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Gravity anomaly is one of efficient methods to evaluate underground structure, which is essential for estimation of
ground motion due to earthquakes. Data observation is, however, costly since it requires expensive devices. In order
to overcome this problem, Morikawa et al. have been working to develop a mobile gravimeter that uses force-balance
(FB) accelerometer. In comparison to the conventional spring type gravimeters, it is less costly, compact and can be
carried by relatively small carriers. However, it raised problems that the observed data are severely contaminated by
various kinds of disturbances such as engine vibration and carrier motion. Therefore an appropriate data processing
method for extracting gravity anomaly signal from such observed data is required.

For that purpose, we propose to use the statistical independence property of gravity anomaly and other noisy data.
The gravity anomaly and other noises are generated from different sources and it can be safely assumed that they are
independent.

As a scheme of considering independence of signals, blind source separation techniques are used. Second Order
Blind Identification method (SOBI) separates the target sources by assuming that source and noises are un-correlated
at various time-lags. Similarly, Independent Component Analysis (ICA) separates the sources by maximizing the inde-
pendence of linearly transformed observed signals. An ICA algorithm namely ThinICA is proposed that implements
the maximization of independence among source signals at various time-lags and thus incorporates the advantages of
both SOBI and ICA.

The proposed method is applied to the data observed at Toyama Bay, Japan. It is observed that the motion of carrier
(ship) influences the performance of de-noising algorithm. Under certain favorable data acquisition environment, the
proposed method was able to salvage the gravity anomaly data from the noise-contaminated data with the accuracy
sufficient for the purpose of identification of gravity anomaly distribution.

Key Words : Gravity Anomaly, Force-Balanced Accelerometer, Statistical Independence, Blind Source Separa-
tion, Independent Component Analysis.

1. INTRODUCTION

The information of local subsurface structure is essen-

tial for the evaluation of seismic ground motion6). For

the survey of subsurface rock structure, gravity method has

been one of the useful methods8). For the purpose of im-

provement of usability and applicability of gravity method,

Morikawa et al. have been working to develop a gravity

observation system using force-balance (FB) accelerome-

ter. It makes the system compact and implements high mo-

bility, because it can be carried by relatively small carriers.

However, it raised problems that the observed data are

severely contaminated by various kinds of disturbances in

a small size carrier like engine vibration, carrier acceler-

ation and carrier tilting in addition to conventional noises

such as sensor drifts, electrical noise etc. This happens as

a result of the high sensitivity of FB sensor and its vulnera-

bility to the high frequency noises. The frequency range of

these noises is wide and their amplitudes can be 100,000

times larger than the gravity anomaly signal. Therefore an

appropriate data processing method for extracting the grav-

ity anomaly signal from such observed data is required.

For that purpose, we propose to use statistical indepen-

dence property of gravity anomaly data and other noisy

data components. Since the gravity anomaly and the other

noises are generated by different physical processes it is
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not unsafe to assume that they are statistically independent.

The Blind source separation (BSS) techniques are

known for data separation considering statistical inde-

pendence of signals. An advanced ThinICA algorithm

is proposed that combines the merits of powerful SOBI

method and ICA principles. ThinICA separates the sources

by maximizing independence of linearly transformed ob-

served data at several time-lags. It uses a peculiar contrast

function (refer section 6) to measure the independence of

signals.

The proposed method is applied to the real data observed

at Toyama bay, Japan. Low pass filtering is employed as

a pre-processing to ThinICA in order to filter out the high

frequency components in the observed data. The reference

data is generated for the same place with the help of grav-

ity map provided by National Institute of Advanced Indus-

trial Science and Technology (AIST), Japan. This refer-

ence data is used for checking the performance of proposed

scheme by comparing it with the signal separated by pro-

posed method.

This paper is organized as follows. Section 1 gives the

brief introduction to the paper. The gravity anomaly, de-

velopment of prototype mobile gravimeter and incurring

problems of severe noise contamination followed by con-

ventional data processing method are explained in section

2. The Statistical Independence and the Blind Source Sep-

aration (BSS) technique are defined in sections 3 and 4.

SOBI and ICA are described in section 5 and section 6, re-

spectively. Section 7 presents the description of proposed

ThinICA algorithm. Section 8 presents the observed data

obtained by using the prototype gravimeter. The applica-

tion of proposed ThinICA method for gravity anomaly data

separation and the results are presented in section 9. Sec-

tion 10 concludes the paper.

