断層変位を受けるコンクリートアーチ橋の耐震特性

松永 昭吾¹·大塚久哲²

¹株式会社建設技術研究所九州支社 (〒810-0041 福岡県福岡市中央区大名2-4-12 CTI福岡ビル) E-mail:s-matung@ctie.co.jp ²九州大学大学院工学研究院建設デザイン部門教授(〒819-0395 福岡県福岡市西区元岡744) E-mail:otsuka@doc.kyushu-u.ac.jp

近年,橋梁の耐震設計においても断層変位を考慮する重要性が指摘されてきているが,一般には地震に よる揺れのみを考慮した設計が行われており,断層変位の影響を考慮した事例は限られている.そこで本 研究では,断層直上の橋梁の動的挙動を把握することを目的として,日本の最新の耐震基準を用いて耐震 設計された鉄筋コンクリート固定アーチ橋を対象に,断層変位を考慮した解析を行い,その耐震特性を検 証するものである.解析手法としては,多数の変位方向についての静的変位漸増解析を行うことにより静 的な許容変位量を把握するとともに,残留変位が生じるよう作成された二種類の変位波形を用いることに より断層変位を考慮した時刻歴応答解析を実施した.

Key Words : Fault displacement, static analysis, dynamic analysis, arch bridge

1. はじめに

1999年に発生したトルコ・コジャエリ地震や台 湾・集集地震では、それぞれ水平方向に4~5m程度、 および,鉛直方向に最大9~10m程度に達する断層 変位が地表面に出現し、断層による永久変位が原因 となって道路橋を含む多くの構造物が被災している. わが国でも断層変位により地中構造物が被災した事 例があり、橋梁の耐震設計においても断層変位を考 慮する重要性が指摘されてきているが、一般には地 震による揺れのみを考慮した設計が行われており、 断層変位の影響を考慮した事例は限られている.し かしながら、昨今では断層変位に対する意識の高ま りから、断層変位の影響を受ける橋梁の挙動につい ての研究が増加してきている.橋梁架橋地点の直下 に断層が存在し, その断層が動くことで支点部分を 含む地盤が変位することから、断層変位の影響を受 ける橋梁の挙動分析では,支点部分に静的に強制変 位を作用させる解析方法がとられることが多い. た だし、この方法では地盤震動によって生じる慣性力 の影響が考慮されていないため、実際の挙動とは異 なる可能性があり,断層変位の影響を予測する上で の課題であると言える.

そこで、本研究では、まず静的解析によって対象 とする橋梁がどの方向のどの程度の断層変位で終局 に至るかを明らかにし、次に断層変位と慣性力を同 時に橋梁モデルに作用させた時刻歴応答解析を行い、 断層直上の橋梁の動的挙動を把握することを試みた.

2. 対象橋梁

図-1に示す鉄筋コンクリート(RC)アーチ橋に断層 変位が作用する場合の挙動を解析する.1980年版道 路橋示方書¹⁾を適用して設計された既設橋梁をもと に、本検討用にモデルを単純化するとともに2002年 版道路橋示方書²⁾の耐震基準を満足するよう鋼材量 を調整している.本研究では市販ソフトTDAPIII³⁾ を用いて解析を行い、上部工はプレストレスによる 軸力を考慮した梁要素、その他のRC部材はファイ バー要素でモデル化する.なお、支承部の損傷は考 慮せず、可動範囲、回転範囲を設けていない.

(1) 構造形式

形 式:上路式RC固定アーチ橋
橋 長:349.70 [m]
支 間:アーチ支間 235.000 [m]
幅 員:21.10 [m]
基礎形式:直接基礎
支持条件:図-1(a)に示す
支承の種類:ゴム支承
地盤種別:I種地盤
適用示方書:道路橋示方書(2002年3月版)相当

(2) 使用材料

表-1のとおり.

図-2 解析モデル図

表-2 使用材料

部材		コンクリート	鉄筋	PC 鋼材
アーチリブ		σ _{ck} '=40.0 [MPa]	SD295	σ _{pu} =1030.0[MPa]
	補剛桁	σ _{ck} '=35.0 [MPa]	SD295	σ _{pu} =1030.0[MPa]
	鉛直材	σ _{ck} '=24.0 [MPa]	SD295	_
	エンドポスト	σ _{ck} '=24.0 [MPa]	SD295	_

表-2 コンクリート構成則

	σ_{cc}	σ _{cc} ε _{cc}	
	(MPa)	$(\times 10^{-6})$	$(\times 10^{-6})$
アーチリング	40.0	2000	2800
橋脚			
エンドポスト	24.0	2107	2253
鉛 直 材			

