

地形分類、ボーリングデータに基づく増幅度を 考慮した2005年福岡県西方沖地震の 地震動分布推定

福島 康宏1・末冨 岩雄1・石田 栄介1・磯山 龍二1・丸山 喜久2・山崎 文雄3

1日本技術開発株式会社 リサーチ・エンジニアリング事業部 (〒164-8601 東京都中野区本町5-33-11)

E-mail:fukusimaya@jecc.co.jp, suetomi-i@jecc.co.jp, isidae@jecc.co.jp, isoyama-ryo@jecc.co.jp ²千葉大学助教 大学院 工学研究科 建築・都市科学専攻(〒263-8522 千葉市稲毛区弥生町1-33)

E-mail: ymaruyam@tu.chiba-u.ac.jp

³千葉大学教授 大学院 工学研究科 建築・都市科学専攻(〒263-8522 千葉市稲毛区弥生町1-33) E-mail: yamazaki@tu.chiba-u.ac.jp

2005年福岡県西方沖の地震における被災地域の地形情報,地盤ボーリング情報を収集した.地形分類お よびボーリングデータのそれぞれから表層地盤の地震動増幅特性を評価できるが,ボーリングデータが密 なところではボーリングデータに基づく評価に,疎なところでは地形分類に基づく評価となるように両者 の統合を行い,地震動増幅特性の面的分布を求めた.この面的な増幅特性分布を考慮して福岡県西方沖の 地震の観測地点地震動を空間補間することにより,面的な地表面地震動分布を作成した.

Key Words : The west off Fukuoka prefecture earthquake in 2005, Amplification factor of shallow soil deposits, Mean shear wave velocity, Spectral Intensity

1. はじめに

2005年3月20日10時53分頃発生した福岡県西方沖の地 震(Mj7.0)は、1995年兵庫県南部地震以降に急速に整備 された強震観測網のもとで、はじめて100万人都市が強 震動に見舞われた事例であり、強震域の福岡市内では防 災科学技術研究所K-NETや気象庁、福岡県といった公的 機関のほか、西部ガス(株)や(株)建設技術研究所など、 各機関により貴重な強震記録が多数得られている.

本検討では、地震動と構造物被害との関係の分析に資 する目的で、強震域における地形情報、地盤ボーリング 情報を収集し、この両者を考慮した、表層地盤の地震動 増幅特性の面的評価を行う.また、この地震動増幅特性 を考慮して強震観測点での観測値を空間補間することに より、地表面での面的な地震動分布を作成する.なお、 本検討で対象とする地震動指標は、地震時の都市ガス供 給停止判断や土木構造物の被害推定に用いられているSI 値とする.

2. 地盤増幅度の評価

地盤増幅度を評価する方法は、地形分類に基づく方法 と、ボーリングデータを用いる方法に大別される.地形 分類に基づく方法として、以前は国土数値情報に基づく 1kmメッシュでの地形分類が用いられてきた¹⁾が、近年で は、若松ら²により、新しい分類が提案され、全国を対 象に1kmメッシュデータベースが作成されている.一方、 ボーリングデータを用いるものとして、東京ガス³⁰では、 首都圏の約6万本のボーリングデータを収集し、各点の 深さ20mまでの平均S波速度を評価し、これを空間補間す ることにより、50mメッシュ単位でのデータを作成して いる.これにより、同一地形分類内でも大小があり、特 に東京東部低地で揺れやすいという詳細な増幅度マップ を構築している.

地形分類は、地盤増幅度を評価する際には現状では平 均S波速度を地形分類に応じて評価することを介してい るので、ボーリングデータによるN値からの推定の方が 直接的である.しかしながら、地形分類は全国を対象に 整備されているのに対し、十分な密度を有するボーリン

グデータのデータベースを構築することは、大都市圏以 外では困難であるなど、それぞれ一長一短がある.これ までは二者択一の問題として捉えられることが多かった が、両者を統合して地盤パラメータを評価する方法が末 富ほか⁴により提案され、2004年新潟県中越地震での地 震動分布推定に適用されている.本検討でも、末冨ほか と同様の手法により統合評価を行う.

表-1 福岡市地形分類に基づくVs30評価係数

福岡市地形分類での	翠川・松岡(1995)	係数		標高の範囲	
地形・表層地質	での分類	а	b	下限	上限
改変山地・改変丘陵部	Plateau	2.00	0.28	10m	400m
谷・旧水部	Valley plain	2.07	0.15	10m	500m
沖積平地	Delta	2.34	0.00	I	
その他良質地盤	Mountain	2.64	0.00	-	
埋立地1, 埋立地2	Reclaimed land	2.23	0.00	-	-

図-3 地形分類に基づき評価したSI値増幅度

(1) 地形分類に基づく増幅特性の評価

福岡県西方沖の地震での強震域にあたる福岡市では, 図-1に示す地形分類図が1984年に作成されている⁵.本 検討では,これを50mメッシュ(標準地域メッシュ第3次 区画の20×20分割)単位に分割して用いる.