2. GRAVITY ANOMALY

(1) Introduction

The acceleration due to gravity ’g’ varies by a subtle

amount with the lateral variation in density of rocks. This

is known as Gravity anomaly. This concept is represented

in the schematic diagram (Fig. 1)8) If the layers 1,2,3,4

with increasing density values lay flat uniform laterally,

there will be no gravity anomaly and the ’g’ value is con-

stant. However, if the density contrast occurs laterally as

a result of structural uplift as seen in the central portion

of the figure, gravity anomaly is observed. Thus, the den-

sity of the various components of the geologic column and

Figure 1 Density layers, Density contrasts and Gravity anomaly
8)

the resulting density contrasts among the rocks produced

by structures developed in these rocks are related to grav-

ity anomalies. Utilizing this relation, the structure of sub-

surface rocks can be estimated and sub-surface modeling

can be done1). In fact, there are several factors that are

responsible for Gravity anomaly such as Eötvös effect, lat-

itude, altitude, Bouguer’s effect, terrain effect etc. Ëotvös

effect is most significant and that occurs due to carrier mo-

tion and the rotation of earth. In order to map the gravity

anomaly due to variation in rock density in a spatial plan,

the data should be corrected for the factors that are sig-

nificant. Resultant gravity anomaly data after necessary

corrections can be correlated to the variation in densities

of subsurface rock strata8).

(2) Mobility of Gravity method

Conventionally, spring-type gravimeters have been used

for gravity anomaly data observation. These gravimeters

can provide accurate data with resolution of about 1 mi-

croGals. They are not sensitive to high-frequency distur-

bances and observed data is not distorted severely. How-

ever, they are expensive, difficult to handle, require large

carriers and consume long time for data observation. Since

they require large carriers, the data observation at shal-

low sea area may not be possible. In order to solve these

problems and improve the mobility of gravity method,

Morikawa et al. have been working to develop a compact,

less expensive gravimeter that can be carried in a small car-

rier. The data observations are carried out by using the pro-

totype mobile gravimeter and its performance is presented

in this paper.
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(3) Severe Contamination of Data

The prototype mobile gravimeter consists of FB sensor.

Unlike spring-type gravimeter, FB sensor is highly sensi-

tive to high frequency noises. As a result, the observed

gravity anomaly data is added with the unwanted acceler-

ation components that incur due to engine vibration and

ship tilting. The sensor drift and electrical noise also add

up to the data. The frequency ranges of noise are wide and

their amplitudes are upto 100,000 times larger than gravity

anomaly. An appropriate data processing methodology is

needed in order to obtain gravity anomaly data from such

observed data.

(4) Conventional Low pass filtering (LPF)

The noise contamination in the observed data obtained

by conventional spring-type gravimeter was not severe.

Low pass filtering (LPF) was often enough to remove the

noises. Normally, the gravity anomaly data is expected

to have low frequency and LPF filters out high frequency

components. But it may impose the risk of loss of some

useful data in unusual conditions. Moreover, LPF is un-

able to distinguish the unwanted data at lower frequencies.

Since the data observed by prototype gravimeter consists

of noises with wide frequency range, LPF alone is not

enough and further improvement in the methodology is ex-

pected.

The simple Finite Impulse Response Low Pass Gaus-

sian Filter (FIR LPGF or LPF) algorithm is presented as

follows. Let us consider a time seriesy(t) in which LPF is

applied andyf is the signal after filtering. Assuming a cut-

off periodtc, time interval of data∆t and gaussian function

f used for distribution of smoothing weights with standard

deviationσ,

σ = tc/(2∆t)

f =
1
K

e
−x2

2σ2 (1)

whereK is a constant that normalizes sum of weights into

1, range ofx can be chosen according to the need (such as

−3σ to +3σ), n is the number of time intervals ofy(t).