図-4 鉄筋, PC鋼材の応力-ひずみ関係

		σ,	ε _y	k
		(MPa)	$(\times 10^{-6})$	
鉄	筋	295	1475	1/100
P C	鋼材	824	4120	1/1000

3. 解析モデル

図-2 に示すように立体骨組みのモデル化を行った.本解析では、アーチリング、橋脚、鉛直材をファイファイバー要素で、補剛桁を非線形はり要素で、橋台を線形はり要素でモデル化している.可動支承は橋軸方向可動、橋軸直角方向固定のばねとしてモデル化を行っている.ファイバーモデルを適用した部材のコンクリート部分の材料非線形は指数関数型コンクリートモデル(図-3,表-2)で考慮し、鉄筋、PC 鋼材はバイリニアモデル(図-4,表-3)を用いている.断面は、ファイバー要素分割し、上下面中央、側面中央、4 隅各部の計 8 本のファイバーの応答に着目している.補剛桁の材料非線形特性は武田

表−4 解析ケース						
解析ケース	入力波形	想定断層変位量(m)				
CASE1	TCU068EW(加速度波形)	0				
CASE2	TCU068EW1-1(変位波形)	0				
CASE3	TCU068EW1-1, 1-7	+3.88 (開く方向)				
CASE4	TCU068EW1-1, 1-7	-3.88 (閉じる方向)				

図-11 静的解析による降伏変位と終局変位(Y-Z 平面)

モデル(図-5)を適用している.また,終局状態の判定基準は,内部コンクリートの圧壊とし,コンクリートひずみが終局ひずみに達したときに破壊したと判断する.なお,本検討では引張破壊については考慮していない.

4. 解析概要

本検討では、アーチリングが断層を跨いでいる状態を想定した解析を行う.以下,静的解析と動的解析とした解析を行う.ので説明する.

(1) 静的解析

本検討では対象橋梁が,橋軸方向,橋軸直角方向, 鉛直方向の直交3方向に加え,橋梁と角度を有して 断層変位を静的に受けた場合について解析を行う. 図-8 は断層変位が X-Y 平面に生じる場合で,その 方向を X 軸となす角 α で表している.これは水平

面内でさまざまな方向に横ずれ断層が生じた場合に 相当する. 図-11 は断層変位が X-Z 平面に生じる場 合で,その方向を X 軸となす角 β で表している. 図-14 は,断層変位ベクトルが Y-Z 平面内に存在す る場合で,その方向を Y 軸とのなす角 γ で表して いる.これは橋軸直角方向面内でさまざまな方向に 横ずれ断層が生じた場合に相当する.これら α , β , γ に対し,22.5°刻みで角度を変化させ,その方向の 断層変位が生じた場合の挙動を解析的に検証した. 断層変位の入力は,橋台,アーチアバットにおける 橋梁両側の固定点(図-2 に示す al~a4)に,断層 方向に応じて静的に漸増変位(STEP 刻み 0.002m) を与えた.

(2) 動的解析

本節の動的解析では、台湾集集地震で観測された

加速度波形 TCU068EW, および, それを基に文献 4)で作成された変位波形 TCU068EW1-1, 1-7を使用 する(図-6,7 参照). 図-7 に示す通り、 TCU068EW1-1, 1-7 はそれぞれ, 368.69cm, 756.95cm の最終変位となる変位波形であり、その 差は 3.88m となる.表-4 に解析ケースを示す. CASE1 では加速度入力による一般的な解析を行い, CASE2 では変位波形入力による解析を行う. それ ぞれ波形入力点 al~a4 に同一の波形を入力し断層 変位は想定しない. ここで, CASE1 と CASE2 の応 答を比較し,変位波形入力による動的解析の妥当性 を検討する. CASE3 と CASE4 では 2 つの異なる変 位波形 TCU068EW1-1, 1-7 を入力し, アーチリン グが開く方向(CASE3),閉じる方向(CASE4)に地震 動と断層変位の両方を受けることを想定した解析を 行う. 1-1 と 1-7 の残留変位差から断層変位は 3.88m を想定するものとする.時刻歴応答解析にお ける数値解析法には、Newmarkβ 法(β=0.25)による 直接積分法を用い、積分時間間隔 0.005 秒、応答解 析時間を 90 秒としている.加震方向は橋軸方向の みを対象としている.減衰はレーリー減衰で考慮し, 1次と28次のモードの固有値をもとに設定を行っ た.