地震動の増幅度は、図-1の地形分類から直接関係づけ るのではなく、地形分類と図-2に示す標高データとから、 松岡・翠川の方法⁶によりいったん深さ30mまでの平均S 波速度Vs30の評価を行う.

$$\log(Vs30) = a + b\log H \tag{1}$$

ここで, *a*, *b*は**表**-1に示す係数, *H*は標高[m]である. 現状では, *Vs*30とSI値増幅度との関係づける式がなく, かつ最大速度とSI値の差は数%であるので,最大速度の 増幅度 *ARV* とSI値増幅度 *ARSI* とが等しいと仮定し, Midorikawa et al.⁷による, *Vs*30と *ARV* の関係式を用 い,

$$\log(ARSI) = -0.66 \cdot \log(Vs30) + 1.83 \tag{2}$$

で与える.得られたSI値増幅度分布を図-3に示す.

図-4 福岡市周辺のボーリング位置

(2) ボーリングデータに基づく増幅特性の評価

福岡市周辺におけるボーリングデータについては, (社)地盤工学会九州支部⁸より「九州地盤情報共有デー タベース」CD-R が公開されており,福岡市内では 1779 本のデータが存在する.この他,西部ガス(株)より提供 を受けたボーリング 26 本,(独)防災科学技術研究所で 公開されている K-NET⁹観測点でのボーリング 1 本を加 えた計 1806 本を用いる.これらの分布を図-4 に示す.

まずは、ボーリング地点での深さ 20m までの平均 S 波 速度 Vs20 を評価する. Vs20 の計算には走時(総総厚 20m を波動伝達所要総時間で除す方法)を用いている.

$$Vs20 = \frac{\sum_{k} H_{k}}{\sum_{k} \frac{H_{k}}{Vs_{k}}} = \frac{20}{\sum_{k} \frac{H_{k}}{Vs_{k}}}$$
(3)
(k はボーリングの層番号)

なお、各層の平均 S 波速度 Vs_k は、防災科研 K-NET 強震 観測点のボーリングについては PS 検層からの S 波速度 を、それ以外(九州地盤情報共有データベース、西部ガ スのボーリング)は、平均 N 値 N_k と土質種別から、道 路橋示方書¹⁰の式を用いて計算している.

$$Vs_k = 100N_k^{-1/3}$$
 (粘性土) (4)

$$Vs_k = 80N_k^{-1/3}$$
 (砂質土) (5)

図-5 ボーリングデータに基づき評価したSI値増幅度

次に, S 波速度 600[m/s]相当の工学基盤に対する SI 値 増幅度は,田村ら¹¹⁰による下式を用いて計算する.

$$\log(ARSI) = -0.785 \cdot \log(Vs20) + 2.18 \tag{6}$$

以上のように評価された SI 値増幅度を 50m メッシュ単 位で補間した結果を図-5 に示す.補間は,各参照値の 対数に距離の2乗分の1の重みをつけて平均値計算を行 うことにより算出している.

(3) 統合評価

図-3 に示した地形分類に基づく増幅度と図-5 に示し たボーリングデータに基づく増幅度とを比較すると, 図-5 で見られる,海の中道付近,箱崎埠頭付近,那の 津付近などで局所的に増幅度が大きい様子は地形分類で は捉えることができない.一方,山地部などボーリング データがない地域にまでボーリングデータを適用するの は無理がある.そこで,両者を統合して評価する.

地形分類に基づく地盤パラメータとボーリングデータ に基づく地盤パラメータを統合して評価する方法は、末 富ほか⁴によって提案されており、2004 年新潟県中越地 震での地震動分布推定に適用されている.末富らの提案 では、深さ 30m までの平均 S 波速度Vs30 を統合してい るが、前項(2)のボーリングデータに基づく増幅特性の 評価では、増幅度を求めるための地盤パラメータとして Vs30 ではなくVs20 を用いていることから、本検討では、 平均 S 波速度同士を統合するのではなく、SI 値増幅度

SI值増幅度

同士を末冨ほかの式を用いて統合することとする.