3. STATISTICAL INDEPENDENCE

Two random variablesy1 andy2 are said to be uncorre-

lated if their covariance is zero:

E{y1y2} − E{y1}E{y2} = 0 (2)

The concept of independence is stronger than uncorre-

latedness. Ify1 andy2 are two scalar-valued random vari-

ables, they are said to be independent if information on

the value ofy1 does not give any information on the value

of y2, and vice versa. The joint probability density func-

tion (pdf) ofy1 andy2, p(y1, y2), is given by the product of

marginal pdfp1(y1) andp2(y2) as

p(y1, y2) = p1(y1)p2(y2) (3)

If f1(y1) and f2(y2) are two functions of two independent

random variablesy1 andy2 respectively, we have

E{ f1(y1) f2(y2)} = E{ f1(y1)}E{ f2(y2)} (4)

where E{...} denotes the expected value.

If the variables are independent,E{y1y2} = E{y1}E{y2}
and they are always uncorrelated. However, the opposite is

not always true as uncorrelatedness does not always imply

independence.

4. BLIND SOURCE SEPARATION

Blind Source Separation (BSS) is a powerful tool that

separates the sets of source signals blindly from the avail-

able mixed sets of signals with the help of no or very little

information about the source signals and the mixing pa-

rameters. Let us imagine the sets of observed dataxi(t)

with the help ofn sensors wheret is the time index. Let us

denote these source signals bysj(t). Assuming the source

signals are linearly mixed, the observed data can be ex-

pressed as:

xi(t) =
∑

ai j sj(t) (5)

whereai j with i, j = 1, ..., n are some unknown parameters

that depend on the medium between the source of data and

the sensor,i being the number of sensorsn and j being the

number of source datan (i = j is not true always). Here,

only xi are known and both the matrixai j and sourcesj are

unknowns. This is the BSS problem and it does not have

unique solution.

Assuming that mixing matrixai j is invertible, there ex-

ists a de-mixing matrixwi j such that the sourcessi are sep-

arated as

sj(t) =
∑

wi j x j(t) (6)

For the separation, the mixing parameterswi j are arbitrar-

ily chosen. The mixed set of signals are linearly combined

with these arbitrary mixing parameters. There are certain

measures of statistical independence that are used to mea-

sure these transformed mixed signalswi j x j . Then the mea-

sures of independence are maximized to make them mutu-

ally independent. Once their mutual independence is max-

imized, they are expected to be close to the source signals

si .
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5. SECOND ORDER BLIND IDENTIFI-
CATION (SOBI)

SOBI is an advanced blind source separation technique

that exploits the time coherence of the source signals2).

It assumes that the random variables (or true source and

noises in the context of this paper) are not correlated at

all the time-lags with each other. This approach relies on

stationary second-order statistics that are based on joint di-

agonalization of a set of covariance matrices that is based

upon eigen-decompositon2).

The data model isx = As + n, which is similar to

ICA model explained in section 5 and that fits to many sit-

uations of practical interest. Here,x is the observed data

vector,A being the mixing matrix,s being the source vec-

tor andn being the noise vector.

Firstly, the whitening of observed data vectorx is done

into whitened data vectorz. This means the observed data

are converted into signals that are uncorrelated with each

other and have unit variances each. Thus the co-variance

matrix of whitened data vectorz is an identity matrix.

Then the further sample co-variance matrices are com-

puted for a certain set of time lags between the whitened

data i.e.,z(t + τ) andz(t). for this whitened data vectorz.

Then, these co-variance matrices are jointly diagonalized.

This means all the sets of matrices are converted into iden-

tity matrices jointly. The diagonalizer matrix is combined

with whitening matrix to determine the mixing matrixA

and finally the source data vector is estimated by inversion.

6. INDEPENDENT COMPONENT ANAL-
YSIS (ICA)

Independent Component Analysis (ICA) is a statisti-

cal and computational BSS technique for separating latent

source data from its mixture with other signals. It was

first introduced in 1980s in the context of neural network

modeling7). Some highly successful new algorithms were

introduced in mid-1990s. It has wide applications in the

fields like biomedical signal processing, audio signal sep-

aration, telecommunication, financial time series analysis,

etc. The features of ICA and its principle for the separa-

tion of sources are explained in the following based on the

references7).

(1) ICA Model

The random variablesxi(t) with i = 1, ..., n are observed

which are modeled as linear combination ofn random vari-

ablessi(t):

xi =
∑

ai j sj (7)

It is also represented in a matrix form as

x = As (8)

(2) Assumptions in ICA

In ICA, it is assumed that

1. The independent components are assumed statisti-

cally independent.

2. The independent components must have non-gaussian

distributions. Since the higher order cumulants are

zero for Gaussian distributions, ICA is impossible if

the observed variables have gaussian distributions.