表5	7-	ーチリ	レン	グに	おけ	ろ	最大断面力
<u> </u>	/		*	~ 1 ~		\sim	

CASE	入力波形	断層 変位量 * (m)	応答 加速度 ** (m/s ²)	最大曲げ モーメント ** (kN・m)	最大 せん断力 ** (kN)	
CASE1	加速度波形入力 TCU068EW	0.00	4.386	759,754	35,028	
CASE2	変位波形入力 TCU068EW1-1	0.00	4.312	754,580	34,606	
CASE3	変位波形入力 TCU068EW1-1,1-7	+ 3.88	6.497	1,153,900	38,634	
CASE4	変位波形入力 TCU068EW1-1,1-7	- 3.88	5.179	772,836	38,136	

* 断層変位量は、アーチリングが開く方向を正(+),閉じる方向を負 (-)とした.

** 最大加速度応答値はクラウン部,最大曲げモーメント,最大せん断 力はスプリンギング部の値を示す.

5. 静的解析結果

橋軸方向を X 方向, 鉛直方向を Y 方向, 面外方 向を Z 方向として, 変位漸増解析の結果を, 変位 を与えた方向ごとに X-Y 平面, Y-Z 平面, X-Z 平面 の順に整理する.

(1) X-Y 平面

アーチリングが X 軸に沿って開く方向を α=0°, X 軸に沿って閉じる方向を α=180°とし, α を 22.5° 刻みで変化させた結果を図-8,図-9,図-10 に示す. 対称性を考慮して全 9 ケースの解析を整理した.ア ーチリングの開閉(X 軸)方向に比べ,鉛直(Y 軸)方 向のずれに対して比較的変位追従性が高いことがわ かる.また,開く方向にはアーチスプリンギング部 が最初に終局に至るが,閉じる方向ではアーチクラ ウン部が先に終局に至っている.

(2) Y-Z 平面

アーチリングが Z 軸に沿って面外直角にずれる 方向を β=0°, 鉛直上方にずれる方向を β=90°とし, β を 22.5° 刻みで変化させた結果を図-11, 図-12, 図-13 に示す. 対称性を考慮して全 5 ケースの解析

図-20 アーチクラウン部の応答波形(要素 55)

を整理した. 面外(Z 軸)方向のずれに比べ, 比較的 鉛直(Y 軸)方向のずれに対して変位追従性が高いこ とがわかる. どのケースもアーチスプリンギング部

が最初に終局に至っている.

(3) X-Z 平面

アーチリングが X 軸に沿って開く方向を $\gamma=0^{\circ}$, 面外直角にずれる方向を $\gamma=90^{\circ}$, X 軸に沿って閉じ る方向を $\gamma=180^{\circ}$ とし, $\gamma=22.5^{\circ}$ 刻みで変化させた結 果を図-14, 図-15 に示す.対称性を考慮して全 9 ケースの解析を整理した. 面外(Z 軸)方向のずれに 比べ,比較的水平(X 軸)方向のずれに対して変位追 従性が高いことがわかる. X 軸方向に閉じるケース

(γ=180°)のみアーチクラウン部が先に終局に至るが, その他のケースは全てアーチスプリンギング部が最

初に終局に至っている.

6. 動的解析結果

本節では、以下の4つのケースの動的解析結果を 整理する.

- CASE1:全支点に同じ加速度波形(TCU068EW) を入力
- CASE2:全支点に同じ変位波形(TCU068EW1-1) を入力
- CASE3:アーチリングを挟んで開く方向に断層変 位が生じるよう2つの変位波形を入力
- CASE4:アーチリングを挟んで閉じる方向に断層 変位が生じるよう2つの変位波形を入力

ここで, CASE3, 4 には TCU068EW1-1(最終変位 368.69cm)と TCU068EW1-7(最終変位 756.95cm)の 最終変位差 388.26cm の変位波形を用いる.図-16 に本解析結果で着目している部材(要素)を図示する.

(1) 応答波形

表-5 にアーチリングにおける最大応答加速度, 及び,最大断面力を表記する.また,図-17,18 に

アーチクラウン中央の応答変位,応答加速度波形を, 図-19,20にアーチスプリンギング,アーチクラウンの曲げモーメントとせん断力の応答波形を示す. これらより加速度波形を用いた CASE1 と変位波形 を用いた CASE2 では等価な応答波形が得られていることがわかる.

(2) 応答曲率分布

図-21,22,23 に補剛桁,アーチリング,エンド ポストの最大最小応答曲率分布を図示する.図-21, 22 の(a)は残留変位無しの加速度入力と変位入力, (b)は開く方向に断層変位量 3.88m となる動的解析 と静的解析の結果,(c)は閉じる方向に断層変位量 3.88m の動的解析と静的解析結果を示す.図中の降 伏および終局時の各曲率は死荷重時の軸力に対する

図-26 アーチスプリンギング部の履歴曲線(要素 25)

曲率である.