メッシュ j での統合増幅度 \overline{ARSI}_j は、以下の式で求める.

$$\overline{ARSI_j} = \frac{\sum_{i=1}^{N} w_{ij} ARSI_i + w_g ARSI_g}{\sum_{i=1}^{N} w_{ij} + w_g}$$
(7)

$$w_{ij} = \frac{\xi}{r_{ij}^n}, \quad w_g = \frac{1}{r_g^n} \tag{8}$$

ここで,

ARSI_i: i 地点のボーリングデータによる SI 値増幅度
ARSI_g: 地形分類による SI 値増幅度

(最大速度増幅度と同じと仮定)

wii:ボーリングデータの重み

w。:地形分類の重み

r_{ij}:ボーリング地点i とメッシュ j 間の距離[km] r_e=1[km]

である. ξ は、地形分類が同じである点の重みを増すための係数であり、末富ほかと同様に、i地点とメッシュjとで地盤分類が同じ場合 10、異なる場合 1 を与える.また、nは石田ほか¹²による SI 値増幅度評価と同様に、

表-2 補間推定に用いた強震観測点での観測値一覧

沙雷 知测上	経度	緯度	SI値	
知辰観側品	[deg] [deg]		[kine]	
導管保安C[西部ガス]	130.4148	33.6120	44	
松島[西部ガス]	130.4371	33.6234	42.92	
西光[西部ガス]	130.4296	33.6065	42.59	
茶山[西部ガス]	130.3659	33.5617	41.36	
福岡空港[西部ガス]	130.4435	33. 5887	39.06	
原田[西部ガス]	130.4401	33.6148	37.57	
駅東[西部ガス]	130. 4243	33. 5903	23.82	
博多駅[西部ガス]	130.4237	33. 5876	21.10	
松崎[西部ガス]	130.4429	33.6359	20.79	
山王[西部ガス]	130.4337	33.5812	19.62	
香椎タウン[西部ガス]	130.4557	33.6476	19.31	
西春[西部ガス]	130.4687	33. 5367	19.25	
西供給所[西部ガス]	130.2884	33.5670	15.60	
四筒田[西部ガス]	130.3334	33. 5331	15.35	
福岡[防災科研K-NET]	130.4008	33. 5936	50.39	
東福岡[国交省]	130.4300	33.6408	27	
福岡中央区大濠[気象庁]	130.3767	33.5800	27.46	
福岡中央区舞鶴[福岡県]	130.3917	33.5875	58.08	
福岡早良区百道浜[福岡県]	130.3578	33.5864	37.25	
福岡西区今宿[福岡県]	130.2794	33.5697	28.53	
福岡博多区博多駅前[福岡県]	130.4217	33.5817	27.74	
福岡南区塩原[福岡県]	130. 4286	33.5617	20.71	
福岡城南区神松寺[福岡県]	130. 3775	33. 5494	14.61	
CTI福岡ビル[建設技術研究所]	130. 3937	33. 5853	85.41	

図-7 地震動の補間推定のイメージ

*n=*2とする.

以上のようにして作成された統合増幅度分布を図-6 に示す.

3. 地表面地震動の面的分布推定

前章2. で評価した,地形分類とボーリング情報より 統合評価された SI 値増幅度を考慮し,強震観測点での 観測 SI 値を空間補間することにより,福岡県西方沖の 地震本震の地表面 SI 値分布を作成する.用いた強震観 測点での観測 SI 値を表-2 に示す.

地震動の補間推定のイメージを図-7 に示すが、まず、 強震観測点において、観測された地表面 SI 値を SI 値増 幅度で除すことにより基盤での SI 値を計算する.次に、 基盤での観測 SI 値と距離減衰式により計算される SI 値 との比をとり、これを面的に距離の2乗の重みで補間す る.この比の補間結果に、各メッシュごとに距離減衰式 を用いて計算した基盤 SI 値分布と SI 値増幅度を乗ずる ことにより、距離減衰式をトレンドとした地表面 SI 値 分布を作成する.

なお, SI 値の距離減衰式には, Shabestari and Yamazaki¹³による下式を用いる.

図-8 作成した地表面SI値分布

log SI = 0.491318M - 0.001463r - log r+ 0.03591h - 0.784515 + log 0.562341325(9)

ここで、M はマグニチュード、h は震源深さ[km]、r は断層最短距離[km]であるが、断層形状は Asano and Iwata¹⁴によるモデルを用いた.

以上のようにして求められた地表面 SI 値分布を図-8 に示す. 断層近傍の玄界島,志賀島,海の中道で 100cm/s以上,能古島や西浦,宮浦付近で 60cm/s以上と いう結果となった. 断層に近いエリアを除く福岡市中心 部では,中央区舞鶴から赤坂,大名にかけての警固断層 沿いで局所的に大きな地震動となっているが,これは, 建設技術研究所の CTI 福岡ビル地点での観測値が大きか ったことによるもので,本検討で用いたボーリングデー タは乏しく,増幅度では捉えるには至っていない. 警固 断層付近では,断層の西側では基盤面が浅く,東側では 基盤面が深くなっており,断層の東側で地震動が増幅さ れた可能性が指摘されているが¹⁵,本検討での推定でも, 結果的には,およそ警固断層の断層線の辺りで急激に地 震動が変化している.