3. The unknown mixing matrix is assumed to be square.

This simplifies the ICA estimation. By estimating

the mixing matrixA, its inverse matrixW can be es-

timated and the independent components are easily

computed as

s = A−1x =Wx (9)

It is also assumed that mixing matrix is invertible.

(3) Ambiguities of ICA

ICA has some ambiguity property.

The amplitude of the independent components cannot

be determined. Since boths andA of ICA model in equa-

tion (10) are unknown, the infinite number of solutions for

s andA are possible that give the same productx. Any

scalar multiplier in one of the sourcessi could be canceled

by dividing the corresponding columnai of A by the same

scalarαi as shown in

x =
∑

i

(
1
αi

ai)(siαi) (10)

This problem is fixed by normalizing the independent com-

ponents into unit variance, i.e.,E{s2
i } = 1. This still leaves

the ambiguity of the sign, so it might often be necessary to

multiply the independent components with−1, which does

not affect the model.

It is also ICA’s ambiguity that the order of the indepen-

dent components cannot be determined.

(4) Non-gaussian is independent

The central limit theorem states that under certain con-

ditions, the distribution of a sum of independent random

variables tends towards a Gaussian distribution. Thus the

sum of two independent random variables usually has a

distribution that is closer to gaussian than any of the two

original random variables. Conversely, if such data close to
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gaussian are demixed by maximizing the non-gaussianity

we tend to obtain the independent data.

Let us assume that the data vectorx is a mixture of in-

dependent components as shown in equation (8). Accord-

ing to equation (9) the source independent components are

again the linear mixture of{xi}. Let us denote the esti-

mated signal vector asy =Wx whereW is a de-mixing

matrix to be determined. IfW is equal to inverse ofA,

y would be equal tos. Following the principle of cen-

tral limit theorem, we considerW a matrix of vectors that

maximizes the non-gaussianity ofWx in order to deter-

miney as close tos.

(5) Measures of non-gaussianity

In order to maximize the non-gaussianity, we need a

quantitative measure of non-gaussianity of a random vari-

able. For simplification, it is often assumed that the signals

have zero mean and unit variance. We do not lose general-

ity and we follow the same assumptions in our approach.

Among various measure of non-gaussianity, one of clas-

sical measure is kurtosis or the fourth-order cumulant.

Kurtosis of a signaly is defined as

Kurt(y) = E{y4} − 3(E{y2})2 (11)

Sincey has unit variance, the relation simplifies to

Kurt(y) = E{y4} − 3 (12)

The kurtosis is zero for a gaussian random variable. For

most nongaussian random variables, kurtosis is nonzero.

Random variables with negative kurtosis are called sub-

gaussian, and those with positive kurtosis are called super-

gaussian. However, nongaussianity is typically measured

by the absolute value of kurtosis.

(6) Preprocessing for ICA

It is useful to conduct preprocessing, before applying an

ICA algorithm on the observed data. Centering, whitening

and filtering are the basic preprocessing techniques.

a) Centering

Centering refers to centering the observed vectorx by

subtracting it with its mean vectorm = E{x}, in order to

makex a vector with zero mean variables.

b) Whitening

Whitening refers to the transformation of the observed

vectorx linearly to make it white vector ˜x. A white vector

has its components uncorrelated and their variances equal

to unity. Naturally the covariance matrix of ˜x is an identity

matrix:

E{x̃x̃T} = I (13)

Whitening can be done by using the eigen-value decom-

position (EVD) of the covariance matrix

E{x̃x̃T} = ODOT

where O is the orthogonal matrix of eigenvectors of

E{x̃x̃T} andD is the diagonal matrix of its eigenvalues,

D = diag(d1, ..., dn). It is done as

x̃ = OD−
1
2OTx (14)

Where the matrixD−
1
2 = diag(d

− 1
2

1 , ..., d
− 1

2
n ) and now

E{x̃x̃T} = I. Whitening transforms the mixing matrix into

a new one,Ã. From equations (8) and (14)

x̃ = OD−
1
2OTAs = Ãs (15)

Whitening makes the new mixing matrix̃A an orthogonal:

E{x̃x̃T} = ÃE{s̃s̃T}ÃT = ÃÃT = I (16)

Whitening reduces the mixing matrix into orthogonal

and thus eliminates the number of parameters to be iden-

tified from n2 in case of original mixing matrixA to

n(n− 1)/2 in case of orthogonal matrix̃A.

c) Filtering

When we are certain that the observed data consists of

unwanted data at certain range of frequencies it might be

useful to filter out them before processing by ICA. The

time filtering of observed data vectorx is done by multi-

plying it by a filtering matrixF as

x∗ = xF = AsF = As∗ (17)

which shows that ICA model still remains valid, with the

same mixing matrix after applying a filter.