CASE1, CASE2 においては, 鉛直材 V4・V7 付 近および鉛直材 V1・V10 付近の補剛桁で降伏曲率 を大きく上回り, アーチスプリンギング部および鉛 直材 V3・V4 および V7・V8 付近のアーチ部材で降 伏曲率を上回った.

CASE3 においては、動的解析および静的解析の 応答は同じ傾向にあり、断層変位を伴う動的解析に は変位による影響が支配的であることがわかる.鉛 直材 V1・V10 付近の補剛桁、アーチクラウン部で 終局曲率に近い値となり、加速度波形入力の CASE1 に比べて損傷程度は大きくなっている.エ ンドポストでは基部で降伏曲率を上回ったが、 CASE1 と同程度の値となった.

CASE4 においても CASE3 と同様に,動的解析と 静的解析の応答差は僅かである.補剛桁では終局曲 率には至らないが,アーチスプリンギング部で終局 曲率に至った.エンドポストでは基部で降伏曲率を 上回った.

(3) M- φ 履歴曲線

図-24, 25 に鉛直材 VP10(固定支点)前後の補剛桁, 及び, アーチスプリンギング部の M-φ履歴曲線を 示す.

アーチリングが開く方向に断層変位が生じる CASE3 では加速度波形入力である CASE1 に比べて, 補剛桁では圧縮側に,アーチスプリンギング部で引 張側に履歴が大きく伸び,損傷程度が大きくなった.

アーチリングが閉じる方向に断層変位が生じる CASE4 では CASE1 に比べて、補剛桁で引張側、ア ーチスプリンギング部で圧縮側に、アーチクラウン 部で引張側に履歴が大きく伸びた.

(4) 応力-ひずみ曲線

図-26 にアーチスプリンギング部のコンクリート 及び鉄筋の応答履歴(応力-ひずみ)を示す.

アーチリングが開く方向に断層変位が生じる CASE3 では断面の着目位置①が引張側,着目位置 ⑧が圧縮側となり,アーチリングが閉じる方向に断 層変位が生じる CASE4 では着目位置①が圧縮側, 着目位置⑧が引張側となることがわかる.また,損 傷程度については CASE3, CASE4 ともに加速度波 形入力である CASE1 に比べて大きくなっている.

(5) 考察

CASE1 と CASE2 の比較によると,加速度波形入 力と変位波形入力で同様の解析結果が得られている ことがわかる.このことから変位波形入力による動 的解析の妥当性が検証できたといえる.また,相対 残留変位を生じる CASE3, CASE4 では CASE1, CASE2 を上回る応答加速度と損傷を生じているが, 慣性力と変位の両方を考慮していることから考える と定性的には妥当な結果といえる.

7. 結論

本研究は断層変位が生じる箇所に設計される橋梁 の照査方法を確立する目的で行った研究の一部を紹 介したものである.対象は既存の鉄筋コンクリート 固定アーチ橋であるが、モデルを若干簡略化し、最 新の耐震基準を用いて耐震設計をし直した後に、 様々な方向の断層変位を想定した静的解析を行い、 その耐震特性を検証した.次に、残留変位が生じる よう作成された二種類の変位波形を用いた動的解析 により、静的解析との違い、同一加速度波形を用い る解析との違いを検討した.これによって、残留変 位を有する変位波形を用いた時刻歴応答解析の意義 とその必要性を明らかにすることができた.

参考文献

- 1)日本道路協会:道路橋示方書·同解説,丸善,1980.
- 2) 日本道路協会:道路橋示方書·同解説, 丸善, 2002.
- 3) アーク情報システム:TDAPIIIバージョン 3 理論マニュ アル, 2007.
- 4) 土木学会地震工学委員会断層変位を受ける橋梁の計 画・耐震設計に関する研究小委員会:「断層を受ける橋 梁の計画・耐震設計に関する研究小委員会」報告書, 2008.

SEISMIC PEFORMANCE OF A RC ARCH BRIDGE SUBJECTED TO FAULT DISPLECEMENT

Shogo MATSUNAGA, Hisanori OTSUKA

The concern for the destruction of structures by seismic fault displacement has increased since 1999 Taiwan Chi-Chi and Turkey Kocaeli earthquakes. Bridges in Japan has not been designed considering the fault displacements, In this paper two analyses are conducted for a RC arch bridge designed using the newest version of Japanese Highway Bridge Design Specification to clarify the seismic performance of the bridge. One is a parametric static analysis for various directions of fault displacements. The other is dynamic analyses using acceleration time histories or displacement time histories including residual displacements.