が塑性化していることから、低減量は小さか った.

固有振動周期の短い橋梁を示す図-7においては、解析 ケース3とケース1を比較すると、固定支承側橋脚の応答 水平反力が大きく低減し、分散効果が明確であった.両 橋脚にせん断パネルダンパーを設置したケース4では、 橋脚の応答水平反力がさらに低減した.この解析例では、 固定支承側橋脚の塑性化を防止することができた.この ことから、固有振動周期の短い橋梁にせん断パネルダン パーを設置する場合も、固有振動周期の長い橋梁と同様 に、まず、可動支承側橋脚にせん断パネルダンパーを設 置すべきであり、さらなる応答値の低減には、固定支承 側橋脚にもせん断パネルダンパーを設置することが有効 と考えられる.一方、応答水平変位の低減については、 解析ケース3とケース1の比較では、低減量は64mmと小さ かった.

固有振動周期の長い橋梁および短い橋梁のいずれのケ ースにおいても、せん断パネルダンパーを可動支承側橋 脚に設置した場合の分散効果による応答値の低減効果が 有効であると考えられる.

4. まとめ

長大橋の耐震性能向上対策におけるせん断パネルダン パーの適用効果を確認するため、1質点系簡易モデルを 用いた時刻歴応答解析を実施した.解析ケースの設定に 際し、レベル2地震動に対する耐震性能向上対策として せん断パネルダンパーを適用した長大鋼アーチ橋の固有 振動周期の違いに着目し、その違いを表現できる上部工 重量、橋脚剛度・降伏耐力を考慮した.得られた主な知 見を以下にまとめる

- (1) せん断パネルダンパーの適用による応答値の低減効 果を確認した.しかし、その低減量は各解析ケース でばらつきがあり、橋脚の剛度や降伏耐力が小さく 固有振動周期が長い解析ケースと、橋脚の剛度や耐 力が大きく固有振動周期が短い解析ケースとでは明 確な違いを確認した.すなわち、固有振動周期が2 秒を超える長周期の解析ケースでは、応答水平変位 の低減量が大きく、既設の伸縮装置や支承の取替が 不要となったり、隣接桁との衝突を回避できるなど の効果が得られると考えられる.一方、固有振動周 期が0.5秒程度の短周期の解析ケースでは、応答水 平反力の低減量が大きく、地震時水平反力の低減・ 制御による補強規模の縮小が期待できることが分か った.
- (2) 固有振動周期の長い橋梁および短い橋梁について、 せん断パネルダンパーをそれぞれ固定支承側橋脚の みに設置した場合、可動支承側橋脚のみに設置した 場合、両橋脚に設置した場合の応答値を比較した. その結果、いずれのケースにおいても、せん断パネ

ルダンパーを可動支承側橋脚に設置した場合の分散 効果による応答値の低減効果が有効であることを確 認した.このことから,まず,可動支承側橋脚にせ ん断パネルダンパーを設置すべきであり,さらなる 応答値の低減が必要な場合には,固定支承側橋脚に もせん断パネルダンパーを設置することが有効と考 えられる.可動支承側橋脚のみに,せん断パネルダ ンパーを適用する場合は,固定支承側橋脚にせん断 パネルダンパーを設置する場合に必要となる既設固 定支承の取替えやノックオフ構造の適用などが必要 なくなるため,耐震性能向上対策におけるコスト縮 減が期待できる.

なお、本稿に示した内容は、限られた解析諸条件と数 値により実施した解析から得られた結果であり、一般性 を有するものとするには、さらに多くの研究が必要であ る. 今後、本研究で設定した解析パラメータについて、 それらの設定数を増やし、さらに、入力地震動や地盤種 別の違いによる影響などの知見を得たいと考えている.

謝辞:本稿のとりまとめに際し, (㈱綜合技術コンサルタント 明田修氏, 小林康晃氏に貴重なご意見をいただいた. ここに記して謝意を表します.

参考文献

- 1) 土木学会:鋼・合成構造標準示方書IV 耐震設計編, 2008.2.
- Koichi Sugioka, Hiroshi Kobayashi, Nobuhiro Mashima: Seismic Retrofit of the Cable-Stayed 640m Span Tempoan Bridge with Absorbing Devices, 5th World Conference on Structural Control and Monitoring, Tokyo, Japan, 2010.7.
- 3) 杉岡弘一, 濱田信彦, 小林 寛, 西岡 勉, 杉山尚希:長大 橋用せん断パネルダンパーの弾塑性特性に関する実験的研 究,構造工学論文集, Vol.57A, pp.528-541, 2011.3.
- 4) 杉岡弘一,間嶋信博,松下裕明,姫野岳彦,松村政秀:ス リット型ノックオフ支承を用いた既設アーチ橋の耐震補強, 構造工学論文集,Vol.57A, pp.467-478, 2011.3.
- 5) 杉岡弘一,島 賢治,松下裕明:不整形地盤における鋼斜 張橋の耐震性能向上対策,構造工学論文集, Vol.58A, pp.413-422, 2012.3.
- 6) 杉岡弘一,島 賢治,松下裕明:長大鋼アーチ橋の耐震補 強におけるせん断パネルダンパーの適用効果,土木学会論 文集 A1 (構造・地震工学) Vol.68, No. 4, pp.I_748-I_759, 2012.
- 阪神高速道路(株)技術部:長大橋における免震・制震デバイスの適用ガイドライン(案),20094.
- 8) 日本道路協会:道路橋示方書・同解説V耐震設計編,丸善, 2002.3.

APPLICATION EFFECT OF SHEAR PANEL DAMPERS TO SEISMIC RETROFIT OF LONG SPAN BRIDGES

Koichi SUGIOKA, Misa FUJIBAYASHI, Naoki SUGIYAMA

Seismic response-control devices such as the shear panel dampers have been increasingly applied for seismic retrofit of long span bridges. In this article, non-linear dynamic time history analyses were carried in order to examine the correlation between bridge natural period and seismic response reductions. As a result, it is found that the seismic response reduction might be significantly different according to natural periods of bridges. The distribution effect of horizontal seismic forces was also confirmed by the shear panel damper arrangements.