7. THIN INDEPENDENT COMPONENT
ANALYSIS (ThinICA)

The contents in this section are referred to5). ThinICA

is one of the several algorithms used in ICA. It uses a

multivariate contrast function for the blind signal extrac-

tion of a selected number of independent components from

their linear mixture. All the independent components can

also be separated if needed. It combines the robustness

of the joint approximate diagonalization techniques (such

as SOBI) with the flexibility of the methods for blind sig-

nal extraction5). By maximizing the contrast function it

gives two options: a) Hierarchical extraction based upon

thinQR factorizations or b) Simultaneous extraction based

upon thin Singular Value Decomposition (SVD) factoriza-

tions5).

The signal model is identical to the general ICA model.

The basic principle of source estimation is similar to the

general principle of ICA described in previous Section 6..
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The algorithm can be summarized as follows. The ob-

served datax are first whitened by pre-whitening system

M . An arbitrary unitary matrix is chosen for initialization.

The square matrices are formed using the contrast function.

These matrices are diagonalized either by hierarchical or

simultaneous approaches to determine new unitary matrix.

Unitary matrix is updated that multiplies to whitened data

to give the estimates sourcesy as shown below,

y(t) = Uz(t) = UW x(t) = UWAs(t) (18)

The difference in ThinICA is the measure of independence.

It estimates the independent components by jointly maxi-

mizing a weighted square sum of cumulants of fixed order

q ≥ 2, determined by positive constantst1, ..., tq. In other

words, the independence of signals measured by the con-

trast function are maximized at several time-lags defined.

The contrast function is given as5)

ψΩ(y) =
∑
τϵΩ

ωτ | Cum(y(t1), ..., y(tq)) |2

subject to∥U∥2 = 1 (19)

whereωτ are positive weighting terms andU is an uni-

tary matrix with vectors of unit 2-norm. The sources are

estimated by either hierarchically maximizing or simulta-

neously maximizing the contrast function. For simplifying

the optimization of contrast function in equation (18), al-

ternative similar contrast functions are utilized. Refer to
5).

When the number of independent components to be ex-

tracted are equal to the number of sources andq = 2, it

is equivalent to SOBI, based on the joint approximate di-

agonalization (JADE) of a certain set of cumulant slices.

However, implementation is different. In other cases, it is

superior to other algorithms since it offers both the extrac-

tion of selected number of components or separation of all

the components. The ThinICA algorithms maximize the

contrast function by combining simultaneously the several

advantages of powerful techniques like Fast-ICA, JADE

and SOBI.

8. DATA OBSERVATION

The gravity data survey was conducted at Toyama Bay,

Japan on Oct 31, 2011. The prototype gravimeter set-up

was mounted on a mid-size ship. The time history of the

gravity data was recorded along a certain length of sur-

vey. The gravimeters were synchronized with precise GPS

to have the spatial control of the recorded data and know

the average speed of motion. The data acquisition envi-

ronment was not stable throughout the survey. The ship

Table 1 Features of Prototype EZ-GRAV

Description EZ-GRAV

Sensor for gravimeter VSE

Accelerometer (Titan) 2 Horizontal and 1 vertical

components

Gradiometer 2 Horizontal components

Recording interval 0.01 sec

Input Voltage Range ± 10 V

Table 2 Basic specification of accelerometer VSE

Description VSE-156SG

Observable dynamic range ± 50 Gal

Maximum Output Level ±10 V

Sensor Resolution (Accuracy) 2∼10× 10−6 Gal

speed and ship tilting frequency were changing from time

to time. The latter incurred because of some inevitable cir-

cumstances like sea waves or varying wind speeds. The

direction of ship was changing frequently near the bay.

This section presents the description of prototype

gravimeter setup and its basic specifications, observed data

by the sensors and the reference data generated by using

gravity map provided by AIST (National Institute of Ad-

vanced Industrial Science and Technology).