4. おわりに

地形分類に基づく地盤増幅度とボーリングデータに基

づく地盤増幅度を統合処理することにより,福岡市内の 地盤増幅度分布を評価した.さらに,この増幅度分布を 考慮し,強震観測点での観測SI値を空間補間することに より,2005年福岡県西方沖の地震本震の地表面SI値分布 を作成した.

現在のボーリングデータは埋立地周辺のものが多く, 国道202号線周辺など少し陸側に入った地域のボーリン グ情報を収集することが今後の課題である.

謝辞:防災科学技術研究所K-NET,気象庁,福岡県震度 情報ネットワーク,国土交通省河川・道路等施設の地震 計ネットワーク情報,西部ガス株式会社,株式会社建設 技術研究所の強震観測波形や観測値を使用させていただ きました.この他,西部ガス株式会社からはボーリング データを提供いただきました.記して謝意を表します.

参考文献

- 2) 翠川三郎,松岡昌志:国土数値情報を利用した地震ハザー ドの総合的評価,物理探査,第48巻,第6号,pp.519-529, 1995.
- 2) 若松加寿江,松岡昌志,久保純子,長谷川浩一,杉浦正美: 日本全国地形・地盤分類メッシュマップの構築,土木学会 論文集,No.759/I-67, pp.213-232, 2004.
- 3)清水善久,石田栄介,磯山龍二,山崎文雄,小金丸健一, 中山渉:都市ガス供給網のリアルタイム地震防災システム 構築及び広域地盤情報の整備と分析・活用,土木学会論文 集,No.738/I-64, pp.283-296, 2003.
- 4)末富岩雄,石田栄介,福島康宏,磯山龍二,澤田純男:地 形分類とボーリングデータの統合処理による地盤増幅度評 価と2004年新潟県中越地震における地震動分布の推定,日 本地震工学会論文集,第7巻 第3号, pp. 1-12, 2007.
- 5) 福岡市: 福岡市土地分類図(細部)調査 地形分類図, 1984.
- 松岡昌志,翠川三郎:国土数値情報を利用した地盤の平均S 波速度の推定,日本建築学会構造系論文報告集,No.443, pp.65-71,1993.
- 7) Midorikawa, S., M. Matsuoka, and K. Sakugawa: Site Effects on Strong-Motion Records during the 1987 Chiba-ken-Toho-Oki, Japan Earthquake, The 9th Japan Earthquake Eng. Symp., Vol. 3, pp. 85-90, 1994.
- (社)地盤工学会九州支部 九州地盤情報システム協議会:九 州地盤情報共有データベース 2005, CD-R, 2005.
- 9) (独)防災科学技術研究所: 強震ネットワークK-NET, http:// www.kyoshin.bosai.go.jp/k-net/
- 10)(財)日本道路協会:道路橋示方書・同解説 V耐震設計 編,2002.
- 11)田村勇,山崎文雄, K.T. Shabestari: K-NET地震記録を用いた

平均S波速度による地盤増幅度の推定,第55回土木学会年次 学術講演会講演概要集,I-B, pp.714-715,2000.

- 12) 石田栄介,磯山龍二,山崎文雄,清水善久,中山渉:防災 GIS を用いた地盤増幅度の面的整備と地震動面的分布推定 に関する検討,第26 回地震工学研究発表会講演論文集, pp. 421-424, 2001.
- 13)Khosrow T. SHABESTARI and Fumio YAMAZAKI: Attenuation Relation of Strong Gronnd Motion Indices Using K-Net Records, 第25回地震工学研究発表会, 第1分冊, pp. 137-140, 1999.

14)Kimiyuki Asano and Tomotaka Iwata: Source process and

near—source ground motions of the 2005 West Off Fukuoka Prefecture earthquake, Earth Planets Space, Vol.58, No.1, pp.93-98., 2006.

15) 土木学会西部支部福岡県西方沖地震被害調査団:2005年福岡県西方沖地震被害調査報告書,(社)土木学会西部支部, 230p.,2005.

(2007.06.29 受付)

ESTIMATION OF SURFACE GROUND MOTION DISTRIBUTION DURING 2005 WEST OFF FUKUOKA EARTHQUAKE USING MIXING METHOD OF GEOMORPHOLOGIC CLASSIFICATION AND BOREHOLE DATA

Yasuhiro FUKUSHIMA, Iwao SUETOMI, Eisuke ISHIDA, Ryoji ISOYAMA, Yoshihisa Maruyama and Fumio YAMAZAKI

Estimation of amplification on surface soil is very important in order to estimate detail distribution of earthquake ground motion.

The distribution of earthquake ground motion during 2005 west off Fukuoka earthquake was estimated from the observation records taking account of amplification factors of surface soil deposits by using mixing method to combine geomorphologic classification and borehole data.