(1) Prototype Gravimeter (EZ-GRAV)

EZ-GRAV uses VSE-156SG (hereafter VSE) by Tokyo

Sokushin Company Limited as its sensor. It includes a

gradiometer and an accelerometer. The observed data is

recorded in digital format with 24 bit and 0.01 second in-

terval. All the sensors are fixed on an aluminium thick

plate and set inside a constant temperature reservoir, be-

cause the devices are sensitive to temperature and its fluc-

tuation is much larger than the variation of gravity. The

temperature is controlled within±1◦C. The features of pro-

totype EZ-GRAV are listed in Table (1) and the picture of

set-up can be seen in Figure (2).

(2) VSE (Analog Servo)

The basic specification of VSE is listed in Table (1).

Owing to its high resolution, the VSE data is supposed to

be the major data set amongst all the other data. The time

series of recorded data can be observed in Figure (3) below.

The data recording was started on 12:27:00. The sampling

time was 0.01 second.
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Figure 2 Prototype gravimeter setup (EZ-GRAV: Analog Servo,
Accelerometer Titan).

Figure 3 Observed time series gravity data (Gals) by Analog
Servo (VSE) starting at time 12:27:00.

(3) Accelerometer Titan

Figure 4 Observed time series gravity data (gals) by Ac-
celerometer Titan (Taurus: vertical component), start-
ing at time 12:53:06.

The accelerometer Titan namely Taurus consists of three

sensors that are oriented at three different directions, i.e.,

North-South (NS component), East-West (EW component)

and Up-down (vertical or UD component). These com-

ponents constitute the component of gravity anomaly data

Figure 5 Reference data (Ëotvös effect+ Free air anomaly) ob-
tained by using Gravity map produced by AIST, Japan,
starting time: 12:17:00.

combined with components of carrier accelerations.

The accelerometer Taurus has observable range of±4×
g = 4 × 980gals. It has very high observable dynamic

range but they do not offer as high resolution as given by

VSE. However, we require multiple sets of data for data

processing by Blind Signal Separation techniques, and the

data observed by this sensor is used as supplementary data

to VSE. The vertical (Z) component of Taurus is shown in

figure (4).

(4) Reference Data from Gravity map

The reference data is obtained by considering the Eötvös

effect due to the ship movement and the free air anomaly.

The free air anomaly is obtained from the gravity map pre-

pared by AIST, Japan by using a shipboard gravity survey.

They used accurate shipborne gravimeter in a much more

stable environment using a large ship. This gravimeter was

not sensitive to high frequency noise and reads only low

frequency gravity data. Besides the accuracy of gravime-

ter, the survey was performed along the lines making a

grid, and so the multiple data at points of intersection were

averaged. Thus, the reference data is supposed to be accu-

rate and reliable. And, the Eötvös effect is calculated from

the position of the ship obtained by synchronized GPS. The

reference data can be observed in the figure (5).

9. NOISE REDUCTION AND SEPARA-
TION: APPLICATION OF ThinICA
AND RESULTS

It is required to have at least two sets of observed data

for processing by ICA. Multiple sets of observed data are

input to BSS algorithms including proposed ThinICA and

the results are compared. ICALAB toolbox4) in MATLAB

is used for implementing these algorithms3).
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(1) LPF as pre-processing

The presence of high frequency noise is seen to be unfa-

vorable for the separation of data by using either SOBI or

ThinICA. The application of LPF to the observed data is

done as a pre-processing to either SOBI or ThinICA. The

choice of appropriate cut-off period is important. The re-

sults are best for cut-off period around 100 sec.

(2) Combination of sensors

There are several sets of data such as VSE, Titan

(Taurus-NS, EW and Z) etc. Out of all possible combi-

nations, the association of VSE and Taurus-Z gave the best

results.

(3) Pre-conditions for effective data extraction

The de-noising and data separation is found to be effec-

tive at certain pre-conditioning of data acquisition environ-

ment. The results are optimal for the portion of data where

ship speed is low and the ship direction is uniform and tilt-

ing frequency is also low. While the ship is stopped, (ship

stoppage time) frequency of tilting motion of the ship is

high and the results are deviated from the reference data.

Similarly, when the ship changes direction frequently near

the bay, the results showed difference from the reference

data.

(4) Comparison of Results

The filtered VSE and Taurus-Z data as an input data

are shown in Figure (6). The separated output data by

ThinICA and SOBI are shown in Figures (7) and (8), re-

spectively. The comparison of LPF VSE data, output by

ThinICA, SOBI and the reference data are compared in

Figure (9). The results by SOBI and ICA are far improved

than filtered VSE and followed the trend of reference data

during the most of the period.

(5) Influence of Ship Motion

In the durations when stability of the motion of the ship

is lost, results obtained by ThinICA were eccentric to the

trend of reference data. For example, when the ship is

stopped on the sea, fluctuation of the ship motion is rela-

tively high and the separated singal was very different from

the reference data.

While going away from the bay, the average ship speed

was around 11 km/hr and the separation result obtained

by ThinICA form the data obtained during that duration

showed good agreement with the reference data. While re-

turning back to bay, the ship velocity was roughly around

Figure 6 Truncated Input LPF VSE and LPF Taurus-Z data:
Ship stoppage time (14:22:00 to 14:50:30) removed.

Figure 7 Output by ThinICA for truncated input with Ship stop-
page time (14:22:00 to 14:50:30) removed.

18 km/hr and the ship changed the direction often. Separa-

tion results from the data obtained during this period was

not as harmonious as the former section when ship speed

was lower.

These results indicate that stability of the ship motion,

such as stability of velocity and direction, play an impor-

tant role to describe the effectiveness of ThinICA.

10. CONCLUSIONS

The prototype mobile gravimeter developed by

Morikawa et al. uses a force-balace (FB) type accelerom-

eter sensor, which is sensitive to high frequency noises

compared to the conventional spring-type gravimeter. The

noise can be much larger than the gravity anomaly data

8



Figure 8 Output by SOBI for truncated input with Ship stop-
page time (14:22:00 to 14:50:30) removed.

Figure 9 Comparison of output by ThinICA and SOBI with
VSE LPF and Reference data (mGals), for truncated
input with ship stoppage time removed: Both SOBI
and ThinICA show improvements than LPF data with
similar performance.

itself. In order to extract the gravity anomaly signal from

the noise-contaminated observation data, an appropriate

data processing methodology is needed.

Considering such background, we propose to use the

advanced blind source separation (BSS) techniques that

consider the statistical independence of source signals, be-

cause the gravity anomaly data and various noises are ex-

pected to be independent. Among various BSS methods,

ThinICA algorithm was selected that maximizes the inde-

pendence among signals at several time-lags. The method

are supposed to have the merits of the method called the

Second Order Blind Identification (SOBI) and conven-

tional ICA.

In order to verify the performance of proposed method,

the presented method was applied to the gravity data ob-

tained by prototype gravimeter at the Toyama bay, Japan.

The obtained results were compared with the high quality

data generated by AIST.

The prototype by Morikawa et al. consists of multiple

sensors. The Analog servo (VSE) is the main sensor and

it must be accompanied by other sensor, because BSS re-

quires at least two sets of data. Based on the comparison

of computation results, it was suggested that the ThinICA

results are good for the combination of VSE data with ver-

tical component of Taurus.

Assuming that gravity anomaly data is dominant at

lower frequencies, high frequency components are filtered

out using LPF. Such frequency based filtering with an ap-

propriate choice of cut-off period is realized to be impor-

tant. The presence of high frequency noises is found to be

unfavorable to data separation, because BSS methods work

only after low pass filtering was conducted.

Also discussed is the influence of data acquisition en-

vironment. It was found that in the period when stability

of the motion of the ship is lost, results obtained by the

presented method deteriorates.

The agreement of ICA separated data with reference

data verifies the applicability of the proposed method un-

der certain conditions of data observation environment.

The further improvement in data processing methodology

is considered to be the part of future works.

The results are at acceptable limit for the purpose of sub-

surface modeling. Based on the current performance, it can

be concluded that the results are encouraging. The consis-

tency in the results in future and further improvements, if

possible, will lead to the improvement in mobility of grav-

ity method. The mobility of gravity method will not only

facilitate the economic combination of multiple subsurface

survey methods but also will facilitate the continuous sets

of data leading to abundance of information on subsurface

strata. The improved accuracy in subsurface modeling will

contribute to improve the quality of GM simulation and

seismic design.
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